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1 Introduction

1.0.1. The starting point of this paper is the fascinatingly simple and explicit map

[u : v ] 7→ {1−ζu
N , 1−ζv

N }

that relates the worlds of geometry/topology and arithmetic [Bu, Sh]. Here, for N ≥ 1,

• [u : v ] is a Manin symbol in the relative homology group H1(X1(N ),{cusps},Z), and

• {1−ζu
N , 1−ζv

N } is a Steinberg symbol in the algebraic K -group K2(Z[ζN , 1
N
]),

where u , v ∈ Z/NZ are nonzero numbers with (u , v ) = (1), and ζN is a primitive N th root of

unity.

1.0.2. The above map connects two different worlds in the following manner:

geometric theory of GL2 =⇒ arithmetic theory of GL1

over the field Q. Here, if we consider the geometry of the modular curve X1(N ) on the left,

then we consider the arithmetic of the cyclotomic fieldQ(ζN ) on the right. This connection is

conjectured to be a correspondence if we work modulo the Eisenstein ideal that is defined in

2.1.6:

geometric theory of GL2 modulo the Eisenstein ideal ⇐⇒ arithmetic theory of GL1 .

More generally, we are dreaming that there is a strong relationship

geometric theory of GLd modulo the Eisenstein ideal ⇐⇒ arithmetic theory of GLd−1

over global fields. Our goals are to survey what is known and to explain this dream.
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1.0.3. The connection with the Eisenstein ideal for GL2 overQ appears as follows. The homol-

ogy group we consider has the action of a Hecke algebra which contains an Eisenstein ideal,

and the map of 1.0.1 factors through the quotient of the homology by this ideal [FK]. The truth

of this is deep and mysterious; it is the idea of specializing at the cusp at∞. This is the key to

the connection between GL2 and GL1.

1.0.4. We note that there exist two technical issues with our simple presentation of the “map”

in 1.0.1. We left out those Manin symbols in which one of u or v is 0, which are needed to

generate the relative homology group. Also, the map is only well-defined as stated if we first

invert 2 and then project to the fixed part under complex conjugation (see Section 2.1).

1.0.5. Let us consider the case that N is a power of an odd prime p and work only with p -parts.

Consider the quotient

Pr =H1(X1(p r ),Zp )+/Ir H1(X1(p r ),Zp )+

of the fixed part of homology under complex conjugation by the action of the Eisenstein ideal

Ir in the cuspidal Hecke algebra of weight 2 and level p r . By the well-known relationship

between K2 and H 2
ét of Z[ζp r , 1

p
], the map of 1.0.1 yields a well-defined map

$r : Pr →H 2
ét(Z[ζp r , 1

p
],Zp (2))+

that sends the image of [u : v ] in Pr to the cup product (1−ζu
p r )∪ (1−ζv

p r ).

1.0.6. Let us connect this with Iwasawa theory for GL1. As we increase r , the maps $r are

compatible. The group H 2
ét(Z[ζp r , 1

p
],Zp (2))+ is related to the p -part Ar of the class group of

Q(ζp r ) in the sense that its reduction modulo p r is isomorphic to the Tate twist of A−r /p
r A−r .

So, if we let P = lim←−r
Pr and X = lim←−r

Ar , then we obtain a map

$: P→X−(1)

that relates geometry of the tower of curves X1(p r ) modulo the Eisenstein ideal to Iwasawa

theory over the union of cyclotomic fields Q(ζp r ). It is a map of Iwasawa modules under the

action of inverses of diamond operators on the left and of Galois elements on the right.

1.0.7. In [Sh], the map $ is conjectured to be an isomorphism. If this conjecture is true,

we can understand the arithmetic object X− by using the geometric object P . The Iwasawa

main conjecture states that the characteristic ideal of X− is the equivariant p -adic L-function.

On the other hand, the characteristic ideal of P under the inverse diamond action can be

computed to be a multiple of the Tate twist ξ of this L-function. If the characteristic ideals of

X−(1) and P are equal, then the main conjecture follows as a consequence of the analytic class

number formula. Therefore, the conjecture that$ is an isomorphism is an explicit refinement

of the Iwasawa main conjecture.
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1.0.8. In their proof of Iwasawa main conjecture [MW], Mazur and Wiles, expanding upon the

work of Ribet [Ri], considered the relationship between the geometric theory of GL2 and the

arithmetic theory of GL1. Using roughly their methods, we can define a map

Υ: X−(1)→ P.

More precisely,Υ is constructed out of the Galois action on the projective limit of the reduction

of étale homology groups H ét
1 (X1(p r )/Q,Zp ) modulo the Eisenstein ideal. The expectation in

[Sh] is that the maps $: P → X−(1) and Υ: X−(1) → P are inverse to each other. The best

evidence we have for this is the equality ξ′Υ ◦$ = ξ′ after multiplication by the derivative ξ′

of ξ, which is proven in [FK]. If the p -adic L-function ξ has no multiple zeros, this yields the

conjecture up to p -torsion in P .

1.0.9. An analogous result for the rational function field Fq (t ) over a finite field can be proven

by following the analogy between Fq (t ) and Q. In both cases, the key point of the proof is

that (1−ζu
N , 1−ζv

N ) and its analogue for Fq (t ) are values at the infinity cusp of the “zeta ele-

ments,” which is to say Beilinson elements and their analogues for Fq (t ), which live in K2 of

the modular curve X1(N ) and its Drinfeld analogue for Fq (t ).

1.0.10. For bothQ and Fq (t ), the philosophy is that ξ′Υ◦$ is the reduction modulo the Eisen-

stein ideal I of a map involving zeta elements. Roughly speaking, the proof consists firstly of

the demonstration of the existence of a commutative diagram

S
mod I
��

z // K

∞
��

reg
// S

mod I
��

P $ // Y
ξ′Υ
// P.

Here, S is the space of modular symbols, the map z takes modular symbols to zeta elements

in the K2-group K of a modular curve, S is a space of p -adic cusp forms, reg is the p -adic

regulator map, and Y is either X−(1) or its analogue for Fq (t ). The vertical arrows denoted by

“mod I ” are obtained by reduction modulo the Eisenstein ideal I (see Section 2.7 for details),

and∞ is given by specialization at a cusp at infinity. Secondly, it entails a computation of the

regulator map on zeta elements that tells us that the composition S → K →S→ P coincides

with ξ′ times the projectionS → P .

1.0.11. In this survey paper, we explain the key ideas and concepts of our work, putting aside

many of the technical details that must arise in a careful treatment. While we do our best

to strike a balance, the reader should be aware that some of the statements we make require

minor modifications in order that they hold.
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The structure of the paper is as follows. In Section 2, we describe the original case of the

conjectures and outline the proof of the above result. In Section 3, we discuss and outline the

proof of the analogue for Fq (t ). In Section 4, we describe what might be expected for GLd .

2 The case of GL2 overQ

Fix an odd prime number p and an integer N ≥ 1 which is not divisible by p . Let r ≥ 1, which

will vary. LetQ be the algebraic closure ofQ in C, and let us fix an embedding ofQ inQp .

Recall that we want to understand the picture:

geometric theory of GL2 modulo the Eisenstein ideal
$ // arithmetic theory of GL1 .
Υ
oo

In Sections 2.1-2.3, we study the map $. In Sections 2.4 and 2.5, we study the map Υ. In

Sections 2.6 and 2.7, we state the conjecture and the main result on it.

2.1 From modular symbols to cup products

We construct the map $r that relates modular symbols in the homology of X1(N p r ) to cup

products in the cohomology of the maximal unramified outside N p extension ofQ(ζN p r ).

2.1.1. We introduce homology groupsSr andMr of modular curves.

Let H denote the complex upper half-plane and Γ1(N p r ) the usual congruence subgroup

of matrices in SL2(Z) that are upper-triangular and unipotent modulo N p r . We consider the

complex points Y1(N p r ) = Γ1(N p r )\H of the open modular curve over C. It is traditional to

use {cusps} to denote the cusps Γ1(N p r )\P1(Q), but let us instead set Cr = {cusps}. We let

X1(N p r ) = Y1(N p r )∪Cr =Γ1(N p r )\H∗,

be the closed modular curve, whereH∗ =H∪P1(Q) is the extended upper half-plane.

The usual modular symbols lie in the first homology group of the space X1(N p r ) relative to

the cusps. However, H1(X1(N p r ),Cr ,Z) is not exactly the natural object for our study. Rather,

we are interested in its quotient by the action of complex conjugation, the plus quotient.1 We

consider the plus quotients of homology and homology relative to the cusps:

Sr =H1(X1(N p r ),Z)+ and Mr =H1(X1(N p r ),Cr ,Z)+,

where ( )+ denotes the plus quotient.

1This is still not quite the right object unless we invert 2. In Section 4, we take the point of view that the right

object is the relative homology of the quotient of the space X1(N p r ) by the action of complex conjugation.
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2.1.2. We introduce Manin symbols [u : v ]r ∈Mr .

Let u , v ∈ Z/N p rZ be such that (u , v ) = (1). For such u and v , we can find γ =
�

a b
c d

�

∈
SL2(Z)with u = c mod N p r and v = d mod N p r . Define

[u : v ]r =
�

d

b N p r
→

c

a N p r

�

r

,

where {α→β}r for α,β ∈P1(Q) denotes the class inMr of the hyperbolic geodesic onH∗ from

α to β . Then [u : v ]r is independent of the choice of γ.

By the work of Manin [Ma], we have that the groupMr of modular symbols is explicitly

presented as an abelian group by generators [u : v ]r and relations

[u : v ]r = [−u : v ]r =−[v : u ]r and [u : v ]r = [u : u +v ]r +[u +v : v ]r .

2.1.3. We define an intermediate relative homology groupM 0
r used in constructing$r .

We do not use all modular symbols to connect with GL1. Rather, we use those modular

symbols with boundaries in cusps that do not lie over the cusp at 0 in X0(N p r ) = Γ0(N p r )\H∗.
Let us denote the set of cusps of X1(N p r ) that do not lie over the 0-cusp of X0(N p r ) by C 0

r . The

intermediate space

M 0
r =H1(X1(N p r ),C 0

r ,Z)+

is the largest space on which we may define $r and have it factor through the Eisenstein

quotient (see 2.1.7). We haveSr ⊂M 0
r ⊂Mr .

Our intermediate space also has a simple presentation: it is generated by the [u : v ] for

nonzero u , v ∈Z/N p rZwith (u , v ) = (1), together with the relations of 2.1.2, again for nonzero

u and v , and excluding the last relation when u +v = 0.

2.1.4. We define the map$r , which gives our first connection between GL2 and GL1.

We start with the primitive N p r th root of unity ζN p r = e 2πi/N p r . It generates the cyclotomic

field Er = Q(ζN p r ) and its integer ring Z[ζN p r ]. Inside Er , we have the maximal totally real

subfield Fr =Q(ζN p r )+ and its integer ring Or =Z[ζN p r ]+.

For a ,b ∈ Z[ζN p r , 1
N p
]×, we let {a ,b}r denote the norm of the Steinberg symbol of a and b

to K2(Or [ 1
N p
]). There is a well-defined homomorphism

$r :M 0
r ⊗Z[

1
2
]→ K2(Or [ 1

N p
])⊗Z[ 1

2
], [u : v ]r 7→ {1−ζu

N p r , 1−ζv
N p r }r

for u , v 6= 0. Using the Steinberg relation {x , 1− x }r = 0 in K2 for x , 1− x ∈ Z[ζN p r , 1
N p
]×, one

may easily check that the {1− ζu
N p r , 1− ζv

N p r }r satisfy the same relations as the [u : v ]r (see

[Sh, Bu] for instance). It is necessary to invert 2 for these relations to hold.
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2.1.5. We interpret$r on p -completions in terms of cup products in Galois cohomology.

For a commutative ring R in which p is invertible, the Kummer exact sequence

0→Z/p nZ(1)→Gm
p n

→Gm → 0

on Spec(R)ét induces the connecting map R×→H 1
ét(R ,Z/p nZ(1)). We have also the Chern class

map K2(R)→H 2
ét(R ,Z/p nZ(2)). The value of this map on a product (i.e., Steinberg symbol) in

K2(R) of a pair of elements of R× is equal to the cup product of the images in H 1
ét(R ,Z/p nZ(1))

of the two elements.

We may apply this discussion with R equal to Z[ζN p r , 1
N p
] or Or [ 1

N p
], in which cases the

Chern class map K2(R)⊗Zp →H 2
ét(R ,Zp (2)) is an isomorphism [Ta]. Moreover, the diagram

K2(Z[ζN p r , 1
N p
])+⊗Zp

∼ //

oN

��

H 2
ét(Z[ζN p r , 1

N p
],Zp (2))+

ocor

��

K2(Or [ 1
N p
])⊗Zp

∼ // H 2
ét(Or [ 1

N p
],Zp (2))

commutes, where N is induced by the norm and cor is induced by corestriction. The map

cor is an isomorphism as Or [ 1
N p
] has p -cohomological dimension 2. Let (1− ζu

N p r , 1− ζv
N p r )r

denote the corestriction of the cup product of the elements 1−ζu
N p r and 1−ζv

N p r of

Z[ζN p r , 1
N p
]×⊗Zp

∼−→H 1
ét(Z[ζN p r , 1

N p
],Zp (1)).

By definition of the symbols, the Chern class map in the lower row of the diagram satisfies

{1−ζu
N p r , 1−ζv

N p r }r 7→ (1−ζu
N p r , 1−ζv

N p r )r .

We will study the homomorphism to Galois cohomology

$r :M 0
r ⊗Zp →H 2

ét(Or [ 1
N p
],Zp (2)), [u : v ]r 7→ (1−ζu

N p r , 1−ζv
N p r )r ,

which is identified with our original$r on p -completions.

2.1.6. We define Hecke algebras Tr and eTr and their Eisenstein ideals Ir and Ir .

The Hecke operators T (n ) for n ≥ 1 generate a subalgebra eTr of EndZp (Mr ⊗Zp ), the mod-

ular Hecke algebra. We will be interested in this section only in its action on M 0
r . We also

have a cuspidal Hecke algebraTr of EndZp (Sr ⊗Zp ) and a canonical surjection eTr �Tr . These

Hecke algebras contain diamond operators 〈d 〉 for d ∈Z, which we take to be 0 if (d , N p ) 6= 1.

The Hecke algebra eTr contains the Eisenstein ideal Ir generated by the T (n )−
∑

d |n d 〈d 〉
for n ≥ 1. It is also generated by T (`)− 1− `〈`〉 for primes `. The image Ir of Ir in Tr is an

Eisenstein ideal with the same generators.
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2.1.7. We connect our study of$r with the Eisenstein ideal.

The third author conjectured [Sh] (onSr , see also [Bu] for N = 1), and the first two authors

proved [FK, Theorem 5.2.3] that$r is “Eisenstein.” By this, we mean that$r factors through

the quotient ofM 0
r ⊗Zp by the Eisenstein ideal, that is, through a map

(M 0
r /IrM 0

r )⊗Zp →H 2
ét(Or [ 1

N p
],Zp (2)).

We can show that this follows from the fact that$r is the specialization of a map in the GL2-

setting: see Section 2.3.

2.1.8. Let Gr = (Z/N p rZ)×/{±1}, and set Λr =Zp [Gr ]. The algebra Λr appears in two different

contexts in our story:

(1) On the GL2-side, Λr is a Zp -algebra of diamond operators in Tr (or eTr ): we define a

Zp -linear injection ιr : Λr ,→ Tr that sends the group element in Λr corresponding to

a ∈ (Z/N p rZ)×/〈−1〉 to the inverse 〈a 〉−1 of the diamond operator for a (i.e., for any lift

of a to an integer).

(2) On the GL1-side, Λr is the Zp -group ring of Gal(Fr /Q): we have an isomorphism

(Z/N p rZ)× ∼−→Gal(Er /Q), a 7→σa ,

where σa (ζN p r ) = ζa
N p r . This gives rise to an isomorphism Gr

∼−→ Gal(Fr /Q) that is the

map on group elements defining Λr
∼−→Zp [Gal(Fr /Q)].

These actions are compatible with $r in the sense that for any x ∈ M 0
r ⊗ Zp and a ∈

(Z/N p rZ)×, we have

$r (〈a 〉−1x ) =σa$r (x ).

This is easily seen: taking x = [u : v ]r for some nonzero u and v , we have

〈a 〉−1[u : v ]r = [a u : a v ]r and σa (1−ζu
N p r , 1−ζv

N p r )r = (1−ζa u
N p r , 1−ζa v

N p r )r .

So, to say that$r is Eisenstein is to say that$r (T (`)x ) = (1+`σ−1
` )$r (x ) for primes ` -N p and

$r (T (`)x ) =$r (x ) for ` |N p .

2.2 Passing up the modular and cyclotomic towers: the map$

We pass up the modular tower on the GL2-side and the cyclotomic tower on the GL1-side to

define the map$= lim←−r
$r .
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2.2.1. Let G = lim←−r
Gr . Then the completed group ring

Λ=ZpJG K= lim←−
r

Λr

is the Iwasawa algebra for G . As with Λr , let us emphasize its dual nature:

(1) Set T = lim←−r
Tr and eT = lim←−r

eTr . The projective limit of the injections ιr defines a map

ι : Λ ,→ T of profinite Zp -modules that takes a ∈ G to the projective system of inverses

〈a 〉−1 of diamond operators corresponding to a .

(2) Set K = ∪r≥1Fr , the maximal totally real subfield of L = ∪r≥1Er . Then our identifications

Λr
∼−→ Zp [Gal(Fr /Q)] for r ≥ 1 induce an isomorphism Λ

∼−→ ZpJGal(K /Q)K of completed

group rings in the projective limit.

2.2.2. We have the following projective limits of spaces of modular symbols:

S = lim←−
r

(Sr ⊗Zp ) and M 0 = lim←−
r

(M 0
r ⊗Zp ).

Let I ⊂ eT and I ⊂ T be the Eisenstein ideals, defined by the same set of generators as Ir , but

now viewed as compatible sequences of operators in the Hecke algebras.

Our maps$r are compatible with change of r and induce in the projective limit a map

$:M 0→ lim←−
r

H 2
ét(Or [ 1

N p
],Zp (2))

that factors through M 0/IM 0 by the result of [FK]. This map $ is a homomorphism of Λ-

modules, the actions arising from part (1) of 2.2.1 on the left and part (2) of 2.2.1 on the right.

2.2.3. We recall the unramified Iwasawa module X , study its difference from Galois cohomol-

ogy, and consider a related Λ-module Y .

Let X be the projective limit of the p -parts Ar of the ideal class groups of the fields Er . Class

field theory allows us to identify X with the Galois group of the maximal unramified abelian

pro-p extension of L.

For R as in 2.1.5, the Kummer exact sequence induces

Pic(R) =H 1
ét(R ,Gm )→H 2

ét(R ,Z/p nZ(1)).

Taking a projective limit of such maps for the rings R =Or [ 1
N p
], we obtain

X = lim←−
r

Ar → lim←−
r

H 2
ét(Or [ 1

N p
],Zp (1)).

8



In general, this map is neither injective nor surjective. Its kernel and cokernel can be explicitly

described as contributions of classes of primes and Brauer groups at places dividing N p , re-

spectively. We will deal with a part of cohomology on which this subtle difference disappears.

The Iwasawa algebra ZpJGal(L/Q)K acts on X , but this action does not in general factor

through Λ. We want to consider the (−1)-eigenspace X− of X under complex conjugation.

To do so, we take the Tate twist Y = X−(1), or equivalently, the fixed part X (1)+. Then σ−1

acts trivially on Y , so Y is a Λ-module. The map from X to cohomology induces a Λ-module

homomorphism

Y → lim←−
r

H 2
ét(Or [ 1

N p
],Zp (2)).

Together with$, this will allow us to relateS with Y .

2.2.4. We have two objects of study:

• the geometric object P =S /IS for GL2,

• the Iwasawa-theoretic object Y =X−(1) for GL1.

We can relate these on θ -parts for suitable even characters θ of (Z/N pZ)×.

For a primitive, even character θ : (Z/N pZ)× → Qp
×

, we may consider the quotient Λθ =

Λ⊗Zp [(Z/N pZ)×] Zp [θ ] of Λ, where Zp [θ ] is the Zp -algebra generated by the values of θ . For a

Λ-module M , we then let Mθ =M ⊗ΛΛθ denote its θ -part.

We need a technical assumption to insure that the maps

Pθ →M 0
θ /IθM

0
θ and Yθ → lim←−

r

H 2
ét(Or [ 1

N p
],Zp (2))θ

are isomorphisms. Together with primitivity, the assumption is as follows:

• θω−1|(Z/pZ)× 6= 1 or θω−1|(Z/NZ)×(p ) 6= 1,

where ω: (Z/N pZ)× → Z×p denotes the Teichmüller character (i.e., projection to (Z/pZ)× ⊂
Z×p ). For such a θ , our$ induces a map on θ -parts$:Sθ → Yθ that will factor through Pθ .

2.3 Zeta elements:$ is “Eisenstein”

We sketch the proof that$ factors through the quotient ofM 0 by the Eisenstein ideal I.

2.3.1. Let Y1(N p r ) be the moduli space of pairs (E , e ) where E is an elliptic curve and e is

a point of order N p r on E , and let Y (N p r ) be the moduli space of elliptic curves endowed
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with a full N p r -level structure. We view these moduli spaces as schemes over Z[ 1
N p
]. For any

nonzero (α,β )∈ 1
N p r Z2/Z2, there is a Siegel unit gα,β ∈O (Y (N p r ))×.2 It has the q-expansion

gα,β =q
1

12−
α
2+

α2

2

∞
∏

n=0

(1−q n+αe 2πiβ )
∞
∏

n=1

(1−q n−αe−2πiβ )∈Or [ 1
N p
]Jq 1/12N p r K[q−1]×.

If α = 0, then we may view g 0,β as an element of O (Y1(N p r ))×. The crucial point is that the

specialization of a Siegel unit of the form g 0, u
N p r at the∞-cusp is the cyclotomic N p -unit 1−

ζu
N p r . Specifically, this specialization is given by projecting its q-expansion to Or [ 1

N p
]Jq 1/N p r K×

and then evaluating at q = 0 [FK, Section 5.1].

2.3.2. We have a homomorphism

z r :M 0
r →H 2

ét(Y1(N p r ),Zp (2)), z r ([u : v ]r ) = g 0, u
N p r ∪ g 0, v

N p r

of eTr -modules that takes a Manin symbol to a Beilinson element given by a cup product of

two Siegel units [FK, Proposition 3.3.15]. Related elements were studied in [Ka].

2.3.3. There is again a specialization-at-∞map

∞r : H 2
ét(Y1(N p r ),Zp (2))→H 2

ét(Or [ 1
N p
],Zp (2))

that takes g 0, u
N p r ∪ g 0, v

N p r to (1−ζu
N p r , 1−ζv

N p r )r . So, cup products of cyclotomic units are spe-

cializations at cusps of Beilinson elements. We have

$r =∞r ◦ z r :M 0
r →H 2

ét(Or [ 1
N p
],Zp (2)).

It can be shown that specialization at∞ is Eisenstein. Hence so is$r [FK, Sections 5.1-5.2].

2.3.4. By passing the projective limit over r , we see that$ is Eisenstein. The identity$=∞◦z
is the commutativity of the left-hand square in the diagram of 1.0.10.

2.4 Ordinary homology groups of modular curves

Homology groups of the modular curves are useful for us in two different ways. They contain

modular symbols, allowing us to define$. They also have Galois actions, allowing us to define

Υ, which is our next goal. We use two different groups derived from homology, S as above

2Actually, gα,β is a root of a unit, but the difficulties this causes are resolvable by passing to the projective limit

and descending, so we ignore this for simplicity of presentation. We will be very careless about denominators in

several places, omitting them where they occur for simplicity of the discussion that follows.
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and T defined below, to construct the two maps. For the modular symbols, we require only

the plus part of homology. On the other hand, to have Galois actions, we cannot restrict to

plus parts. Instead, we take ordinary parts to control the growth of homology groups in the

modular tower and to specify the form of the local Galois action at p . The fact that we use

different groups should be kept in mind in the GLd -setting, in which we will not consider Υ.

2.4.1. We introduce Hida’s ordinary p -adic cuspidal and modular Hecke algebras h and H.

Recall our cuspidal Hecke algebra T from 2.2.1, which acts Λ-linearly on S . The action of

T (p ) breaks it into a direct product of two rings: an ordinary part in which the image of T (p )

is invertible and another part in which T (p ) is topologically nilpotent. The ordinary cuspidal

p -adic Hecke algebra h = Tord of Hida [Hi] is this ordinary part. This is a Λ-subalgebra that is

projective of finite Λ-rank. We may speak of Hecke operators T (n ) ∈ h by taking the images of

the T (n )∈T.

The Hecke algebra h is remarkable in that it simply encapsulates information about the

ordinary Hecke algebras of all weights ≥ 2 and all levels dividing some N p r . For instance, its

quotient for the action of the kernel of G → Gr is the Hecke algebra hr = Tord
r . This highly

regular behavior is the subject of Hida theory.

We also have the ordinary modular Hecke algebra H = eTord, of which h is a quotient. In

general, if M is a eT-module (resp., T-module), then we use M ord to denote its ordinary part,

the maximal summand on which T (p ) acts invertibly, which is anH-module (resp., h-module).

2.4.2. We introduce the ordinary homology groups T and eT . These have commuting actions

of Hecke algebras and the absolute Galois group GQ = Gal(Q/Q). The study of these actions

on T will allow us to define the map Υ in Section 2.5.

The Hecke operators T (n )with n ≥ 1 act on the homology of X1(N p r )(C) and the homology

relative to the cusps and are compatible with projective limits. We consider the ordinary parts

T and eT of the projective limits

T = lim←−
r

H1(X1(N p r ),Zp )ord ⊂ eT = lim←−
r

H1(X1(N p r ),Cr ,Zp )ord.

We are primarily interested in T . The T-action on T factors through h. As an h-module, T is

finitely generated and torsion-free, and T is projective of finite rank over Λ. If we denote by

Q(Λ) the total quotient ring of Λ, then Q(Λ)⊗ΛT is a free Q(Λ)⊗Λ h-module of rank 2.

The absolute Galois group GQ = Gal(Q/Q) acts on the homology of X1(N p r ) by its duality

with cohomology and the identification of Betti cohomology with étale cohomology of the

scheme X1(N p r )/Q overQ. This describes the first of the two isomorphisms

H1(X1(N p r ),Zp )∼=Hom(H 1
ét(X1(N p r )/Q,Zp ),Zp ),

H1(X1(N p r ),Cr ,Zp )∼=Hom(H 1
ét,c (Y1(N p r )/Q,Zp ),Zp ),

11



where in the second, the duality of the relative cohomology group is with the compactly sup-

ported cohomology of the open modular curve. This Galois action commutes with the action

of the Hecke operators, so passes to ordinary parts, and it is compatible in the towers. There-

fore, H[GQ] acts compatibly on T and eT .

2.4.3. We introduce the Eisenstein ideals I and I of the ordinary Hecke algebras.

Let us reuse the notation I , allowing it to denote the Eisenstein ideal of h, which is the

image of the Eisenstein ideal I of T in h. We remark that, since T (p )− 1 ∈ I and 1 is a unit,

the quotient map T/I → h/I is an isomorphism. We will also reuse the notation I for the

Eisenstein ideal of H, the image of I⊂ eT.

2.4.4. In the GL2-setting overQ, there are two places which play important roles: the place at

p and the real place. We study the actions of the corresponding local Galois groups.

We first study the local action at p : here we have an interesting quotientTquo. The fact that

T is ordinary for T (p ) tells us about the action of GQp , which is to say that it is ordinary in the

sense of p -adic Hodge theory. More specifically to our case, we have an exact sequence

0→Tsub→T →Tquo→ 0

of h[GQp ]-modules, with Tsub and Tquo defined as follows. First, Tsub is the largest submodule

of T such that GQp acts on Tsub(−1) by inverse diamond operators, and Tquo is the quotient.

Put more simply, Tquo is the maximal unramified, h-torsion-free quotient of T .

At the real place, we have T +, which is isomorphic toS ord. It fits in an exact sequence

0→T +→T →T /T +→ 0

of h[GR]-modules, and both Q(Λ)⊗ΛT + and Q(Λ)⊗ΛT /T + are free of rank 1 over Q(Λ)⊗Λ h.

The compositions T +→T →Tquo and Tsub→T →T /T + relate the two exact sequences.

We study these maps on Eisenstein components in 2.5.5. The interplay between the reduc-

tions modulo I of the two exact sequences allows us to construct the map Υ.

2.4.5. We discuss Λ-adic cusp forms and modular forms and their ordinary parts S and M.

Let S2(N p r )Z denote the space of cusp forms of weight 2 and level N p r with integer coeffi-

cients. For a ring R , we then set S2(N p r )R = S2(N p r )Z⊗R . If ε: Gr → R× is a homomorphism,

then we may speak of S2(N p r ,ε)R , those cusp forms in S2(N p r )R with nebentypus ε.

Any finite order character ε: G → Qp
×

induces a ring homomorphism Λ → Qp . We let

ε̃: ΛJqK→ QpJqK be the induced map on coefficients. An element f ∈ ΛJqK is said to be a Λ-

adic cusp form of weight 2 and level N p∞ if for every ε, one has ε̃( f ) ∈S2(N p r ,ε)Qp
with r ≥ 0

such that ε factors through Gr [Wi, Oh1]. We denote the set of such Λ-adic cusp forms by SΛ.

12



The Hecke operators T (n ) for n ≥ 1 act on SΛ via the usual formal action of Hecke operators

on q-expansions. We define S to be the ordinary part Sord
Λ of SΛ.3 The ordinary Λ-adic cusp

forms and the ordinary Hecke algebra are dual in the usual sense. That is, we have a perfect

pairing of Λ-modules,

h×S→Λ, (T, f ) 7→ a 1(T f ),

where a 1(g ) denotes the q-coefficient in the q-expansion of g ∈SΛ. As a consequence, Q(Λ)⊗Λ
S is free of rank 1 over Q(Λ)⊗Λ h.

Similarly, we have a space M of ordinary Λ-adic modular forms with q-expansions that are

integral outside of the constant term, which sits inside Q(Λ)+ΛJqK. There is a perfect pairing

H×M→Λ that restricts to the pairing for cusp forms.

2.4.6. As we shall explain in a more canonical fashion in 2.7.6, there is an isomorphism Tquo
∼=

S of h-modules given by Ohta’s Λ-adic Eichler-Shimura isomorphism [Oh1, Oh2]. Moreover,

Ohta showed that Tsub
∼= h via a Λ-duality with Tquo.

2.5 Refining the method of Ribet and Mazur-Wiles: the mapΥ

We define the mapΥ of [Sh] and consider the relationship with the work of Mazur-Wiles [MW].

Our description is heavily influenced by the approaches of Wiles [Wi] and Ohta [Oh2].

We suppose that p ≥ 5 and p - ϕ(N ).4 We will work mostly in the θ -part (as in 2.2.4) for a

fixed primitive, even character θ : (Z/N pZ)×→Qp
×

such that the condition θω−1|(Z/pZ)× 6= 1 or

θω−1|(Z/NZ)×(p ) 6= 1 of 2.2.4 holds. We also suppose that θ 6=ω2 in the case that N = 1.

2.5.1. We briefly outline the construction of Υ: Yθ → Pθ that will appear in this section.

We analyze the h[GQ]-action on Tθ /IθTθ , showing that it fits in an exact sequence

0→ Pθ →Tθ /IθTθ →Qθ → 0

of h[GQ]-modules. Any such exact sequence provides a cocycle GQ → Homh(Qθ , Pθ ) that de-

fines its extension class in Galois cohomology. Our exact sequence has three key properties:

the GL-action onTθ /IθTθ is unramified, the GL-actions on Pθ andQθ are trivial, and the hθ /Iθ -

moduleQθ is free of rank 1 with a canonical generator. We may therefore modify our cocycle as

follows. First, we compose it with evaluation at the generator of Qθ to obtain a map GQ→ Pθ .

Since GL acts trivially on Pθ and Qθ , this map restricts to a homomorphism GL → Pθ . Since

3There is one potentially confusing aspect: the action of Λ ,→ h on S ⊂ ΛJqK is not given by multiplication

of the coefficients of q-expansions by the element of Λ. It is instead this multiplication after first applying the

inversion map λ 7→λ∗ on Λ that takes group elements to their inverses.
4It should actually be possible to allow either or both of p = 3 and p |ϕ(N ) in what follows.
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the GL-action on Tθ /IθTθ is unramified, this homomorphism in turn factors through a ho-

momorphism X → Pθ . After a twist, it further factors through Yθ and provides the desired map

Υ: Yθ → Pθ , which we can show to be of Λ-modules.

We first explain that hθ /Iθ is the quotient ofΛθ by a p -adic L-function ξθ . This will provide

the connection between the map Υ and the Iwasawa main conjecture.

2.5.2. We define the p -adic L-function ξθ .

Note that any homomorphism G → Q× factors through some Gr and so induces an even

Dirichlet character. Note also that G1 = (Z/N pZ)×/〈−1〉 and G ∼=G1× (1+pZp ).

The p -adic L-function ξθ is the unique element of Λθ that interpolates Dirichlet L-values

at −1 in the sense that for each character ε: G → Q× such that ε|G1 = θ , the ring homomor-

phism Λθ →Qp induced by ε sends ξθ to the value L(ε−1,−1)∈Q of the Dirichlet L-function.

We can also describe ξθ in terms of Kubota-Leopoldt p -adic L-functions. We make the

identification Λθ = Zp [θ ]JT K with T = [u ]− 1, where [u ] is the group element of u ∈ 1+pZp

with p -adic logarithm (1−p−1)−1. We then have the following equality of functions of s ∈Zp :

ξθ (u s −1) = L p (ω2θ−1, s −1).

2.5.3. We construct a canonical isomorphism hθ /Iθ
∼−→Λθ /(ξθ ).

Consider the ordinary Λ-adic Eisenstein series

Eθ = 1
2
(ξθ )∗+

∞
∑

n=1

�

∑

d |n
(d ,N p )=1

d [d ]

�

q n ∈Mθ ,

where [d ] is the image in Λθ−1 of the group element in G for d , and λ 7→ λ∗ is the involution

defined in the footnote of 2.4.5.5 By duality with the Hecke algebra, it provides a surjective

homomorphism Hθ →Λθ , the kernel of which is Iθ by definition.

Let Mm denote the component of an H-module M for the unique maximal ideal m con-

taining the Eisenstein ideal Iθ . By our choice of θ , the Eisenstein series Eθ is not congruent

modulo m to any other Eisenstein series [Oh3, Lemma 1.4.9]. It follows from this that the

injection of S in M induces an exact sequence

0→Sm→Mm→Λθ → 0,

where the latter map takes a modular form to the (involution of the) constant term in its q-

expansion. Our map πθ : hθ /Iθ → Λθ /(ξθ )may then be constructed from the reduction of Eθ
modulo ξθ . That is, Eθ is a cusp form modulo (ξθ )⊆ Λθ by the exact sequence, and this cusp

5The reader may wish to ignore the involutions in order to focus on the idea of the argument.
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form provides the surjective map πθ by duality with the Hecke algebra h. Once we know that

πθ is an isomorphism, it is inverse to the map induced by ιθ , where ιθ is the θ -part of the map

ι defined in 2.2.1.

We explain the idea behind the injectivity of πθ . We have an evident surjection Λθ → hθ /Iθ

given by the fact that every Hecke operator T (n ) is identified modulo Iθ with an element ofΛθ .

So, hθ /Iθ is some quotient of Λθ . The Λ-adic forms in Mθ have integral constant coefficients,

which can be seen by the method of [Em, Proposition 1]. Given this, the existence of πθ is

equivalent to the fact Eθ modulo (ξθ ) is a Λ-adic cusp form. As the constant coefficient of

Eθ equals ξ∗θ times a unit, no surjective homomorphism to a larger quotient of Λθ can exist.6

Thus, πθ is an isomorphism.

2.5.4. We define Qθ and construct a canonical surjection Tθ /IθTθ →Qθ of h[GQ]-modules.

For a module M over a Λ-algebra h, let M ] denote the h[GQ]-module that is M as an h-

module and on which σ ∈GQ acts through multiplication by the inverse of the image of σ in

G . We then define Qθ = (hθ /Iθ ) ](1). Consider the Jacobian variety Jr of the curve X1(N p r ).

Let Jr,tor ⊂ Jr (Q) be its torsion subgroup, and take the contravariant (i.e., dual) action of Tr on

Jr,tor. Consider the class αr ∈ Jr (C) of the divisor (0)− (∞), where 0 and∞ are viewed as cusps

on X1(N p r )(C). It is torsion by the theorem of Drinfeld and Manin [Dr1, Ma]. Moreover, αr is

easily seen to be annihilated by Ir .

Let βr,θ be the image of αr in the θ -part of Jr [p∞] = Jr,tor⊗Zp . TheTr,θ -span Br,θ of βr,θ is a

quotient of hr,θ /Ir,θ by definition. Moreover, Br,θ is isomorphic to Λr,θ /(ξr,θ ) by a computation

of divisors of Siegel units that says in particular that the θ -part of the divisor of g 0, 1
N p r

is ξr,θ

times (0)− (∞), up to a unit (see [MW, Section 4.2]).7 Here, ξr,θ denotes the image of ξθ in

Λr,θ . The GQ-action on Br,θ factors through Gal(Fr /Q), and we have σaβr,θ = 〈a 〉−1βr,θ for any

a ∈ (Z/N p rZ)×.

Poincaré duality allows us to identify the first étale homology group of X1(N p r )/Q with the

Tate twist of the first étale cohomology group. Taking this together with the canonical pairing

of cohomology and the torsion in Jr , we obtain a Galois-equivariant, perfect pairing

( , ): H ét
1 (X1(N p r )/Q,Zp )× Jr [p∞]→Qp/Zp (1)

with respect to which the Hecke operators are self-adjoint. Let ( , )θ denote the induced pair-

ing on θ -parts. Define a mapφ by

φ : H ét
1 (X1(N p r )/Q,Zp )θ →Λr,θ ⊗Qp/Zp (1), x 7→

∑

a∈Gr

[a ]r ⊗ (x , 〈a 〉βr,θ )θ ,

6Another, more usual, way to approach injectivity is to use Iθ + ξθhθ in place of Iθ until one recovers the

equality of these ideals through a proof of the main conjecture, as in 2.5.7 below.
7In the projective limit, this gives another way of defining the isomorphism hθ /Iθ

∼−→Λθ /(ξθ ).
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where [a ]r ∈ Λr,θ denotes the group element for a .8 Let ξr,θ be the image of ξθ in Λr,θ . As

ξr,θβr,θ = 0, the image of the map φ is contained in the group (Λr,θ ⊗Qp/Zp (1))[ξr,θ ] of ξr,θ -

torsion, andφ factors through the quotient Tr,θ /Ir,θTr,θ .

Consider the composition

Tr,θ /Ir,θTr,θ
φ
−→ (Λr,θ ⊗Qp/Zp (1))[ξr,θ ]→ (Λr,θ /ξr,θ )(1)

ιr,θ−→ (hr,θ /Ir,θ )(1),

where the second map is given by x 7→ ξr,θ x̃ for any lifting x̃ of x to Qp [Gr ]θ (1). It is surjec-

tive by our description of Br,θ and the perfectness of ( , )θ . As seen from the Galois action

on βr,θ , it is moreover an hr [GQ]-module homomorphism Tr,θ /Ir,θTr,θ → (hr,θ /Ir,θ ) ](1). The

maps are compatible with r , and their projective limit is the desired surjective h[GQ]-module

homomorphism Tθ /IθTθ →Qθ .

2.5.5. We explain how the surjection of 2.5.4 fits in an exact sequence

0→ Pθ →Tθ /IθTθ →Qθ → 0

of h[GQ]-modules that is canonically locally split over GQp .

We use the fact that the Eisenstein part T +
m
→ Tquo,m of the canonical map of 2.4.4 is an

isomorphism, or equivalently, thatTsub,m→Tm/T +m is an isomorphism. To see this, one uses an

h-module splitting of the local exact sequence for Tθ (see [Oh2]) and the method of Kurihara

and Harder-Pink [Ku, HP]. We refer the reader to [FK, Section 6.3] for the argument.

Let us explain the use of this fact: by definition, complex conjugation acts on Qθ by multi-

plication by −1. Thus, Qθ is a quotient of Tθ /T +θ . By our isomorphism on Eisenstein com-

ponents, it is a quotient of Tsub,θ /IθTsub,θ , which by 2.4.6 is isomorphic to hθ /Iθ as an h-

module. This forces the quotient map to be an injection, so we have Qθ
∼= Tsub,θ /IθTsub,θ .

But now, this tells us that Qθ is an h[GQp ]-submodule of Tθ /IθTθ . In other words, the surjec-

tionTθ /IθTθ →Qθ is canonically locally split on GQp . We then have necessarily that the kernel

of the latter surjection is Tquo,θ /IθTquo,θ
∼= Pθ . This yields the exact sequence.

It is perhaps worth observing that this sequence is also identified with the reduction mod-

ulo Iθ of the exact sequence of h[GR]-modules 0 → T +θ → Tθ → Tθ /T
+
θ → 0. Finally, the

determinant of the GQ-action on Tθ is known (e.g., from the determinants of modular Galois

representations) and agrees with the GQ-action on Qθ , so the GQ-action on Pθ is trivial.

2.5.6. We have that Pθ and Qθ have trivial actions of GL . Hence, we have a homomorphism

GL→Homh(Qθ , Pθ ), σ 7→ (x 7→σx̃ − x̃ ),

8To make sense of this, note that the tensor product in the sum is taken over Zp [θ ].
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where x̃ is a lifting of x to Tθ /IθTθ . By 2.5.5, this homomorphism factors through the unram-

ified quotient X of GL . Thus, we have a homomorphism X →Homh(Qθ , Pθ ) that is compatible

with the action of Gal(L/Q). This gives a homomorphism of Gal(K /Q)-modules

X−(1)→Homh(Qθ (−1), Pθ )∼=Homh((hθ /Iθ ) ], Pθ )∼= P [
θ ,

where P [
θ is Pθ on whichσa ∈Gal(L/Q) acts as multiplication by 〈a 〉−1. In other words, we have

a Λθ -module homomorphism

Υ: Yθ =X−(1)θ → Pθ ,

with the Galois action of G on the left and inverse diamond action of G on the right.

2.5.7. We describe the heart of the Mazur-Wiles proof of the Iwasawa main conjecture.

The Iwasawa main conjecture is the equality of ideals

charΛθ (Yθ ) = (ξθ ).

By the analytic class number formula, this conjecture is reduced to charΛθ (Yθ )⊆ (ξθ ).
Let L be the h[GQ]-submodule of Tθ generated by Tsub,θ . It follows as in 2.5.5 that we

have an equality Lm = Tsub,m ⊕L +m of Eisenstein components. Moreover, P ′θ = L +/IθL + is

GQ-stable inL /IθL . In other words, we have an exact sequence of h[GQ]-modules

0→ P ′θ →L /IθL →Qθ → 0.

In the same way as Υ, we may define Υ′ : Yθ → P ′θ , which is now surjective by construction.

The Iwasawa main conjecture can be deduced from this surjectivity of Υ′. More precisely,

we use the following facts:

(1) The map Υ′ : Yθ → P ′θ is surjective.

(2) We have that P ′θ =L +/IθL + withL + a finitely generated, faithful hθ -module.

(3) The kernel of the canonical surjection Λθ → hθ /Iθ is contained in (ξθ ).9

From (1), we obtain

charΛθ (Yθ )⊆ charΛθ (P
′
θ ).

From (2) and (3), we can deduce that

charΛθ (P
′
θ )⊆ charΛθ (Λθ /(ξθ )) = (ξθ ).

Hence charΛθ (Yθ )⊆ (ξθ ).
9Actually, we know that the kernel coincides with (ξθ ), but this weaker statement is enough.
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2.5.8. The conjecture stated in the following section implies that Υ is surjective. This tells

us that the inexplicit lattice L required for the Mazur-Wiles proof in 2.5.7 is precisely the

canonical lattice Tθ . In this sense, it suggests a refinement of the method of Ribet and Mazur-

Wiles.

2.6 The conjecture:$ andΥ are inverse maps

We state the conjecture of the third author [Sh] and the result of the first two authors [FK].

2.6.1. In 2.2.4 and 2.5.6, we defined Λ-module homomorphisms

$: Pθ →X−(1)θ and Υ: X−(1)θ → Pθ .

We have the conjecture of the third author. See [Sh, Conjecture 4.12], where the conjecture is

given up to a canonical unit; this stronger version was a stated hope of the third author.

Conjecture. The maps$ and Υ are inverse to each other.

This conjecture provides an explicit description of X−(1)θ in terms of modular symbols. In

this sense, it may be viewed as a refinement of the main conjecture.

2.6.2. We state the result [FK, Theorem 7.2.3(1)] of the first two authors. Let ξ′θ ∈ Λθ denote

the derivative of the p -adic L-function ξθ in the s -variable (see 2.5.2).

Theorem. We have ξ′θΥ ◦$= ξ
′
θ modulo p -torsion in Pθ .

If ξθ has no multiple roots, the theorem implies the conjecture up to p -torsion in Pθ . In

fact, it leads to proofs of the conjecture under various hypotheses: see [FK, Section 7.2].

2.6.3. McCallum and the third author conjectured that the image of the cup product

H 1(Z[ζN p r , 1
N p
],Zp (1))⊗Zp H 1(Z[ζN p r , 1

N p
],Zp (1))

∪−→H 2
ét(Z[ζN p r , 1

N p
],Zp (2))

projects onto H 2
ét(Z[ζN p r , 1

N p
],Zp (2))+θ ([McS] for N = 1), which implies that $ is surjective.

This generation conjecture follows if we know that$◦Υ= 1. In particular, it holds if ξθ has no

multiple roots, and it also holds if Pθ ⊗Zp Qp is generated by one element over Λθ ⊗Zp Qp [FK,

Theorem 7.2.8].
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2.7 The proof that ξ′Υ ◦$= ξ′

We explain some of the important aspects of the proof of the main theorem, referring to the

relevant sections of [FK] for details.

2.7.1. We consider a refinement of the diagram in 1.0.10 in which we divide the right-hand

square of that diagram into two squares:

Sθ
z //

mod I

��

lim←−r
H 2

ét(Y1(N p r ),Zp (2))θ
HS //

∞
��

H 1
ét(Z[

1
N p
],Tθ (1))

reg
//

��

Sθ

mod I

��

Pθ
$ // Yθ

ξ′θ // Yθ
Υ // Pθ .

Here, the maps z and ∞ are the projective limits of the θ -components of the maps z r and

∞r . The commutativity of the left square of the diagram in 2.7.1 is seen in Section 2.3. The

discussion of the rest of this diagram, and the fact that the bottom row is also multiplication

by ξ′θ , compose the rest of this subsection.

It is remarkable that ξ′θ appears here in two very different contexts. The ξ′θ that appears

in the diagram and contributes to ξ′θΥ ◦$ is related to cup product with the logarithm of the

cyclotomic character. The other ξ′θ is the constant term modulo ξθ of a Λ-adic modular form

that appears in a computation of the regulators of zeta elements.

2.7.2. The map HS arises from the Hochschild-Serre spectral sequences

E i ,j
2 =H i (Z[ 1

N p
], H j (Y1(N p r )/Q,Zp (2)))⇒ E i+j =H i+j (Y1(N p r ),Zp (2)).

as the projective limit over r of maps E 2→ E 1,1
2 , followed by projection to the ordinary θ -part.

We remark that

H 1
ét(Z[

1
N p
],Tθ (1))⊂H 1

ét(Z[
1

N p
], eTθ (1)),

and the image of HS is actually contained in the larger group, hence the dotted arrow. How-

ever, elements of Sθ are carried to the smaller group under HS◦z [FK, Proposition 3.3.14], so

we can still make sense of the diagram.

2.7.3. The third vertical arrow in the diagram of 2.7.1 is a composition of maps as follows:

H 1
ét(Z[

1
N p
],Tθ (1))→H 1

ét(Z[
1

N p
],Qθ (1))

∪ (1−p−1) log(κ)
−−−−−−−→H 2

ét(Z[
1

N p
],Qθ (1))

∼−→ Yθ .

The first map is induced by the surjection Tθ →Qθ . The map κ: GQ→ Z×p is the p -adic cyclo-

tomic character, and log is the p -adic logarithm. The second map is the cup product, where

we regard log(κ) = log◦κ as an element of H 1
ét(Z[

1
p
],Zp ).
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For the third map, note that Qθ
∼= (Λθ /ξθ ) ](1) by 2.5.3 and 2.5.4. As the p -cohomological

dimension of Z[ 1
N p
] is 2, the group H 2

ét(Z[
1

N p
], (Λθ /ξθ ) ](2)) is isomorphic to the quotient of

H 2
ét(Z[

1
N p
],Λ ]θ (2))θ

∼−→ lim←−
r

H 2
ét(Or [ 1

N p
],Zp (2))θ

∼−→ Yθ

by the Gal(K /Q)-action of ξθ . Here, the first isomorphism is by Shapiro’s lemma, and the

second is from 2.2.4. By the main conjecture and the fact that Yθ has no finite Λ-submodules,

Yθ is ξθ -torsion, so Yθ /ξθYθ = Yθ . Putting this all together, we have the map.

2.7.4. We define a functor D on pro-p GQp -modules.

Let T = lim←−λTλ for a projective system of finite abelian p -groups Tλ. For any abelian group

M , set T ⊗̂M = lim←−λ(Tλ ⊗M ). Let W denote the Witt vectors of Fp , and suppose that the Tλ

are endowed with compatible actions of h[GQp ] for a pro-p ring h. We may then consider the

h-module D(T ) that is the fixed part

D(T ) = (T ⊗̂W )GQp

for the diagonal action of GQp on T ⊗̂W . If the GQp -actions on the Tλ are unamified, then

D(T ) and T are isomorphic h-modules. If T has trivial GQp -action, then D(T ) ∼= T ⊗̂W GQp =

T ⊗̂Zp
∼= T , and this isomorphism is canonical. See [FK, Section 1.7].

2.7.5. We define p -adic regulator maps for unramified, pro-p GQp -modules.

Let T be as in 2.7.4, and suppose that the action of GQp on T is unramified. Let E =Q(W )

be the maximal unramified extension ofQp . The p -adic regulator map [FK, Section 4.2]

regT : H 1
ét(Qp , T (1))→D(T )

for T is the h-module homomorphism defined as the composition

H 1
ét(Qp , T (1))

inf−→H 1
ét(E , T (1))Frp=1 ∼−→ (T ⊗̂E×)Frp=1→D(T ).

Here, the first map is inflation, the second is Kummer theory, and the final map is induced by

E×→W (Fp ), x 7→ p−1 log
� x p

Frp (x )

�

,

where the p -adic logarithm log is defined to take p to 0.

Note that if GQp acts trivially on T , then regT is induced by the map (1−p−1) log:Q×p →Zp

in a similar fashion.
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2.7.6. We define the p -adic regulator map reg in the diagram of 2.7.1.

Note that Tquo has by definition an unramified GQp -action. We have a refinement [FK,

Section 1.7] of Ohta’s Λ-adic Eichler-Shimura isomorphism [Oh1]. That is, there is a canonical

isomorphism of h-modules D(Tquo)
∼−→ S, and in particular Tquo and S are noncanonically

isomorphic. The map reg is then defined as the composition

reg: H 1
ét(Z[

1
N p
],Tθ (1))→H 1

ét(Qp ,Tquo,θ (1))
regTquo−−−→D(Tquo)

∼−→Sθ .

2.7.7. We explain the right-hand vertical map “mod I ” in the diagram of 2.7.1.

The GQp -action on Tquo/ITquo is trivial, so the canonical isomorphism D(Tquo)
∼−→S pro-

vides an isomorphism Tquo/ITquo
∼−→S/IS. In particular, we obtain “mod I ” as the composi-

tion of projection followed by a string of canonical isomorphisms:

Sθ �Sθ /IθSθ
∼−→Tquo,θ /IθTquo,θ

∼−→T +θ /IθT +θ
∼−→Sθ /IθSθ = Pθ .

2.7.8. The commutativity of the two right-hand squares in the diagram of 2.7.1 are nontrivial

cohomological exercises. We mention only which calculations must in the end be performed.

(1) The commutativity of the middle square is reduced to that (see [FK, Section 9.4]) of

H 1
ét(Z[

1
N p
], (Λθ /ξθ ) ](2))

∪ (1−p−1) log(κ)
//

o
��

H 2
ét(Z[

1
N p
], (Λθ /ξθ ) ](2))

H 2
ét(Z[

1
N p
],Λ ]θ (2))

ξ′θ // H 2
ét(Z[

1
N p
],Λ ]θ (2)),

o

OO

the vertical arrows occurring in the long exact sequence in the Z[ 1
N p
]-cohomology of

0→Λ ]θ (2)→Λ
]
θ (2)→ (Λθ /ξθ )

](2)→ 0.

Thus, the ξ′θ that appears in the diagram is found in Galois cohomology.

(2) The commutativity of the right-hand square is reduced to verifying that the map

Yθ ∼=H 2
ét(Z[

1
N p
],Qθ (1))←H 2

ét(Z[
1

N p
],Tθ /IθTθ (1))→H 2

ét(Qp , Pθ (1))∼= Pθ

given by lifting and then projecting is well-defined and agrees with Υ [FK, Section 9.5].

Here, the first isomorphism was discussed in 2.7.3 and the last is the invariant map of

local class field theory, recalling from 2.5.5 that Pθ has trivial Galois action. This descrip-

tion is closer to the construction of Υ that will appear for Fq (t ) in Section 3.
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2.7.9. It remains to prove that the composition Sθ /IθSθ → Sθ /IθSθ → Pθ , where the first

arrow is the composition of the upper horizontal arrows modulo Iθ in the diagram of 2.7.1,

coincides with multiplication by ξ′θ on Pθ . This is deduced in [FK, Sections 4.3 and 8.1] from

the computation of the p -adic regulators of zeta elements given in [Oc, Fu]. This is a very

delicate analysis: we explain only the rough idea of how ξ′θ appears at its end.

The map Pθ → Pθ is shown to be given (modulo ξθ ) by multiplication by the constant term

at t = 1 of a p -adic L-function in a variable t that takes values in Mθ . This p -adic L-function

is a product of two Λ-adic Eisenstein series which vary with t . The constant term in the q-

expansion of this product is itself a product of two zeta functions ζp (t )ξθ (s + t − 1), where

ζp (t ) is the p -adic Riemann zeta function and s is the variable for Λθ ⊂ hθ . Note that ζp (t ) has

a simple pole at t = 1 with residue 1. To evaluate ζp (t )ξθ (s + t − 1)modulo ξθ (s ) at t = 1, we

can first subtract ζp (t )ξθ (s ) from the product and then take the resulting limit

lim
t→1

ξθ (s + t −1)−ξθ (s )
t −1

= ξ′θ (s ).

In this manner, the map is shown to be multiplication by ξ′θ .

3 The case of GL2 over Fq (t )

We now consider the field F = Fq (t ) for some prime power q . In this section, we provide F -

analogues of the constructions, conjecture, and theorem of Section 2. We require the following

objects:

• the ring O =Fq [t ],

• the completion F∞ = F ((t −1)) of F at the place∞,

• the valuation ring O∞ =FqJt −1K of F∞, which does not contain O ,

• a prime number p different from the characteristic of Fq ,

• a non-constant polynomial N ∈O .

Let us also fix an embedding F ,→ F∞ of separable closures. To avoid technical complications,

we assume in this section that p does not divide (q +1)|(O /NO )×|.
The organization of this section follows closely that of Section 2. We hope to make clear

that most constructions are remarkably similar to the case ofQ, though we also highlight dif-

ferences. We work with congruence subgroups of GL2(O ), rather than of SL2(Z). Modular

symbols, used to construct $, are now found in the homology S of the compactification of
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the quotient of the Bruhat-Tits tree by a congruence subgroup. ThisS is a quotient of an étale

homology group T of the Drinfeld modular curve, used in constructing Υ. As most construc-

tions are so similar, we provide less detail than in Section 2. We intend for full details to appear

in a forthcoming paper.

3.1 From modular symbols to cup products: the map$

3.1.1. We introduce homology groupsS andM of the Bruhat-Tits tree.

Consider the Bruhat-Tits tree B for PGL2(F∞). Its vertices are homothety classes of O∞-

latticesL of rank 2 in F 2
∞, or equivalently, elements of PGL2(F∞)/PGL2(O∞). This tree is (q+1)-

valent, and two lattices L ⊂ L ′ connected by an edge if [L ′ : L ] = q .10 The oriented edges

then correspond to elements of PGL2(F∞)/I∞, where I∞ is the Iwahori subgroup of matrices

in PGL2(O∞) that are upper-triangular modulo the maximal ideal of O∞. The group PGL2(F )

acts on the left on B in the evident manner.

Let eΓ1(N ) be the congruence subgroup of GL2(O ) given by

eΓ1(N ) =

( 

a b

c d

!

∈GL2(O )
�

�

� (c , d )≡ (0, 1)mod N

)

.

We may complete the Bruhat-Tits tree to a space B ∗ by adding in the (rational) ends, which

correspond to elements of P1(F ). We define

U (N ) = eΓ1(N )\B and U (N ) = eΓ1(N )\B ∗.

The elements of eΓ1(N )\P1(F ) are the ends of U (N ). Our homology groups, or spaces of mod-

ular symbols, are then

S =H1(U (N ),Zp )⊂M =H1(U (N ),{ends},Zp ).

3.1.2. We introduce Manin-Teitelbaum symbols [u : v ]∈M .

Modular symbols inM were defined by Teitelbaum [Te] analogously to the case of Q. In

particular, given α,β ∈ P1(F ), we have a modular symbol that is the class {α→ β} of any non-

backtracking path in the Bruhat-Tits tree that connects the two corresponding ends of B .

Analogues of Manin symbols are defined as before. That is, for u , v ∈ O /NO with (u , v ) =

(1), we choose γ=
�

a b
c d

�

∈GL2(O )with u = c mod N and v = d mod N , and then

[u : v ] =
�

d

b N
→

c

a N

�

.

These symbols generate eH and yield a presentation with identical relations to those of 2.1.2.

10Note that q appears in this sentence as the order of the residue field of O∞.
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3.1.3. We introduce the intermediate spaceM 0 on which we define$.

Let M 0 denote the Zp -submodule of M generated by the Manin symbols [u : v ] with

u , v 6= 0. As in the case of GL2 overQ, we haveS ⊂M 0 ⊂M .

3.1.4. We introduce cyclotomic N -unitsλ u
N

in abelian extensions FN ⊂ EN ofFq (t ). The reader

may find a powerful analogy with objects in the theory of cyclotomic fields overQ.

We consider the cyclotomic N -units λ u
N

for u ∈ O − (N ). These are the roots of the Car-

litz polynomials [Ca] for divisors of N , or are equivalently the N -torsion points of the Carlitz

module. As λ u
N

depends only on u modulo N , we abuse notation and consider it for nonzero

u ∈O /NO . We can visualize λ u
N

in the completion C∞ of F∞ by

λ u
N
= exp

�uπ

N

�

=
u

N

∏

a∈O−{0}

�

1−
u

N a

�

,

where exp is the Carlitz exponential and π∈C∞ is transcendental over F .

Let EN = F (λ 1
N
), which is an abelian extension of F of conductor N∞ containing no con-

stant field extension of F . There is an isomorphism Gal(EN/F )
∼−→ (O /NO )× such that a ∈

(O /NO )× is the image of an elementσa ∈Gal(EN/F ) that satisfiesσa (λ 1
N
) =λ a

N
. Let FN be the

largest subfield of EN in which∞ splits completely over F , which we might call the ray class

field of modulus N . Under the above isomorphism, Gal(EN/FN ) is identified with F×q . In fact,

we haveσc (λ u
N
) = cλ u

N
for c ∈F×q . These facts are found in the work of Hayes [Ha].

Let ON denote the integral closure of O in FN . Since p - (q − 1) by assumption, the image

of λ u
N

in the p -completion of the N -units of EN is fixed by the action of F×q . This allows us to

view λ u
N

as an element of H 1
ét(ON [ 1

N
],Zp (1)). For nonzero u , v ∈ O /NO , we may consider the

cup product

λ u
N
∪λ v

N
∈H 2

ét(ON [ 1
N
],Zp (2)).

3.1.5. We define the map$. Here, we work directly with étale cohomology, rather than K2.

There is a homomorphism

$:M 0→H 2
ét(ON [ 1

N
],Zp (2)), [u : v ] 7→λ u

N
∪λ v

N
.

In the current setting, we can no longer quickly verify from the presentation ofM 0 that$ is

well-defined. Rather, we see this as a consequence of the argument that$ is “Eisenstein” in

Section 3.3.

3.1.6. We introduce the cuspidal Hecke algebra h and its Eisenstein ideal I .

Let n denote a nonzero ideal of O . Through the action of GL2(F ) on B , we have a Hecke

operator T (n) acting on S as the correspondence associated to eΓ1(N )
�

1 0
0 n

�

eΓ1(N ), where n =

(n ). Let h be the subring of EndZp (S ) generated over Zp by the Hecke operators T (n).
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We also have diamond operators 〈a〉 in h for nonzero ideals a of O prime to (N ). This 〈a〉
depends only on the reduction modulo N of the monic generator of a.

The Eisenstein ideal I is the ideal of h generated by T (n)−
∑

d|nN(d)〈d〉 for all nonzero ideals

n of O , taking 〈d〉= 0 if d+(N ) 6= (1). Here, N(n) = [O : n] is the absolute norm of n.

Similarly, we have the Eisenstein ideal I of the Hecke algebra H⊂ EndZp (M ).

3.1.7. To say that$ is “Eisenstein” is to say that$ factors through a map

$:M 0/IM 0→H 2
ét(ON [ 1

N
],Zp (2)).

We explain this result in Section 3.3.

3.1.8. Let G = (O /NO )×/F×q , and set Λ=Zp [G ].

(1) We have a ring homomorphism ι : Λ→ h which sends the group element [a ] in Zp [G ] for

a ∈G to the inverse 〈a 〉−1 of the diamond operator corresponding to a .

(2) We have the isomorphism Gal(FN/F )
∼−→G of class field theory (see 3.1.4).

Modules over h and Zp [Gal(FN/F )] become Λ-modules through these identifications.

3.2 Working with fixed level

We explain why we work with fixed level in Section 3, and we define our two objects of study.

3.2.1. We do not pass up a tower for the following reason on the GL1-side. By assumption

on p , the field Fq has no nontrivial p th roots of unity. Since FN/F contains no constant field

extension, FN also contains no nontrivial p th roots of unity. So, even if we “increase” N , we

are unable to employ the Iwasawa-theoretic trick of passing Tate twists through projective

limits of Galois cohomology groups. In particular, since we deal with cohomology with Zp (2)-

coefficients, we do not work with class groups.

3.2.2. We again have two objects of study:

• the geometric object P =S /IS for GL2,

• the arithmetic object Y =H 2
ét(ON ,Zp (2)) for GL1.

Given a character θ : G →Qp
×

, we set Λθ = Zp [θ ] and view it as a quotient of Λ through θ .

For a Λ-module M , we let Mθ =M ⊗Λ Λθ denote the θ -part of M . If θ is primitive, then our

assumption that p does not divide |G | implies that the canonical maps

Pθ →M 0
θ /IθM

0
θ and Yθ →H 2

ét(ON [ 1
N
],Zp (2))θ

are isomorphisms.
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3.3 Zeta elements:$ is “Eisenstein”

We explain that$ factors through the quotient ofM 0 by the Eisenstein ideal I.

3.3.1. We define Siegel units on Drinfeld modular curves.

Let Y (N ) denote the Drinfeld modular curve that is the moduli scheme for pairs consisting

of a rank 2 Drinfeld module over an O [ 1
N
]-scheme and a full N -level structure (or, basis of the

N -torsion) on it. Over Y (N ), we have a universal Drinfeld module, equipped with a full N -

level structure, which locally looks like (N−1O /O )2×Y (N ). On the universal Drinfeld module

is a certain theta function Θ. Given an element of (u 1

N
, u 2

N
)∈ (N−1O /O )2, we may pull Θ back to

a unit on the Drinfeld modular curve using the second coordinate of the level structure. This

unit gα,β ∈O ×Y (N ) is the analogue of a Siegel unit.11

Let Y1(N ) be the moduli scheme for pairs consisting of a rank 2 Drinfeld module over an

O [ 1
N
]-scheme and a point of order N on it. If we take α= 0, then the Siegel unit g 0,β may again

be viewed as an element of O ×Y1(N )
.

3.3.2. If we take a K -theoretic product of two Siegel-type units, we obtain the Beilinson-type

elements considered by Kondo and Yasuda [KY]. See also the work of Kondo [Ko] and Pal [Pa].

Much as in the case ofQ, we have a map

z :M 0→H 2
ét(Y1(N ),Zp (2)), [u : v ] 7→ g

0,
u
N
∪ g

0,
v
N

ofH-modules. We can specialize this at the cusp corresponding to∞∈P1(F ) to obtainλ u
N
∪λ v

N
.

This specialization map∞ is Eisenstein. Hence, we see that

$=∞◦ z :M 0→H 1
ét(ON [ 1

N
],Zp (2))

is well-defined and Eisenstein.

3.4 Homology of Drinfeld modular curves

In this subsection, we study the étale homology groups of Drinfeld modular curves. Unlike

in Section 2.4, we do not take ordinary parts. That is, the Galois representations found in

the homology of Drinfeld modular curves are already “special at∞,” the required analogue of

“ordinary at p .” Moreover, the resulting unramfied-at-∞ quotient may in the present setting

be identified with the spaceS of cuspidal symbols, which is the analogue of the plus quotient

11Actually, gα,β as we have described it is not well-defined until we take its q 2−1 power. The assumption that

p - (q 2−1) is used to avoid this issue when we work with étale cohomology.
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of homology of 2.2.2. In other words, the place∞ of Fq (t ) plays both the roles that p and the

real place do in the GL2-setting overQ.

The statements in this subsection are consequences of the work of Drinfeld [Dr2].

3.4.1. We first introduce the étale homology group T .

Over F , the Drinfeld modular curve Y1(N )/F has a smooth compactification X1(N )/F . Over

C∞ (or F ), it is given by adding in the set of cusps eΓ1(N )\P1(F ) of the Drinfeld upper half-plane.

We define our étale homology group

T =H ét
1 (X1(N )/F ,Zp )

as the Zp -dual of H 1
ét(X1(N )/F ,Zp ).

The Hecke algebra generated by the T (n) in EndZp (T ) is in fact equal to h. The module

Qp ⊗Zp T over the total quotient ringQp ⊗Zp h of h is free of rank 2.

3.4.2. We study the action of GF∞ on T .

We have an exact sequence

0→Tsub→T →Tquo→ 0

of h[GF∞]-modules, with Tsub and Tquo defined as follows. First, Tsub is the largest submodule

of T such that GF∞ acts on Tsub(−1) trivially, and Tquo is the quotient. Then Tquo is equal to

the maximal unramified, h-torsion-free quotient of T . In this way, the place∞ plays the role

that the place at p does in 2.4.4. In fact, GF∞ acts trivially on Tquo, and both Qp ⊗Zp Tsub and

Qp ⊗Zp Tquo are free of rank 1 overQp ⊗Zp h.

The above short exact sequence is split as a sequence of h-modules: Tquo is the isomorphic

image of the h-submodule ofT on which a choice of Frobenius element acts trivially. This will

be used in constructing Υ below.

3.4.3. Since U (N ) is essentially the graph of the special fiber of a model of X1(N ) over O∞, we

have a surjective homomorphism

T →S =H1(U (N ),Zp ).

Via this map, S is identified with the quotient Tquo of T with trivial GF∞-action. In this way,

Tquo is also analogous to the plus quotient of homology in 2.2.2. That is, the place∞ also plays

the role that the real place does overQ.

3.4.4. Let S be the space of those Zp -valued, special-at-∞ cuspidal automorphic forms

φ : PGL2(F )\PGL2(AF )/(K f ×I∞)→Zp ,
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where AF =A
f
F × F∞ is the adele ring, K f is the closure of the image of eΓ1(N ) in PGL2(A

f
F ) (see

4.1.3), and I∞ is the Iwahori subgroup of PGL2(F∞). For φ to be special at∞ means that its

rightQp [GL2(F∞)]-span is a direct sum of copies of the “special representation.” (The latter is

the quotient of the locally constant functions P1(F∞)→Qp by the constant functions.)

The property of being special at ∞ tells us the local behavior at the prime ∞ of the 2-

dimensional Qp -Galois representation attached to the cusp form. This is a replacement for

the condition of ordinarity at p : it is what tells us the GF∞-action on T used in 3.4.2.

3.4.5. We explain how the groupsS and S may be identified.

The identification passes through the harmonic cocycles on U (N ). These are the func-

tions on the oriented edges of U (N ) that change sign if we switch the orientation of an edge

and which sum to zero on the edges leading into a vertex (i.e., are harmonic). The cuspidal

harmonic cocycles are those supported on finitely many edges. The space of Zp -valued cus-

pidal harmonic cocycles may be directly identified with S . It also provides a combinatorial

description of S. To see this, one starts with the observation that the double coset space on

which forms in S are defined is none other than the set of oriented edges of U (N ). The prop-

erty of being special at ∞ gives the harmonic condition, and the two notions of cuspidality

coincide. Thus, the spaces S andS that appear in the diagram of 1.0.10 are canonically iden-

tified in the case of Fq (t ).

3.5 The mapΥ

We define the map Υ: Yθ → Pθ on θ -parts for a fixed primitive character θ : G →Qp
×

.

3.5.1. We briefly outline the construction of Υ: Yθ → Pθ that will appear in this section.

As in 2.5.1, we analyze the h[GF ]-action on Tθ /IθTθ , showing that it fits in an exact se-

quence

0→ Pθ →Tθ /IθTθ →Qθ → 0

of h[GF ]-modules. Similarly to the setting of GL2 over Q, the GF -actions on Pθ and Qθ are

understood, and Qθ is free of rank 1 over hθ /Iθ with a canonical generator. However, the

domain of our mapΥ is not a Galois group, so our approach to constructingΥ is different. We

employ compactly supported cohomology, which is dual to Galois cohomology by Poitou-Tate

duality. Instead of directly using the cocycle attached to the exact sequence, we construct Υ

in 3.5.7 from a connecting homomorphism ∂ on compactly supported étale cohomology that

appears as the second map in a composition of Λθ -module homomorphisms

Υ: Yθ
∼−→H 2

ét,c (O [
1
N
],Qθ (1))

∂−→H 3
ét,c (O [

1
N
], Pθ (1))

∼−→ Pθ .
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The isomorphisms are seen using the hθ [GF ]-module structure of Qθ and the triviality of the

GF -action on Pθ , respectively.

3.5.2. We define the L-function for θ by

L(θ , s ) =
∏

p-N

(1−θ (Frp)−1N(p)−s )−1,

where the product is taken over the prime ideals p of O not dividing N , and Frp denotes an

arithmetic Frobenius at p. We then take ξθ ∈Λθ to be the nonzero value L(θ−1,−1).

3.5.3. We have an isomorphism hθ /Iθ
∼−→Λθ /(ξθ ). We indicate one construction of the map.

Consider the Jacobian variety J of X1(N ) and the class α ∈ J (C∞) of the divisor (0)− (∞),
where 0 and ∞ are cusps on the Drinfeld modular curve. Gekeler showed that α has finite

order [Ge], and it is annihilated by I . The hθ -module generated by the θ -part of α is Λθ /(ξθ )

by a computation of the divisors of Siegel units, providing the desired map.

3.5.4. We define Qθ = (hθ /Iθ ) ](1), where ( )] indicates a GF -action under which any element

that maps to a ∈G acts by multiplication by θ−1(a ). Much as in 2.5.4, pairing with the θ -part

of α gives rise to a canonical surjection of hθ [GF ]-modules Tθ /ITθ →Qθ .

3.5.5. The exact sequence

0→ Pθ →Tθ /IθTθ →Qθ → 0

of h[GF ]-modules is constructed as in 3.5.1. Here, we observe that Qθ has a nontrivial action

of the Frobenius element chosen in 3.4.2, so Qθ is a quotient of Tsub. As before, Tsub is Zp -dual

to Tquo and thereby isomorphic to h, so we have an isomorphism Tsub,θ /IθTsub,θ
∼−→ Qθ that

provides a GF∞-splitting of the exact sequence. The known GF -action on Qθ and the known

determinant of the GF -action on Tθ tell us that GF acts trivially on Pθ .

3.5.6. The analogue of the Iwasawa main conjecture over FN is the equality

|Yθ |= [Λθ : (ξθ )]

of orders. This equality is a consequence of Grothendieck trace formula, so we do not require

the method of Mazur-Wiles to prove it.

3.5.7. We define our map Υ.

Let H i
ét,c (O [

1
N
], M ) denote the i th compactly supported étale cohomology group of a com-

pact ZpJGF K-module M that is unramified outside N∞. These groups fit in a long exact se-

quence

· · · →H i
ét,c (O [

1
N
], M )→H i

ét(O [
1
N
], M )→

⊕

v |N∞

H i
ét(Fv , M )→H i+1

ét,c (O [
1
N
], M )→ ·· · .
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The exact sequence in 3.5.1 yields a connecting homomorphism

H 2
ét,c (O [

1
N
],Qθ (1))→H 3

ét,c (O [
1
N
], Pθ (1)) = Pθ ,

the latter identification as Pθ has trivial GF -action, and we can prove that the canonical map

H 2
ét,c (O [

1
N
],Qθ (1))→H 2

ét(O [
1
N
],Qθ (1))

is an isomorphism. Hence, the above homomorphism is identified with H 2
ét(O [

1
N
],Qθ (1))→ Pθ .

Our Υ is defined as the following composition:

Υ: Yθ
∼−→H 2

ét(ON [ 1
N
],Zp (2))θ

∼−→H 2
ét(O [

1
N
],Λ ]θ (2))

∼−→H 2
ét(O [

1
N
], (Λθ /ξθ ) ](2))

∼−→H 2
ét(O [

1
N
],Qθ (1))→ Pθ .

The isomorphism in the first line is by 3.2.2, the isomorphism in the second line is by Shapiro’s

lemma, the isomorphism in the third line follows from the fact that ξθ kills Yθ by 3.5.6, and the

isomorphism in the fourth line is by definition of Qθ in 3.5.4.

3.6 The conjecture:$ andΥ are inverse maps

We state the conjecture and our main result in the case of GL2 and GL1 over Fq (t ).

3.6.1. We state the conjecture.

Conjecture. The maps$: Pθ → Yθ and Υ: Yθ → Pθ are inverse to each other.

3.6.2. We state the theorem.

Theorem. We have that ξ′θΥ ◦$= ξ
′
θ , where

ξ′θ =
d

d q−s
L(θ−1, s )|s=−1 ∈Λθ .

3.6.3. We can prove the order of Pθ is divisible by the order of Λθ /(ξθ ) and hence by the order

of Yθ . Thus, in the case that ξ′θ is a unit in Λθ , our conjecture is implied by the above theorem.
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3.7 The proof that ξ′Υ ◦$= ξ′

The method of the proof of our Theorem 3.6.2 is parallel to the proof in the Q-case. We give

only its bare outline.

3.7.1. As in 2.7.1, we consider a refinement of the diagram in 1.0.10 in which we divide the

right-hand square of that diagram into two squares:

Sθ
z //

mod I

��

H 2
ét(Y1(N ),Zp (2))θ

HS //

∞
��

H 1
ét(ON [ 1

N
],Tθ (1))

reg
//

��

Sθ

mod I

��

Pθ
$ // Yθ

ξ′θ // Yθ
Υ // Pθ .

The commutativity of the leftmost square of the diagram was discussed in Section 3.3. We

discuss the maps in the other two squares of the diagram below.

3.7.2. The map HS in the diagram arises in a Hochschild-Serre spectral sequence. An ana-

logue of the discussion of 2.7.2 applies.

3.7.3. Let κ be the canonical generator of H 1
ét(Fq ,Zp ). The third vertical arrow in the diagram

is the composition

H 1
ét(O [

1
N
],Tθ (1))→H 1

ét(O [
1
N
],Qθ (1))

∪κ−→H 2
ét(O [

1
N
],Qθ (1))

∼−→ Yθ ,

where the last isomorphism is given in 3.5.7.

3.7.4. The map reg in the diagram is the θ -part of the p -adic regulator map

H 1
ét(F∞,S (1)) ∪κ−→H 2

ét(F∞,S (1)) ∼−→S =S,

where the second map is the invariant map of local class field theory.

3.7.5. Since S and S are canonically identified, both “mod I ” maps in the diagram are just

reduction modulo Iθ .

3.7.6. The proofs of the commutativity of the other two squares are once again nontrivial,

though slightly different, exercises in étale and Galois cohomology.

3.7.7. It remains to prove that the composition Sθ → Sθ → Pθ , where the first arrow is the

composition of the upper horizontal rows, coincides with ξ′θ times the reduction modulo Iθ

map Sθ → Pθ . By the computation of Kondo-Yasuda [KY] of the values of a regulator map on

the analogues of Beilinson elements, this is reduced to a comparison of their regulator map

with the above p -adic regulator map.

31



4 What happens for GLd ?

In this section, we discuss three settings for the study of generalizations of the conjectures in

Sections 2 and 3 for GLd over a field F , for a fixed integer d ≥ 1. The fields F and, thereby, the

cases we consider here are:

(i) the rational numbers,

(ii) an imaginary quadratic field,

(iii) a function field in one variable over a finite field.

We have results only in the cases (i) and (iii) for d = 2 discussed above, but we wish to spec-

ulate and pose questions in a more general setting. Rather than formulating precise conjec-

tures, we aim for the more modest goals of pointing in their direction and inspiring the reader

to investigate further.

4.1 The space of modular symbols

4.1.1. By an infinite place, we mean the unique archimedean place in cases (i) and (ii) and a

fixed place∞ in case (iii). The remaining places are called finite places. We have the following

objects:

• the subring O of F of elements that are integral at all finite places,

• the completion Fv of F at a place v ,

• the valuation ring Ov of Fv at a nonarchimedean place v ,

• the adele ring AF of F and the adele ring A f
F of finite places.

• the subring O f
A =

∏

v finiteOv of A f
F .

In the discussion below, we will use the notation ( )(d ) when defining an object in the GLd -

setting and then omit the notation in many instances in which d is clear.

4.1.2. We define a topological space Dd by using the standard maximal compact subgroup of

PGLd (F∞): in the respective cases, it is

(i) PGLd (R)/POd (R), so that SLd (R)/SOd (R)
∼−→Dd ,

(ii) PGLd (C)/PUd , so that SLd (C)/SUd
∼−→Dd ,
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(iii) the Bruhat-Tits building associated to PGLd (F∞).

For example, in case (i) the space D2 is the complex upper half-plane H. In case (ii), the

space D2 is the three-dimensional hyperbolic upper-half space H3. Note that in case (iii), the

Bruhat-Tits building has the set PGLd (F∞)/PGLd (O∞) of homothety classes of O∞-lattices of

rank d in F d
∞ as its 0-simplices.

4.1.3. Let N be a nonzero ideal of O . Let K (d )1 (N ) be the open compact subgroup of GLd (O
f
A )

given by

K (d )1 (N ) =

¨

g ∈GLd (O
f
A ) | (g d ,1, . . . , g d ,d−1, g d ,d )≡ (0, . . . , 0, 1)mod N

«

.

Let

U (d )(N ) =GLd (F )\(GLd (A
f
F )/K (d )1 (N )×Dd ).

The space U (1)(N ) is the relative Picard group Pic(O , N ), viewed as a discrete space. For d ≥ 2,

the space U (d )(N ) is homeomorphic to the disjoint union of |Pic(O )| copies of eΓ(d )1 (N )\Dd ,

where
eΓ(d )1 (N ) =GLd (O )∩K (d )1 (N ).

4.1.4. Consider cases (i) and (ii). Let ε∈GLd (O ) be a diagonal matrix with entries a 1, a 2, . . . , a d

such that the product a 1a 2 · · ·a d generates the roots of unity µF =O × in F . Let

Γ(d )1 (N ) = eΓ
(d )
1 (N )∩SLd (O ).

Then eΓ1(N )\Dd is identified with the quotient of Γ1(N )\Dd by the action of the operator

class(g ) 7→ class(εg ε−1)

for g ∈ SLd (R) in case (i) and for g ∈ SLd (C) in case (ii).

4.1.5. In case (i), the space U (2)(N ) is identified with the quotient of Y1(N )(C) = Γ1(N )\H by

the action of complex conjugation on Y1(N )(C). In fact, the description in 4.1.4 shows that it

arises from the quotient ofH by the action

H3 x + i y = class

 p
y x

0 1/
p

y

!

7→ class

  

−1 0

0 1

! p
y x

0 1/
p

y

! 

−1 0

0 1

!!

= class

 p
y −x

0 1/
p

y

!

=−x + i y ,

which coincides with the action of complex conjugation on Y1(N )(C).
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4.1.6. The spaceS (d )(N ) of (cuspidal) modular symbols for GLd is defined as

S (d )(N ) = image(Hd−1(U (d )(N ),Z)→H BM
d−1(U

(d )(N ),Z)),

where H BM
∗ denotes Borel-Moore homology. Recall that if U (N ) is a compactification of U (N ),

then H BM
i (U (N ),Z) is canonically isomorphic to the relative homology group Hi (U (N ),U (N ) \

U (N ),Z). The space S (N )may be the homology group Hd−1(U (N ),Z) for some good choice

of compactification.

4.1.7. In case (i), we have by 4.1.5 a canonical map

H1(X1(N )(C),Z)+→S (2)(N ) =H1(U (N ),Z),

where U (N ) is the quotient of X1(N ) by the action of complex conjugation. This map is a

surjection with 2-torsion kernel.

4.1.8. For a nonzero ideal n of O , let T (n) denote the Hecke operator on S (d )(N ) correspond-

ing to the sum of K (d )1 (N )-double cosets of elements of M d (OA)∩GLd (A
f
F ) with determinant

generating nOv in the v -component. (For d = 1, we make the convention that T (n) = 0 if n and

N are not coprime.) These operators satisfy T (ab) = T (a)T (b) for coprime a and b.

Let T(d )(N ) denote the commutative subring of EndZ(S (d )(N )) generated by the T (n) with

n a nonzero ideal of O .

4.1.9. For d = 1, the group S (N ) of modular symbols is H0(U (N ),Z) = Z[Pic(O , N )]. The

Hecke algebra T(N ) is the ring Z[Pic(O , N )], with T (n) for n coprime to N equal to the group

element for n. Under these identifications, T(N ) acts by left multiplication onS (N ).

4.1.10. The modular symbol {0→∞} in Section 2.1 is generalized to the following element of

H BM
d−1(U (N ),Z). It is the class of the image in the identity component of U (N ) of the following

standard subset of Dd , with a suitable orientation:

(i-ii) the set of classes of diagonal matrices in GLd (F∞)with positive real entries,

(iii) the union of all (d − 1)-simplices with 0-vertices in the set of classes in Dd of diagonal

matrices in GLd (F∞).

The modular symbols {α→ β} for α,β ∈ P1(Q) are generalized to the classes in H BM
d−1(U (N ),Z)

of the images in U (N ) of the translations by GLd (F ) of the above standard subset of Dd .
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4.2 Questions for the general case

We suspect that our results in Sections 2 and 3 are special cases of a relationship

Modular symbols for GLd modulo the Eisenstein ideal⇐⇒ Iwasawa theory for GLd−1

that holds for d ≥ 2. In this subsection, we describe what we expect to be true.

4.2.1. We lay out some basic objects, starting with:

• a prime number p 6= char F ,

• a nonzero ideal N of O that is coprime to p ,

• a commutative pro-p ring R and its total ring of quotients Q(R),

• a profinite R-module T with a continuous R-linear action of GF that is unramified at

every finite place not dividing N p ,

Recalling from 4.1.8 the Hecke algebra T(d )(N ) and modular symbolsS (d )(N ), we define

TR = lim←−
r

(R ⊗T(d )(N p r )) and SR = lim←−
r

(R ⊗S (d )(N p r )).

We shall often use the fact that (p ) = O in case (iii). For instance, in this case N p r =N , so we

have quite simply that TR =R ⊗T(d )(N ) andSR =R ⊗S (d )(N ).

We also let T(d )(N p r )′ be the subring of T(d )(N p r ) generated by the T (n) with n coprime to

(p ). Note that T(d )(N p r )′ =T(d )(N ) in case (iii) and T(1)(N p r )′ =T(1)(N p r ) in all cases.

4.2.2. We place some conditions on the pair (R , T ):

(1) The Q(R)-module V =Q(R)⊗R T is free of rank d −1.

(2) For every prime ideal p of O that does not divide N p , the characteristic polynomial

Pp(u ) = detQ(R)(1−Fr−1
p

u |V ) of an arithmetic Frobenius Frp lies in R[u ].

For a prime ideal p of O that does not divide N p , we define a (pn ) for n ≥ 0 by

Pp(u )−1 =
∞
∑

n=0

a (pn )u n ∈RJu K.

We then suppose:
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(3) There exists a ring homomorphism

φT : lim←−
r

(Zp ⊗T(d−1)(N p r )′)→R

that sends T (pk ) to a (pk ) for all prime ideals p of O not dividing N p and all k ≥ 1.

We extend a to a function on all nonzero ideals n ofO by setting a (n) =φT (T (n)) if n is coprime

to p and a (n) = 0 otherwise. In the case d = 2, our definition forces a (n) = 0 for any n not

coprime to N p , while in general, these values of a may not be uniquely determined by T , so

φT should be considered as part of the data.

4.2.3. We define the Eisenstein ideal IT of TR to be the ideal of the GLd -Hecke algebra TR

generated by the elements

T (n)−
∑

d|n

a (d)N(d)

for the nonzero ideals n of O . Note that IT depends only on V and the choice of φT , rather

than T itself. In case (i), the ideal IT is generated by the coefficients of the formal expression

∞
∑

n=1

T (n )n−s −ζ(s )
∞
∑

n=1
(n ,p )=1

a (n )n−(s−1).

4.2.4. For any compact RJGF K-module M that is unramified outside of S∪{∞} for some finite

set S of finite places of F including those dividing p , we denote more simply by H 2
ét(O [

1
p
], M )

the R-module H 2
ét(O [

1
p
], j∗M ), where j : Spec(O ) \S ,→ Spec(O [ 1

p
]) is the inclusion morphism.

It is independent of the choice of S. We will also use a similar notation with O replaced by its

integral closure in a finite extension of F .

4.2.5. Our two objects of study are the R-modules:

• the geometric object P =SR/ITSR on the GLd -side,

• the arithmetic object Y =H 2
ét(O [

1
p
], T (d )) on the GLd−1-side.

We ask a vague question.

Question. Under what conditions does there exist a canonical isomorphism $: P
∼−→ Y of

R-modules?

We remark that there certainly must be some conditions, as different lattices T in V may

have Y that are nonisomorphic. In what follows, we introduce three settings for further study.
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4.2.6. We fix some notation for abelian extensions of F and their Galois groups.

For r ≥ 0, let Hr be the ray class field of F of modulus (p r ), and let Or be the integral closure

of O in Hr . Let Γr = Pic(O , (p r )), which is canonically isomorphic to Gal(Hr /F ) by class field

theory. Let Γ= lim←−r
Γr .

• In case (i), we have that Hr =Q(µp r )+, Or =Z[ζp r ]+, and Γ=Z×p /〈−1〉.

• In case (ii), the field Hr is generated over F by the j -invariant j (E ) and x -coordinates of

the p r -torsion points of an elliptic curve E over F (j (E ))with CM by O . There is an exact

sequence

0→ (Zp ⊗O )×/µF → Γ→ Pic(O )→ 0.

Note that Γ/Γtor
∼=Z2

p , where Γtor is the torsion subgroup of Γ.

• In case (iii), we have that Hr =H0, Or =O0, and Γ=Γr = Pic(O ).

Let [a ] ∈ZpJΓK be the group element corresponding to a ∈ Γ. We may also speak of [a] for

a an ideal of O coprime to p by taking the sequence of classes of a in the groups Γr . We use ( )]

below to denote the (additional) GF -action on a module over a ZpJΓK-algebra under which an

element that restricts to a ∈ Γ acts by multiplication by [a ]−1.

4.2.7. We describe setting (Ad ) for d ≥ 2.

Let R0 be the valuation ring of a finite extension K0 of Qp . Let T0 be a free R0-module of

rank d − 1 endowed with a continuous R-linear action of GF . We assume that the GF -action

on T0 is unramified at all finite places not dividing N p . We suppose that condition (3) of 4.2.2

is satisfied for (R0, T0), and we use a 0(n) to denote a (n) of 4.2.2 for this pair.

Let R =R0JΓK and T =R ]⊗R0 T0. Then the pair (R , T ) satisfies conditions (1) and (2) of 4.2.2,

and we suppose that it satisfies (3). It follows directly that a (n) = [n]−1⊗a 0(n) for any nonzero

ideal n of O that is coprime to N p . By definition of T , we also have an R-module isomorphism

Y =H 2
ét(O [

1
p
], T (d )) ∼= lim←−

r

H 2
ét(Or [ 1

p
], T0(d )).

In that the GF -stable R0-lattice T0 has not been chosen with any special properties inside

V0 = K0⊗R0 T0, we consider an additional condition.

(4) The GF -representation k0⊗R0 T0 is irreducible over the residue field k0 of K0.

It follows from (4) that the isomorphism class of T0 as an R0[GF ]-module depends only on the

K0-representation V0 of GF . That is, all GF -stable R0-lattices in V0 have the same isomorphism

class. Hence, the isomorphism class of the R-module Y depends only on V0.

Finally, to avoid known exceptions in case (i), we consider a primitivity condition.
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(5) The mapφT0 does not factor through lim←−r
(Zp ⊗T(d−1)(M p r )′) for any ideal M of O prop-

erly containing N .

4.2.8. We may now ask our question for setting (Ad ) under conditions (1)–(5).

Question. Does there exist a canonical isomorphism$: P
∼−→ Y of R-modules?

We are also interested in what happens if conditions (4) and (5) are removed. For instance,

we wonder if (5) might be removed for good choices of N , p , and d , or if (4) might be removed

in the presence of a good, canonical lattice T0. In any case, we can ask the following question.

Question. If we do not suppose conditions (4) and (5), does there still exist a canonical iso-

morphism$Qp :Qp ⊗Zp P
∼−→Qp ⊗Zp Y ?

4.2.9. The p -adic Galois representations V0 attached to the following objects of modulus or

level N p r for some r ≥ 0 all have (R0, T0) and (R , T ) satisfying (1)–(3):

• in case (i) for d = 2, an even Dirichlet character,

• in case (i) for d = 3, a holomorphic cupsidal eigenform,

• in case (ii) for d = 2, an algebraic Hecke character on A×F ,

• in case (iii) for d ≥ 2, a cuspidal eigenform of GLd−1 that is special at∞.

The examples for d = 2 obviously satisfy (4), and in the remaining cases, (4) may be assumed.

By taking each of the objects to be primitive, we may assume (5).

4.2.10. We explain how the setting (A2) for F =Q and Fq (t )was studied in Sections 2 and 3.

Let θ be a primitive character of Pic(O , N p ), and impose all the assumptions on p , N , and

θ of Sections 2 and 3. Take R0 = Zp [θ ], and let T0 = Zp [θ ] with GF acting through θ−1. Let

∆= Pic(O , (p )), which we may view as a subgroup of Γ. For the objects Pθ and Yθ of Section 2

in case (i) and of Section 3 in case (iii), we claim that

Pθ =Zp ⊗Zp [∆] P and Yθ =Zp ⊗Zp [∆] Y ,

with P and Y as in 4.2.5. This claim is immediate for Fq (t ) as ∆ is trivial, and it is not hard to

see for Y in case (i). However, the claim for P is not evident in case (i), so we prove it.
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Proof of the claim. Note that R = Zp [θ ]JΓK and T = Zp [θ ]JΓK], and note that TR = T(2)R of this

section is T[θ ]JΓK, where T is as in 2.2.1. The claim for P follows if we can show that the map

T (n ) 7→ T (n ) on Hecke operators induces an isomorphism

Tθ /Iθ
∼−→Zp ⊗Zp [∆] (TR/IT ),

where I is the Eisenstein ideal of 2.2.1.

For a prime ` not dividing N p , the action of Fr−1
` on V is multiplication by θ (`)[`]−1, from

which it follows that a (`k ) = θ (`)k [`]−k if ` - N p . On the other hand, condition (3) forces

a (`k ) = 0 for all k ≥ 1 for primes ` dividing N p . The algebra TR contains diamond operators

〈a 〉 for a ∈ Γ. This follows from the identity 〈`〉 = `−1(T (`)2 − T (`2)) for ` - N p , which also

allows us to compute that 〈`〉 ≡ θ (`)[`]−1 mod IT . Thus, IT is generated by T (`)− 1− `〈`〉 and

〈`〉−θ (`)[`]−1 for primes ` -N p and T (`)−1 for primes ` |N p .

Noting that the image in TR/IT of every group element is also the image of an element of

T[θ ], we now see that the map T (n ) 7→ T (n ) induces an isomorphism (T/I )[θ ]
∼−→ TR/IT of

Z[∆]-modules, where a ∈ ∆ acts by θ (a )〈a 〉−1 on the left and θ (a )〈a 〉−1 ≡ [a ]mod IT on the

right. The induced map on∆-coinvariants is the desired isomorphism.

4.2.11. In setting (Ad ), we have considered Galois cohomology groups of families of (d − 1)-

dimensional Galois representations in the variables given by Iwasawa theory. In case (i) of

(Ad ), for instance, V is a family of Galois representations in the cyclotomic variable. Of course,

there are other families of Galois representations, such as Hida families, and we would like to

consider them. Therefore, we introduce two additional settings (B3) and (Cd ) of study. We do

not exclude any representations that are new at N from our families. Perhaps we should, but

we prefer a simpler presentation.

4.2.12. We describe setting (B3), in which we work in case (i) for d = 3.

Let h and T be as in Section 2.4, and consider the pair (h◦,T ◦(−1)), where ◦ denotes the

new-at-N part. Condition (1) holds for this pair (see 2.4.2). As a consequence of Poincaré

duality, the ordinary étale homology group T may be identified with the Tate twist of the

ordinary étale cohomology group as h[GF ]-modules. The characteristic polynomials of Fr`

and T (`) ∈ h agree on the cohomology T (−1) for any prime ` 6= p . Thus, condition (2) is

satisfied as well, and the mapφT ◦(−1) may be taken to be the identity map on Hecke operators.

Similarly to setting (Ad ), we consider R = h◦JΓK and T = hJΓK ]⊗h T ◦(−1). The conditions

(1)–(3) are again satisfied for (R , T ), and we see that we have φT as in (3) such that a (n ) =

T (n )[n ]−1 for n prime to p . The Eisenstein ideal IT of TR is then generated by

1⊗T (n )−
∑

m |n
(m ,p )=1

m T (m )[m ]−1⊗1∈ lim←−
r

hJΓK⊗T(3)(N p r )

39



for all n ≥ 1. Note also that we have an R-module isomorphism

Y =H 2
ét(Z[

1
p
], T (3)) ∼= lim←−

r

H 2
ét(Z[ζp r , 1

p
]+,T ◦(2)).

4.2.13. We describe setting (Cd ), in which we work in case (iii) for d ≥ 2.

Let us denote by Y (d−1)
1 (N ) the Drinfeld modular variety of dimension d − 2 for eK (d−1)

1 (N )

over F . We define T by

T = image(H d−2
c ,ét (Y

(d−1)
1 (N )/F ,Zp )◦→H d−2

ét (Y
(d−1)

1 (N )/F ,Zp )◦),

where ◦ denotes the new part (in an appropriate sense). We then let R be the Zp -submodule

of EndZp (T ) generated by the Hecke operators T (n) for nonzero ideals n of O .

We imagine but, for d ≥ 4, are not certain that conditions (1)–(3) hold in this case and that

we have φT such that a (n) = T (n) for all n. In any case, we may define the Eisenstein ideal IT

of TR to be generated by

1⊗T (n)−
∑

d|n

N(d)T (d)⊗1∈R ⊗T(d )(N ),

for the nonzero ideals n ofO . This Eisenstein ideal is all that we need to consider our question.

4.2.14. Our question for (B3) and (Cd ) is the same as it was for (Ad ), so we can ask it for all:

Question. Is there a canonical isomorphism $: P
∼−→ Y of R-modules in any of the settings

(Ad ), (B3), or (Cd )?

This question, which has been formulated rather carelessly, is still not fine enough to be a

conjecture. We have more questions than answers: for instance, are the hypotheses that we

have made sufficient, and to what extent are they necessary? What happens for the prime p =

2? We do not wish to exclude it from consideration. We have made many subtle choices that

influence the story in profound yet inapparent ways: e.g., of congruence subgroups, Hecke

algebras, Eisenstein ideals, and étale cohomology groups. Have we made the right choices for

a correspondence? We are glad if the reader is inspired to answer these questions.

4.2.15. We end with our hope that it is possible to explicitly define the maps $ that are the

desired isomorphisms in the settings (Ad ), (B3), and (Cd ).

The groups S (N ) often have explicit presentations very similar to those of Section 2.1.

These are found in the work of Cremona [Cr], Ash [As], Kondo-Yasuda [KY], and others. So,

explicit definitions of$ and affirmative answers to our questions would give explicit presen-

tations of the arithmetic object Y .
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The map$ should take a modular symbol to a cup product of d special units. As explained

above, this has been done in cases (i) and (iii) for d = 2. Beyond these, the settings in which

we hope to do this are:

• (A2) in case (ii), using cup products of two elliptic units,

• (B3) using cup products of three Siegel units,

• (Cd ) using cup products of d of the Siegel units in [KY].

Goncharov has made closely related investigations into the first two of these settings [Go].
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