MATH 54, FALL 2016, QUIZ 4

- (1) Mark each statement true or false. If true, provide a short explanation. If false, provide a counterexample.
 - (a) A linear transformation from \mathbb{R}^2 to \mathbb{R}^3 cannot be one-to-one.
 - (b) A linear transformation from \mathbb{R}^2 to \mathbb{R}^3 cannot be onto.
 - (c) If T and S are both linear transformations from \mathbb{R}^n to \mathbb{R}^m and $T(e_i) = S(e_i)$ for all $i \leq n$ then T = S. (Recall that e_i is the vector in \mathbb{R}^n all of whose entries are 0, except for the i^{th} entry, which is 1.)
 - (d) If a linear transformation is onto then it is also one-to-one.
- (2) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation defined by

$$T\left(\left[\begin{array}{c} x_1\\x_2\\x_3 \end{array}\right]\right) = \left[\begin{array}{c} x_1 + 3x_2 - x_3\\2x_2 + 4x_3 \end{array}\right]$$

- (a) Find the standard matrix for T.
- (b) Is T one-to-one? Is T onto?

Date: September 16, 2016.