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Abstract

We consider a system of two Gross—Pitaevskii (GP) equations, in the presence of an optical-lattice (OL) potential, coupled
by both nonlinear and linear terms. This system describes a Bose—Einstein condensate (BEC) composed of two different spir
states of the same atomic species, which interact linearly through a resonant electromagnetic field. In the absence of the OL
we find plane-wave solutions and examine their stability. In the presence of the OL, we derive a system of amplitude equations
for spatially modulated states, which are coupled to the periodic potential through the lowest order subharmonic resonance. We
determine this averaged system'’s equilibria, which represent spatially periodic solutions, and subsequently examine the stability
of the corresponding solutions with direct simulations of the coupled GP equations. We find that symmetric (equal-amplitude) and
asymmetric (unequal-amplitude) dual-mode resonant states are, respectively, stable and unstable. The unstable states gener
periodic oscillations between the two condensate components, which are possible only because of the linear coupling betweel
them. We also find four-mode states, but they are always unstable. Finally, we briefly consider ternary (three-component)
condensates.
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1. Introduction

At sufficiently low temperatures, particles in a dilute boson gas condense in the ground state, forming a Bose—
Einstein condensate (BEC). This was first observed experimentally in 1995 in Na and Rb[8apt8s26,12]

In the mean-field approximation, a dilute BEC is described by the nonlinead@oler (NLS) equation with an
external potential, which is also called the Gross—Pitaevskii (GP) equation. In particular, BECs may be considered
in the quasi-one-dimensional (quasi-1D) regime, with the transverse dimensions of the condensate on the order
of its mean healing lengtl (given by x2 = (8nnla|)~1) and a much larger longitudinal dimensi{#10,8,16]

The lengthy is determined by the mean atomic densitgnd the two-body s-wave scattering lengttwhere the
interactions between atoms are repulsive i 0 and attractive if: < 0[37,16,27,4]

The quasi-1D regime, which corresponds to “cigar-shaped” BECs, is described by the 1D limit of the 3D mean-
field theory (rather than by a 1D mean-field theory proper, which would only be appropriate for extremely small
transverse dimensions of order) [9,8,10,45,6] In this situation, the condensate wave functigp, ) obeys the
effective 1D GP equation,

hZ

i = —o—Yee + gVIPy + V)Y,

where m is the atomic massy(x) is an external potentialg = [472a/m][1 + O(n?)], and n = /n|a|? is
the dilute-gas paramet§t6,27,4,29] Experimentally relevant potentialg(x) include harmonic traps and peri-
odic potentials (created as optical lattices, which are denoted OLs and arise as interference patterns produced
by coherent counterpropagating laser beams illuminating the condensate). In the presence of both potentials,
V(x) = Vo cos[Z(x — x0)] + V1x%/2, wherexg is the offset of the periodic potential relative to the center of
the parabolic trap. When £2«)?V1 < Vj, the potential is dominated by its periodic component over many periods
[17,14,11] for example, wherVy/ V1 = 500 andc = 10, the parabolic component Ir(x) is negligible for the 10
periods closest to the trap’s center. In this work, wélget 0 and focus entirely on OL potentials. This assumption
is motivated by numerous recent experimental studies of BECs if%23,51]and is widely adopted in theoretical
studieg9,8,10,7,15,14,17,34,2,48,38,39,35,50,31,30]

Multiple-component BECs, which constitute the subject of this work, have been considered in a humber of
theoretical work$24,41,40,20,13,47,18Mixtures of two different species (such #Rb and®’Rb) are described
by nonlinearly coupled GP equations:

) 12
iﬁ% = ——— V21 + g1ly?Y1 + V()Y + hly2*y,
t 2my
B 12
inl2 —mvzwz + g2lal*y2 + V(x)¥2 + hlya Py, (1)

wherem » are the atomic masses of the specigss 4rhla ;/m  corresponds to the self-scattering lengthand

mji+mp

— 2
mimy

h = g1p = 2nha1,

depends on the cross-scattering lengih [41]. There are numerous subcase<df (1) to consider, as various
combinations of signs for the scattering coefficiefitsg2, andh may occur. It is important to note, however, that
if g1.2 are positive (repulsion between the atoms), thénormally positive as well. However, éf » are negative
(corresponding to the less typical case of attraction between atoms belonging to a single specleggdian (2]
may beeitherpositive or negative.

The system (1) resembles a well-known model describing the nonlinear self-phase-modulation (SPM) and cross-
phase-modulation (XPM) interactions of light waves with different polarizations or carried by different wavelengths
in nonlinear optic$1]. In the case of optical fibers, the evolution variable is the propagation distdratber than
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time), and the role ok is played by the reduced temporal variablgl]. In optical models, however, the choice
of the nonlinear coefficients is limited to the combinatigas= g> = 3h/2 for orthogonal linear polarizations in

a birefringent fiber ang1 = g» = h/2 for circular polarizations or different carrier wavelengths. In fact, the latter
case is quite important in the application to two-component BECs as well.

Another physically interesting feature, which we include in the model to be considered below, is linear coupling
between the two wave functions. This occurs in a mixture of two different spin states of the same isotope, which
arises through a resonant microwave field that induces transitions between thipstéle€ondensates containing
two different spin states 8 Rb have been created experimentally via sympathetic cof@®ig In this situation,
the normalized coupled GP equations take the form

d
"% = —V%Y1 + glv[2¥1 + V(Y1 + byl ?y + ey,

0

"% = —V2Ys + g2 + V(x) V2 + hlya|2¥ + a1, 3)

where the self- and cross-scattering coefficientsgare g» = ¢ andh, and the linear coupling coefficient ig
which can always be made positive without loss of generality.

Experimental studies of mixtures of two interconvertible condensates (with positive scattering lengths) loaded in
an OL have not yet been reported. However, all the necessary experimental ingredients for such a work are currently
available. Moreover, in a very recent pap28], an experimental procedure, based on Ramsey spectroscopy and
adjusted exactly for such a system, was elaborated. Experiments in this setting would be quite interesting, as the)
would allow the study of the direct interplay between two crucially important physical factors used as tools in
current experimental work—namely, the OL potential and inter-conversion between two different spin states in the
BEC, controlled by the resonant field. Furthermore, there are now recent experimental results with linearly coupled
BECs[23]. The use of an optical potential in the latter setting is a rather straightforward extension.

The model combining nonlinear XPM and linear couplings, a&qn(3), occurs in fiber optics as well. In that
case, the linear coupling is generated by a twist applied to the fiber in the case of two linear polarizations, and by an
elliptic deformation of the fiber’s core in the case of circular polarizations (see[32f.,However, linear coupling
is impossible in the case of two different wavelengths. Another optical model, with only linear coupling between
two modes, applies to dual-core nonlinear fibers, as discusg@8Jifand references therein). In the context of
BECs, it may correspond to a special case in which the cross-scattering length is made (very close to) zero using ¢
Feshbach resonan{25].

In this work, we aim to investigate modulated-wave states in the binary BEC descrilked (8, which include
both nonlinear and linear couplings and an OL potential. We stress that the interplay between the microwave-inducec
linear coupling in the binary model and the OL-induced periodic potential has not been considered previously, to
the best of our knowledge. As both features represent important laboratory tools, the results reported here sugges
possibilities for new experiments. The model we study predicts interesting dynamical effects, such as oscillations
of matter between the linearly coupled components trapped in the potential wells of the OL.

In our study, we begin by examining plane-wave solutions Wwith) = 0. WhenV(x) # 0, we apply a standing-
wave ansatz t&q. (3, which leads to a system of coupled parametrically forced Duffing equations describing the
spatial evolution of the fields. Using the method of averagddga 2], we study periodic solutions of the latter system
(called “modulated amplitude waves” (MAWS)). The stability of MAWSs (and the ensuing dynamics, in the case of
instability) is then tested by numerically simulating the underlying system of coupled GP equations. This approach,
though simpler than the more “rigorous” computation of linear stability eigenvalues for infinitesimal perturbations,
provides a more realistic emulation of physical experiments. Note additionally that although our stability results
will be illustrated by a few selected examples, we have checked—by exploring different parameter regions—that
these examples represent the MAW stability features rather generally.



M.A. Porter et al. / Physica D 196 (2004) 106-123 109

The MAW solutions are especially interesting when the system exhibits a spatial resonance. In this work, we
consider both non-resonant solutions and solutions featuring a subharmonic resonance of the 2:1:1 form. The latter
situation has been studied in the context of period-doublisgigie-componeECs in an OL potentigB0,38,39]
but—to the best of our knowledge—spatial-resonance states in models of composite BECs have not been considered
previously.

An alternative (but less general) approach to the study of binary BECs with linear coupling, loaded into an OL,
would be to seek exact elliptic-function solutionsEq. (3 for the case of elliptic-function potential®,(x) =
— Vo srP(kx, k), as has been done earlier in the two-component model without linear cojtbfihdn that work,
stable standing-wave solutions were found under the assumption that the interaction matrix is positive definite.
This occurs, for instance, when all the interactions are repulsive, although small negative cross-interactions are
compatible with this condition as well.

The rest of this paper is structured as followsSiaction 2 we derive plane-wave solutions and analyze their
stability. In Section 3 we introduce modulated amplitude waves, an&attion 4 we derive and solve averaged
equations that describe them in both non-resonant and resonant situations. We corroborate our results and test the
stability of the MAWSs using numerical simulations. 8ection 5 we briefly examine a more general model of a
ternary (three-component) BEC with linear couplings. Finally, we summarize our resgksiion 6

2. Plane-wave solutions

In the absence of the external potentidl-£ 0), we find plane-wave solutions of the form
ij = Rj exp[i(ij — /,le)], j=12 (4)

For the linearly coupled GB), it is necessary that, = k» = k andu1 = u2 = w. Without linear coupling [as in
Eq. (9], one may seek a broader class of solutions with independent frequencies (which correspond to chemical
potentials in the physical context of BECS). It is important to note that the results obtained in the study of optical
models suggest that the addition of linear coupling terms to a system of coupled NLS equations drastically alters the
dynamical behaviof32]. In this section, we study the model without the OL, which will be included in subsequent
sections.

InsertingEq. (4 into Eq. (3 yields

(R1 = k?R1+ gRS + hR1R3 + aRy, (5)
(R2 = k®Ry 4 gR3 + hRZRp + Ry, (6)
which implies that
[(g — h)R1R2 — o][R} — R3] =O.
One of the following two relations must then be satisfied:
R1= %Ry, (7

o
RiRy = —. 8
Rz =—— 8)

With Eq. (7), a nonzero solution satisfi® = +./(k2 + 1 F )/(g + h). It exists wherg 4+ & > 0, providedk? +
wFa>0, andwherg +h < 0, if k2 4+ u Fa < 0. Wheng = —h, one obtains solutions of the fornR{, R») =
(£R, R) with arbitraryR andk? = u F a.
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FromEq. (8, one finds that

2
w—k% 1 [(pn—k? 402
R: = £ /—) - —. 9)
2g 2 g (g—h)

under the restriction that this expression must be positive. Whgr0, the term inside the square root is smaller

in magnitude than the one outside, so solutions of this type exist as lopg-ag4)g > 0 and the argument of the
square root in (9) is non-negative. Hence, for repulsive and attractive BECs, respectively, the first condition implies
n > k?andu < k2. Whenh = 0, Eq. (9 takes the form

RS = (2g) Mu — K £/ (n — k?)2 — 40?).

For bothkh = 0 andh = 2g, the condition on the argument of the square root implies that to obtain real solutions,
it is necessary to impose the conditipn— k?| > 2a.
To examine the stability of the plane waves, we substitute

Vil 1) = ¢ D1+ ej(x. ], lejl* < L,
into Eq. (3. This yields coupled linearized equations &(x, r) andex(x, 1). Assuming that; is periodic inx, it

can be expanded in a Fourier series,

(e¢]

ejilr.t)= )" &ult) expfvyx),

n=—0oo

where thenth mode has wavenumbey. The perturbation growth rates that determine the stability ofithenode
are then given by

Ap = —2ikv, £ vn\/—v,% = g(IR1|? + |R2|?) \/82(|R1|2 — |R2|%)? + 4h?| R1|?| R2|?, (10)

where the two sign combinatioasare independent (so there are four distinct eigenvalues). Instability occurs when

the expression under the square rodE (10 has a positive real part, causing the side-band mbdes,, k — v,

of the perturbed solution to grow exponentially. In single-component condensates, this can occurorl\Of9].
Eigenvalues whose interior square roo&q. (10 has a+ sign will produce the instability before ones with a

— sign, so we only need to check the former case. For examgiexiRg, the instability occurs if

2 +g <|R1|2 + 1Rz — [ IR1I* + 14 R2RE| + |R2|2) <o0. (11)

Stability conditions for the plane-wave solutiondgg. (3 with V = 0 can be obtained for all the possible sign com-
binations ofg andh. We do not display them here, as they are rather cumbersome to write (although straightforward
to compute).

3. Modulated amplitude waves

We now generalize the above analysis to consider the two-component GP system in the presence of an OL
potential. Toward this aim, we introduce solution€ig. (3 that describe coherent structures of the form

vj(x, 1) = Rj(x)expl(6(x) —un)], j=12 (12)

InsertingEq. (12 into Eq. (3 and equating real and imaginary parts of the resulting equations yields
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(R1 = —R] + R1(6')* + gR3 + V(x)R1 + hR3R1 + aRy,

(WR2 = —Ry + Ra(0)? + gR3 4+ V(x)R2 + hR2R2 + aRy, (13)
0= R10" + R}0, 0= R0 + Ry, (14)
where the prime stands foydx. Eq. (14 imply that
dx’ dx’
9(")201/2—/=“2/ 2 (15)
Ri(x) R5(x")

with arbitrary integration constantg andcz, so R1(x) = bR2(x) for some constarti unlessc; = ¢ = 0. In other
words,R1(x) andR2(x) are different in this context only when one considers solutions with null “angular momenta.”
In the latter situationiEq. (13 assume the form

Ry=51,  S{=—-upRi+gR}+hRiRS+aRs+ V(x)R,
Ry=S2,  Sh=—uRa+ gR3+hR?Ry+ aR1+ V(x)Rz. (16)

When the potentiaV (x) is sinusoidalEq. (1 are (linearly and nonlinearly) coupled cubic Mathieu equations.

4. Averaged equations and spatial subharmonic resonances
To achieve some analytical understanding of the spatial resonances in linearly coupled BECs, wéay¢tége

in the physically relevant case of the OL potential,

V(x) = Vo cos(Zx). an
Defining Vo = —eVp, g = €3, h = ¢h, anda = €&, Eq. (16§ may be written

R 4 Ry = —€VoR1 cos(Xx) + €ZRS 4 ehR1R3 + € Ra,

RS 4 Ry = —€VoR2 c0S(&x) 4 €3R3 + €h R3Ry + €& Ry (18)
Assumingu > 0, we insert the ansatz

Rj(x) = Aj(x) cos/unx) + Bj(x) sin(/ux),

R(x) = — /IA(x) Sin(y/7x) + /1B (x) COS(/p1x) (19)
(with j = 1, 2) into Eq. (18. Differentiating the first equation of (19) and comparing it with the second yields a
consistency condition,

A’; cos(/mx) + B sin(/ux) =0, j=12,

that must be satisfied for this procedure to be valid. Inserting these equations into Eq. (18) yields a set of coupled
differential equations for ; and B;, whose right-hand sides are expanded as truncated Fourier series to isolate
contributions from different harmonid44,42]. The leading contribution in these equations is@fk), so the
equations assume a general form

A, = €Fa;(A1, A2, B1, B2, x) + O(€?), B, = ¢Fp;(A1, Az, B1, Bz, x) + O(¢?). (20)

Whene = 0, Eq. (18§ decompose into two uncoupled harmonic oscillators. We have computed the exact functions
Fa; andFg, in Eg. (20 and provide them ilppendix A

Our objective is to isolate the parts of the functiohgx) and B;(x) that vary slowly in comparison with the
fast oscillations of cogf7x) and sin(/ux) and to derive averaged equations governing their slow evolution. To
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commence averaging, we decompdseand B; into the sum of slowly varying parts and small rapidly oscillating
ones (which are written as power-series expansioak in

Aj=Aj+ EWA_,-(XL Az, By, Bz, x) + O(€?), Bj=B;+ GWB_/(XL Az, B1, Bz, x) + O(é?). (21)

Here, thegenerating functionsV, ;, W, are chosen so as to eliminate all the rapidly oscillating ternijin(20
after the substitution dgq. (21). _ B

This procedure yields evolution equations for the averaged quantitiend B; [44], which we henceforth
denote simply agl; and B;. (All other terms in the originally defined ; and B; are cancelled out by the choice
of the generating functions.) As we shall see, the slow-flow equations so derived are different in resonant and
non-resonant situations.

4.1. The non-resonant case

When, /it # « [recall thatk is half the wave number of the OL potential; €& (17)], which is the non-resonant
case, effective equations governing the slow evolution are

e [ 3g 2, oy @ h h 2 2 2
Al = ﬁ __EBl(Al + BY) — EBZ - ZAlAzBZ - gBl(Az +3B3) | + O(€),
e [ 38 2 o @ h h 2 2 2
A/2 = ﬁ _—§B2(A2 + B5) — EBl — ZAlAZBl — §B2(Al + 3B7) | + O(¢°),
By= - _gAl(A% + B2 + QAZ + EAgBle + EAl(3A§ + B3) | + O(¢?),
JEL8 2% 4 8
By= _EAZ(Ag + B2) + éAl + EAlBle + EAz(sAi + B2) | + O(¢?). (22)
JEL8 27t 4 8

In this case, the OL does not contribute@) terms, so the terms explicitly written iqgs. (23 correspond to
what one would obtain from coupled Duffing equationsEas. (18 reduce to coupled Duffing oscillators in the

absence of the OL potentifd3]. These contributions yield the wavenumber—amplitude relations for decoupled
condensate$38,39] as well as mode—wavenumber relations produced by the coupling fé4ins

The non-resonariqgs. (23 give rise to three types of equilibria, at whiet] = A}, = B} = B, = 0: the trivial
(zero) equilibrium and those which we will call double modes and quadruple modes. These have, respectively, two
and four nonzero amplitudes;, B;. Single-mode and triple-mode equilibria do not exist. Different double modes
that can be found are/2 phase shifts of each other: these a4g A" equilibriawith A1, A2 # 0andB; = B2 =0,
and “B1B>" ones withA; = A> = 0 andB1, B» # 0.

The A1A> equilibria satisfy

4o
A2=pA2 " 23
1=43 3F3(g+h) (23)

where the signs- and+ arise, respectively, wherg (+ #) < 0, and g + &) > 0 (recall thatx > 0). In the former
and latter cases, we find thai = A, andA; = — A, respectively. This yields the following twé; A equilibria:

4o _ 4o
3(g+h)’ 3(g+h)

(Al,Az,Bl,Bz)Z:I:( 0,0), if g4+h>0,

—4u —4u
3(g+h)\3(@+h)

(A1, A2, B, Bo) = + ( 0, o) , ifg+h<O. (24)
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Similar expressions for thB, B, equilibria are obtained by phase shifting theA, modes byr/2.
We have examined the stability of the approximate stationary solutions corresponding to the double-mode

equilibria obtained above with direct simulations of the coupled GP equations (3). Typically, the simulations generate
solutions that oscillate in time (as the initial configurations are not exact stationary solutions) without developing
any apparent instability.

One can also find four sets of quadruple-mode equilibria in wHifk= A3 and B2 = B2. In the first two sets,
Aj is arbitrary:

4o 4o
A1, A2, By, Bo) =+ | —As, Ap, + [—AZ4+ ——  + [_AZ4 , ifg+h>0,
(A1, A2, B1, Bp) ( 22\/ 5 3(g+h)jF\/ 2+ 361 g+h>

4o 4o
A1, A2, By, By) =+ | A, Ap, + | —A2 — —— 4 [—AZ_ , ifg+h<O. 25
(A1, A, B1, B2) (22\/ 27 3G m \/ s 3(g+h)> g < (25)

In the second two set®; is arbitrary:

(A1, Ap, Br, Bp) = & (& [—B2+ -2 [ g2y % _p g ifg+h>0
la 27 17 2 - 2 3(g+h)7 2 3(g+h)’ 25 2 ) g k)

4o 4o
A1, A2, B1,B)=+|+|-B2— — _ + | -B2— —— By By|, ifg+h<O. 26
(A1, A2, B1, B2) <\/ 27 3G 1 \/ 2" 31y 2 2) g (26)

Each of the expressions (25) and (26) includes four equilibria, as there are two possible choices of the exterior signs.
The presence of the arbitrary amplitudes in these expressions means that the quadruple-mode stationary solutions ar
obtained as rotations of the above double-mode ones given, respectivedy, @y and by those same equations with

an additionalr/2 phase shift. Accordingly, direct simulationsid). (3 starting with the approximate quadruple-

mode stationary states reveal only oscillations but no instability growth, just as with simulations initiated by the
approximate dual-mode stationary solutions.

4.2. Subharmonic resonances

The most fundamental spatial resonance is a subharmonic one of typd42%#2,21] In this situation, the
parametep from the initial plane-wave approximation (4) [recall that = w2 = u] is of the form

=k’ + efi1 + O, 27)

whereefis is thedetuningconstan{42,44,43] [Recall thate is a small parameter; we assume = 0O(1).] In this
situation, new terms occur I&q. (22. This leads to equations that include a contribution from the OL potential,

el(i1 Vo 3, . o, & h h ) ) )
A, =-|=—-—=)B— =2B1(A B ——B——AAB——BA 3B 0]
1 K_<2 4>1 81(1+ 7 B2 — 7A1428, 1(A5 4 3B3) | + O(€),
el/iin Vo 3g h h 2
A, =S (B0 B——BA B —B——AAB——BA B
5 K(Z 4) 2 2(A3+ B3) — - By 7 A14281 82( 243B2) | + O(2),
€ i Vi 3g o h h
By = ol ("7 °> Ar+ Al(A + B+ %Az + 7 A2B1B2 + §A1(3A§ + Bg)} + 0(é)),
o[ (P VoY, % )y Eay " ay@a2 4 8] + 0@
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Eq. (28 has three types of equilibria when# 0: the trivial one, double modes, and quadruple modes. WheD,
we also find single-mode equilibria and extra double-mode ones. Triple-mode stationary solutions never appear.
All the equilibria of Eq. (28, except for the trivial one, correspond to spatially periodic stationary solutions of the
underlying system (18).

There are two kinds afi; A, (double-mode) equilibria. The first satisfi.e% = A2, so that the two components
have equal amplitudes:

—da + 2 \% —4o + 2 \%
(A1,A2,B1,Bz)=i( + 2(2u1 + Vo) +2(2u1 + O),O,O>,

3(g+h) ’ 3(g+h)

(29)

4a + 2(2u1 + Vo) 4o + 2(2u1 + Vo)
A1, A2, B1, B)) =+ , — ,0,0]).
(A1, A2, B1, B2) ( 3G+ 1) 3G+ h)

A crucial issue is the dynamical stability of these solutions, which we tested with direct simulations of the underlying
Eqg. (3. We found that they arstable as exemplified ifFig. 1forx = u = 1.

The otherA; A, double-mode equilibrium hasnequalcomponentsA; and Az [note that in the non-resonant
case considered above, the double-mode equilibria, which are giveq.24 and by ar/2 phase shift thereof,
always have equal nonzero components]:

2(2u1 + Vo) -

A% 4+ A3 =
1t 3g

Oa

2u1+ Vo :I:} (2u1 + Vo)? 3 1602
3¢ 3 g2 (g —h)?%

(A1, Az, By, Bo) =+ J

2 \% 1 /(2 Vo)? 1602
J 1+ OZF—\/( w1+ Vo) 0.0l. (30)

3¢ 3 g? (g )7

where the interios- sign in the first component corresponds tothsign in the second, and vice versa. The exterior
sign is independent of the interior one. A necessary condition for the existence of this solution is

4o
>

'2u1+V0
T lg—hl

8

In particular, wherk = 2¢, which is a case of special physical relevance (as explained above), the solution becomes

1
(A1, A2, B1, Bo) = + <\/3—g[2M1 + Vot \/(2M1 + V0)? — 1607],

1
\/gg[Zm +VoF \/(2M1 + Vo) — 1602, 0, 0) : (1)

provided|2u1 + Vo| > 4a.

In fact, the existence of pairs of equilibria in which the two components have unequal amplitudes that are mirror
images of each other is a manifestatiorspbntaneous symmetry breakinghe present model, which is described
by the symmetric system of coupled equations (3). A similar phenomenon was studied in detail (in terms of soliton
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Fig. 1. An example of evolution of thé1 A, double mode witlequalamplitudeg A;| and|A»| in the case of the 2:1:1 subharmonic resonance,
constructed as per Eq. (29) for=u =1, Vo = 0.1, g = h = 0.025, andx = 0.02. The left subplot shows the spatio-temporal evolution of

|¥1]2 by means of grayscale contour plotg4|2 behaves similarly). The right subplot displays snapshots of the|fiald for r = 99 (upper

panel) and = 105 (lower panel). In these panels, the optical-lattice potential is shown by a dashed line. The results have been obtained through
numerical integration of Eq. (3) in time.

solutions) in the aforementioned model of dual-core nonlinear optical fibers, which includes only linear coupling
between two equatior{83].

The stability of the asymmetric stationary solutions, which correspond to equilibria with unequal components,
was also simulated in the framework®d]. (3. We show the results of a typical simulationFig. 2 As seen in the
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Fig. 2. The same as in Fig. 1, but for tAg A, double mode withunequalamplitudegA1| and|A»|, given by Eq. (30). The top panel in the right
subplot shows the time evolution of the numbers of atoms in the two componértss [ |v12|2 dx, by dashed and dash-dotted lines (the
sum of the twoN = N1 + No, is shown by the solid line). The right panel also shows the figld& and|v,|2 (by solid and dash-dotted lines,
respectively) at = 105 andr = 210. The OL potential is shown by the dashed line. Oscillations of matter between the two components are
clearly discernible. The parameters gre- 0.025,# = 0.005,« = —0.02, Vp = 0.3, andk = = 1. (Recall that the sign ai can be chosen
arbitrarily.)
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figure, these states are subject to periodic oscillations between the two components (which is possible only in the
presence of the linear coupling between them).
The resonanEg. (28 give rise to two types oB1 B dual-mode equilibria. The first satisfi% = BS and

—da + 2(2u1 — Vi —da+2 —V
(A1, Az, Bl,Bz)zzl:(0,0, +2(2u1 — Vo) +2(2u1 0))7

3(g+h) ’ 3(g+h)

Ao+ 2 -V Ao+ 2(2u1 — W
(A1 Ap, By, By) = + (0,0, |22+ 2@ Vo) _ [da+ 2(Gu = Vo) (32)
3(g+h) 3(g+h)
The second type satisfies
2 -V
B2+ B} = —(2u;g 9o,
2ur—Vo | 1 [(2u1— Vo)? 1602
A1,A2,B1,B)=+]0,0, | — + = — )
(A1, A2, By, B2) J 32 3\/ &2 (s —h)?
2ui—Vo 1 [(2u1 — Vp)? 1602
At B ( . ) _ 5 |- (33)
3g 3 g (g—h)

As above, the interio#- sign in the first component is paired to thesign in the second, and vice versa, whereas
the exteriort is independent. A necessary condition for the existence of this solution is

211 — Vg 4o
‘ m—Vo| . (34)
8 lg — hl
Whenh = 2g, the present solution becomes
1 2 2
(A1, A2, B1, B) = £( 0,0, @[Zul - Vot \/(Z,ul — Vo)* — 160],
L 2 2
21— Vo F /(21 — Vo2 — 1607] ), (35)
3g

provided|2u1 — Vo| > 4a.
Unlike the non-resonant case, the resongyB, modes arenot precise phase shifts of th&; A> modes, as
the spatial parametric excitation resulting from the OL has only the cosine harmonic. Nevertheless, the equations
describing these two classes of modes are similar, differing only in the sigg &firect simulations demonstrate
that the stability of stationary solutions corresponding toBh8, equilibria is similar to that of thei; A, double-
mode equilibria considered above: the symmetric ones MBith= | B| arestable and the asymmetric solutions
with | B1| # |B2| areunstable
We have also found two sets of quadruple modes in the resonant case. The first set Batisfigg A1 = — Ao,
and

> Vo « 211
Al = — — y
2h  h  3g+h

(36)
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Vo « 2u1
Bi=—— —— . 37
! 2h h+3g+h (37)

A necessary condition for its existence is

211 Vo «

e+h  |2n

’

and hence itis necessary that/(3g + /) > 0. The second set of quadruple modes satigfies — B2, A1 = A,

and
Vo

A2= " —
17 on

a 2u1
o 38
h  3g+h (38)

Vo « 211
B?=—— +— ) 39
! 2h+h+3g+h (39)

A necessary existence condition for this mode to exist is

)

2,u1 Vo o
- S| —= =
3g+h  |2h h

which also implies that1/(3g + &) > O.

We considered quadruple modes in the presence of detuning, g00. This is rather difficult to implement
numerically, as—in view of the periodic boundary conditions @mployed in the numerical integration scheme—it
is necessary to matdboththe potential and initial condition to the size of the integration domain. Nevertheless,
we were able to perform stability simulations in this case too. We show an example of these simuldfign8.in
We observe that the quadruple moderistableagainst long-wave perturbations, in this case witk 0 (no linear
coupling between BEC components).

Whena = 0, one can find additional double-mode equilibria and four single-mode ones, the latter of which take
the form (41, 0, 0, 0), (O, A2, 0, 0), (0, 0, By, 0), (O, 0, O, Bp), with

2 Vi
a2z Hemt V) (40)
3g
2(2u1 — Vi
B2=B%= (2“; ), (41)
g

The A ;- and B;-modes both exist wheWp/g > 0. In this caseq = 0), matter cannot be exchanged between the
components. In this same situation, there is alselaf> double-mode equilibrium [of the formA(, 0, 0, B>)],
which satisfies
2 _ 4 2Vo
17 3¢+h  3g—nh

4 2Vo
3¢g+h 3g—nh

>0, Bi= > 0. (42)
FromEq. (42, it follows that a necessary condition for this mode to existus &3¢ + i) > 0. Its counterpart is
an A B1 equilibrium, in which the subscripts 1 and 2 are swapp€dgqgn(42.

One can extend the analysis to higher order spatial resonances in BECs (from the lowest subharmonic resonance
considered here) either by considering higher order corrections to the averaged equations or by employing a per-
turbative scheme based on elliptic functions, as has been done for single-component BECEi#\, 88]sToward
this aim, it may be fruitful to utilize an action-angle formulation and the elliptic-function structure of solutions to
Eq. (16 whenVy = 0. However, detailed consideration of higher order resonances is beyond the scope of this work.
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Fig. 3. Atypical example of the long-wave instability of a quadruple (four-amplitude) stationary state in the resonant case. The parameters are
n=15791,k = 1.2320,Vp = 0.1, g = 0.025,h = 0.05 andx = 0, and the size of the integration boxlis= 255.

5. Ternary BECs in optical lattices

To evince the generality of the above analysis, we briefly consider its extension to a BEC model of three hyperfine
states coupled by two different microwave fields, which is also a physically relevant sitii&]onhe corresponding

coupled GP equations (with= 1 andm = 1/2) are

.0y
za—‘/; = V21 + gly1Py1 + V)Y + halYal®y + hasl¥sl? v + a1z + aasps,

0
i% = V2 + glvo22 + V(X2 + hal Y1 v + hasl sV + a12¥1 + azapss,
% _ _v2 3 2 2

i = —VY3 + glva|"Y3 + V(x)¥3 + hazl 1l ¥z + hosly2|“¥s + a1y + azyo, (43)

ot
where the self- and cross-scattering coefficientgare g1 = g» = gz andh j, and the linear coupling constants

area j. (The signs ot ; cannot be determined arbitrarily.)
As in the binary case, we start with the general form (12) for stationary solutionsgaith= 6,(x) = 63(x) =

6(x) andu1 = u2 = u3 = u. Then, as above, we sef =0 (i.e.,6 = 0) in Eq. (19 to consider standing wave

solutions and arrive at the following equations:
WR1 + gR% + hlleR% + h13R1R§ + a12R2 + @13R3 + V(%) R1,

1= 51, S1=—
Ry=S5.  Sy=—uRo+ gR3+h1aRiRs + h23Ra2R5 + a12R1 + 23Rz + V(x)Ro,
Ry=S3.  S3=—uR3+ gR3+h13RiRs+ hp3R5R3+ a13R1 + 23Rz + V(x)Ra, (44)

whereV(x) is the sinusoidal OL potential discussed before.
One can averageq. (49 with the same procedure that we appliedtp (19 and thereby derive both resonant

and non-resonant equations describing the system’s slow dynamics. In particular, for the most fundamental resonar
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case (the lowest order, 2:1:1:1, resonance), the averaged equations are

el(in Vo 3z @13
A= (B2 - 22 By — (a2 _Gazp Y
1 K[(Z 4) 1 g B BY) 2 2 73
712 h13 hi2 , o0 apy P13 o oo 2
—TAlAsz — TA1A3B3 — ?Bl(Az + 382) — ?Bl(Ag + 383) + O(E ),
€ 1 ‘70 38 2 2 a12 23 h12 il
A= (2 -2 B, — 2,2+ B2) - 225 Bs— X2 A1AB1 — 22 AA3B
2K|:<2 4)282(2+2) 5> BL— = Bs— —~A142B1 — — =~ A243B3
h12 2 2 2
8 —By(A] +3Bl)— s Bz(A +3B3) + 0(¢9),
el(iin Vo 3z 2 o Q13 h13 h23
Ay== (5= ) Ba— B3+ BY) - By 5By — "2 A1A3B1 — 222 A,A3B
3K[<2 4>3 3(A5+ B3) > 22 7 A143B1— —=A2A3B2
h
—%Bg(A +3B%) — —Bg(A2 + 332)] + 0(€?),
€ nr Vo 3g 12 @13 h12 h1s
B =—|—-[= A AA —A —A —A2B1B —A3B1B
1K[(2+4>1+ 1( )+22+23+4212+4313

h h
+%A1(3A§ + B2+ §A1(3A§ + Bg)} + 0(éd),

€ i 1% 3g a o h12 h23
B, = p [— (% + 40> A+ — Az(A2 + B3) + %Al + ?As + TAlBlBZ + TAsBzB3

h

g €[ (Yo A+3A(A+B)+ A+a23A+hABB+hABB
3= > 2 3(A43 3 5 A1 > 7 A1B1B3+ —=A28283
s .
+?A3(3A2+B)+ 8A3(3A2+B2)i|+0(62) (45)

One can find double-mode solutions to (45) that are analogous to thBse @9. For example, ifa13| = |23,
so that the first and second components in the ternary condensate have the same strength in their linear coupling
to the third component, there exists a double-mode equilibrium A&th: A% andA3 = B1 = B = B3 =0. The
values ofA; andA are exactly as for binary BECs [sE€. (29], except thatr andh in the solution are replaced by
a12 andhio. Further, in this case, one findg = — A for a13 = apz andA; = A, for w13 = —a23. In fact, these
modes are a straightforward extension of their two-component counterparts, as the third component is absent in the
stationary solution. Furthermore, the stability of the symmetric double-mode equilibria, reported above, ensures the
stability of these solutions in the ternary model.

The situation is more interesting fasymmetri¢wo-mode solutions, such as the ones correspondiiq 1630,
which are, simultaneously, solutionsig,. (43 with A3 = B3 = 0, providedA; = —(a23/@13)A2. [Note that this
relation is used to determines/a13, asA; andA; are determined frorq. (30.] Direct simulations of the three-
component GIEq. (43 with & := h12 = h13 = ho3z show that these asymmetric solutions are unstable, just as in the
two-component model. The instability development, illustratefign 4, leads to an interesting dynamical interplay
between the components. In particular, as a result of the instability, the third component is eventually excited, which
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Fig. 4. The same as in Fig. 2, but for the three-component (ternary) model. The bottom panel of the left plot shows the spatio-temporal evolution
of the third component (which is absent in the unperturbed, unstable two-mode solution), and the thick solid line on the right shows the evolution
of the number of atoms in this component (top subplot). Its spatial profile is shown as well (middle and bottom subplets35dr and

t = 70.2, respectively). Periodic oscillations of matter betwedirthree componentare evident, cf. the oscillations in the two-component
model, displayed in Fig. 2. The parametersg@ee 0.025,2 = 0.005,012 = @13 = —0.02,Vp = 0.3, andc = u = 1. The quantityrpz ~ 0.117

is determined from the values @f, = a13 = —0.02 (see text).

leads to periodic oscillation of matter between all three components; i.e., in this case, we observe a true example o
three-component dynamics.

6. Conclusions

In this work, we analyzed spatial structures in coupled Gross—Pitaevskii (coupled GP) equations, which include
both nonlinear and linear interactions, in an OL potential. The model describes a BEC consisting of a mixture
of two different hyperfine states of one atomic species, which are linearly coupled by a resonant electromagnetic
field. In the absence of the OL, we found plane-wave solutions and examined their stability. In the presence of the
OL, we derived a system of averaged equations to describe a spatially modulated state, which is coupled to the
periodic potential through a subharmonic resonance. We found equilibria of the latter system and examined the
stability of the corresponding spatially periodic solutions to the coupled GP equations using direct simulations. We
demonstrated that symmetric dual-mode resonant states with two equal amplitudes are stable, whereas asymmetr
ones (with unequal amplitudes) generating solutions that oscillate periodically in time. The latter type of dynamical
behavior is only possible in the presence of linear coupling between BEC components. We also found (unstable)
four-mode stationary solutions. Finally, a three-component generalization of the model was introduced and briefly
considered. In this case, we found that the unstable asymmetric two-mode solution, with one component originally
empty, develops time-periodic oscillations in which the initially empty component becomes populated.
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Appendix A
The functionsF,,; and Fg;, which appear irEq. (20, can be written as a sum of harmonic contributions. To

simplify the notation, we writg,h, & and Vg simply asg, h, «, andV.
In the non-resonant casé,, = Ga,/./it, where

a 3
Ga,(A1, A, A3, Ag.x) = [—5 - EgBl(AE + B?) — AlAsz - Bl(A§ + 335)}

h h
+ [—% — —Al(A +3B3) — 5A42B1B2 — —Al(Az + Bz)] sin(2y/ix)

h h _ 1%
+ [%Al(an — A%+ 7A1B1B2 + éAl(Bg - Ag)] sin(4,/ix) + [—ZAl]

x Sin(2fk — /1]x) + [Z} sin(2f + /u]x) + |: Bl + = 5

h
Bz + 23132:|
h h
x COS(A/1x) + [ Bi(3AF — BY) + 7 A142B2 + 5 B1(A3 B%)} cOS(4/7x)

+ [%Bl] cos(&x) + [—%} cos(2k — /u]x) + [—%} cos(2k + /1]x),
(A1)
andFp, = Gp,/./1t, Where

o 3 h h
G, (A1, Az, A3, Ag, x) = [§A2 + gAl(Ai + BY) + 7 A2B1By + g A1(AS + B%)}

o g 2 2 h h 2 2\ | «i

+ EBz + ZBl(SAl + B}) + EAlAsz + ZBl(AZ + B5) | sin(2/ux)
8 2_poy P b a2 _ p2y| e 4

+ 531(3141 — B})+ ZAlAZBZ + §Bl(A2 — B5) | sin(4,/ux) + ZBl

14 s h
x Sin(2fk — /u]x) + | —— | sin(2k + /ulx) + A2+ 2A 1+ 2A1A
h
x cos(2/ju) + | §Aa(a? - 369 — A + G as(a3 - 5| costa/in)
Vv Vv
+ [_EAl] cos(&x) + [—ZAl} COoS(2k — /1u]x)

+ [—%Al] cos(2k + /u]x). (A.2)

Only O(1) [i.e., constant harmonic] terms remain after averaging.

In the resonant case, one obtains, after averaging, an extra term depending on the periodic Yobet#aise
a term that was a prefactor of a non-constant harmonic in (A.1) and (A.2) has become a coefficient in front of the
0O(1) term. Other harmonic terms are also simplified due to the resonance, but they nevertheless do not contribute
to the averaged equations because they are still prefactors of non-constant harmonics. The extra tganasisgth
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from Taylor expanding in powers efand keeping the leading-order terms. In the resonant éase= G4, /« and
Fg, = Gp, /K.

In both the resonant and non-resonant cases, the expressiofig,fand Fz, are obtained by switching the
subscripts 1+— 2 in the equations above.
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