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Abstract

We consider a system of two Gross–Pitaevskii (GP) equations, in the presence of an optical-lattice (OL) potential, coupled
by both nonlinear and linear terms. This system describes a Bose–Einstein condensate (BEC) composed of two different spin
states of the same atomic species, which interact linearly through a resonant electromagnetic field. In the absence of the OL,
we find plane-wave solutions and examine their stability. In the presence of the OL, we derive a system of amplitude equations
for spatially modulated states, which are coupled to the periodic potential through the lowest order subharmonic resonance. We
determine this averaged system’s equilibria, which represent spatially periodic solutions, and subsequently examine the stability
of the corresponding solutions with direct simulations of the coupled GP equations. We find that symmetric (equal-amplitude) and
asymmetric (unequal-amplitude) dual-mode resonant states are, respectively, stable and unstable. The unstable states generate
periodic oscillations between the two condensate components, which are possible only because of the linear coupling between
them. We also find four-mode states, but they are always unstable. Finally, we briefly consider ternary (three-component)
condensates.
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1. Introduction

At sufficiently low temperatures, particles in a dilute boson gas condense in the ground state, forming a Bose–
Einstein condensate (BEC). This was first observed experimentally in 1995 in Na and Rb vapors[37,16,26,12].

In the mean-field approximation, a dilute BEC is described by the nonlinear Schrödinger (NLS) equation with an
external potential, which is also called the Gross–Pitaevskii (GP) equation. In particular, BECs may be considered
in the quasi-one-dimensional (quasi-1D) regime, with the transverse dimensions of the condensate on the order
of its mean healing lengthχ (given byχ2 = (8πn|a|)−1) and a much larger longitudinal dimension[9,10,8,16].
The lengthχ is determined by the mean atomic densityn and the two-body s-wave scattering lengtha, where the
interactions between atoms are repulsive ifa > 0 and attractive ifa < 0 [37,16,27,4].

The quasi-1D regime, which corresponds to “cigar-shaped” BECs, is described by the 1D limit of the 3D mean-
field theory (rather than by a 1D mean-field theory proper, which would only be appropriate for extremely small
transverse dimensions of order∼a) [9,8,10,45,6]. In this situation, the condensate wave functionψ(x, t) obeys the
effective 1D GP equation,

i�ψt = − �
2

2m
ψxx + g|ψ|2ψ + V (x)ψ,

wherem is the atomic mass,V (x) is an external potential,g = [4π�
2a/m][1 +O(η2)], and η =

√
n|a|3 is

the dilute-gas parameter[16,27,4,29]. Experimentally relevant potentialsV (x) include harmonic traps and peri-
odic potentials (created as optical lattices, which are denoted OLs and arise as interference patterns produced
by coherent counterpropagating laser beams illuminating the condensate). In the presence of both potentials,
V (x) = V0 cos[2κ(x− x0)] + V1x

2/2, wherex0 is the offset of the periodic potential relative to the center of
the parabolic trap. When (2π/κ)2V1� V0, the potential is dominated by its periodic component over many periods
[17,14,11]; for example, whenV0/V1 = 500 andκ = 10, the parabolic component inV (x) is negligible for the 10
periods closest to the trap’s center. In this work, we setV1 = 0 and focus entirely on OL potentials. This assumption
is motivated by numerous recent experimental studies of BECs in OLs[3,22,51]and is widely adopted in theoretical
studies[9,8,10,7,15,14,17,34,2,48,38,39,35,50,31,30].

Multiple-component BECs, which constitute the subject of this work, have been considered in a number of
theoretical works[24,41,40,20,13,47,18]. Mixtures of two different species (such as85Rb and87Rb) are described
by nonlinearly coupled GP equations:

i�
∂ψ1

∂t
= − �

2

2m1
∇2ψ1+ g1|ψ1|2ψ1+ V (x)ψ1+ h|ψ2|2ψ1,

i�
∂ψ2

∂t
= − �

2

2m2
∇2ψ2+ g2|ψ2|2ψ2+ V (x)ψ2+ h|ψ1|2ψ2, (1)

wherem1,2 are the atomic masses of the species,gj ≡ 4π�
2aj/mj corresponds to the self-scattering lengthaj, and

h ≡ g12 = 2π�
2a12

m1+m2

m1m2
(2)

depends on the cross-scattering lengtha12 [41]. There are numerous subcases ofEq. (1) to consider, as various
combinations of signs for the scattering coefficientsg1, g2, andhmay occur. It is important to note, however, that
if g1,2 are positive (repulsion between the atoms), thenh is normally positive as well. However, ifg1,2 are negative
(corresponding to the less typical case of attraction between atoms belonging to a single species), thenh [seeEq. (2)]
may beeitherpositive or negative.

The system (1) resembles a well-known model describing the nonlinear self-phase-modulation (SPM) and cross-
phase-modulation (XPM) interactions of light waves with different polarizations or carried by different wavelengths
in nonlinear optics[1]. In the case of optical fibers, the evolution variable is the propagation distancez (rather than
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time), and the role ofx is played by the reduced temporal variableτ [1]. In optical models, however, the choice
of the nonlinear coefficients is limited to the combinationsg1 = g2 = 3h/2 for orthogonal linear polarizations in
a birefringent fiber andg1 = g2 = h/2 for circular polarizations or different carrier wavelengths. In fact, the latter
case is quite important in the application to two-component BECs as well.

Another physically interesting feature, which we include in the model to be considered below, is linear coupling
between the two wave functions. This occurs in a mixture of two different spin states of the same isotope, which
arises through a resonant microwave field that induces transitions between the states[5,46]. Condensates containing
two different spin states of87Rb have been created experimentally via sympathetic cooling[36]. In this situation,
the normalized coupled GP equations take the form

i
∂ψ1

∂t
= −∇2ψ1+ g|ψ1|2ψ1+ V (x)ψ1+ h|ψ2|2ψ1+ αψ2,

i
∂ψ2

∂t
= −∇2ψ2+ g|ψ2|2ψ2+ V (x)ψ2+ h|ψ1|2ψ2+ αψ1, (3)

where the self- and cross-scattering coefficients areg1 = g2 ≡ g andh, and the linear coupling coefficient isα,
which can always be made positive without loss of generality.

Experimental studies of mixtures of two interconvertible condensates (with positive scattering lengths) loaded in
an OL have not yet been reported. However, all the necessary experimental ingredients for such a work are currently
available. Moreover, in a very recent paper[28], an experimental procedure, based on Ramsey spectroscopy and
adjusted exactly for such a system, was elaborated. Experiments in this setting would be quite interesting, as they
would allow the study of the direct interplay between two crucially important physical factors used as tools in
current experimental work—namely, the OL potential and inter-conversion between two different spin states in the
BEC, controlled by the resonant field. Furthermore, there are now recent experimental results with linearly coupled
BECs[23]. The use of an optical potential in the latter setting is a rather straightforward extension.

The model combining nonlinear XPM and linear couplings, as inEq. (3), occurs in fiber optics as well. In that
case, the linear coupling is generated by a twist applied to the fiber in the case of two linear polarizations, and by an
elliptic deformation of the fiber’s core in the case of circular polarizations (see, e.g.,[32]). However, linear coupling
is impossible in the case of two different wavelengths. Another optical model, with only linear coupling between
two modes, applies to dual-core nonlinear fibers, as discussed in[33] (and references therein). In the context of
BECs, it may correspond to a special case in which the cross-scattering length is made (very close to) zero using a
Feshbach resonance[25].

In this work, we aim to investigate modulated-wave states in the binary BEC described byEq. (3), which include
both nonlinear and linear couplings and an OL potential. We stress that the interplay between the microwave-induced
linear coupling in the binary model and the OL-induced periodic potential has not been considered previously, to
the best of our knowledge. As both features represent important laboratory tools, the results reported here suggest
possibilities for new experiments. The model we study predicts interesting dynamical effects, such as oscillations
of matter between the linearly coupled components trapped in the potential wells of the OL.

In our study, we begin by examining plane-wave solutions withV (x) ≡ 0. WhenV (x) 
= 0, we apply a standing-
wave ansatz toEq. (3), which leads to a system of coupled parametrically forced Duffing equations describing the
spatial evolution of the fields. Using the method of averaging[44,42], we study periodic solutions of the latter system
(called “modulated amplitude waves” (MAWs)). The stability of MAWs (and the ensuing dynamics, in the case of
instability) is then tested by numerically simulating the underlying system of coupled GP equations. This approach,
though simpler than the more “rigorous” computation of linear stability eigenvalues for infinitesimal perturbations,
provides a more realistic emulation of physical experiments. Note additionally that although our stability results
will be illustrated by a few selected examples, we have checked—by exploring different parameter regions—that
these examples represent the MAW stability features rather generally.
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The MAW solutions are especially interesting when the system exhibits a spatial resonance. In this work, we
consider both non-resonant solutions and solutions featuring a subharmonic resonance of the 2:1:1 form. The latter
situation has been studied in the context of period-doubling insingle-componentBECs in an OL potential[30,38,39],
but—to the best of our knowledge—spatial-resonance states in models of composite BECs have not been considered
previously.

An alternative (but less general) approach to the study of binary BECs with linear coupling, loaded into an OL,
would be to seek exact elliptic-function solutions toEq. (3) for the case of elliptic-function potentials,V (x) =
−V0 sn2(κx, k), as has been done earlier in the two-component model without linear coupling[18]. In that work,
stable standing-wave solutions were found under the assumption that the interaction matrix is positive definite.
This occurs, for instance, when all the interactions are repulsive, although small negative cross-interactions are
compatible with this condition as well.

The rest of this paper is structured as follows: inSection 2, we derive plane-wave solutions and analyze their
stability. In Section 3, we introduce modulated amplitude waves, and inSection 4, we derive and solve averaged
equations that describe them in both non-resonant and resonant situations. We corroborate our results and test the
stability of the MAWs using numerical simulations. InSection 5, we briefly examine a more general model of a
ternary (three-component) BEC with linear couplings. Finally, we summarize our results inSection 6.

2. Plane-wave solutions

In the absence of the external potential (V = 0), we find plane-wave solutions of the form

ψj = Rj exp[i(kjx− µjt)], j = 1,2. (4)

For the linearly coupled GP(3), it is necessary thatk1 = k2 ≡ k andµ1 = µ2 ≡ µ. Without linear coupling [as in
Eq. (1)], one may seek a broader class of solutions with independent frequencies (which correspond to chemical
potentials in the physical context of BECs). It is important to note that the results obtained in the study of optical
models suggest that the addition of linear coupling terms to a system of coupled NLS equations drastically alters the
dynamical behavior[32]. In this section, we study the model without the OL, which will be included in subsequent
sections.

InsertingEq. (4) into Eq. (3) yields

µR1 = k2R1+ gR3
1+ hR1R

2
2+ αR2, (5)

µR2 = k2R2+ gR3
2+ hR2

1R2+ αR1, (6)

which implies that

[(g− h)R1R2− α][R2
1− R2

2] = 0.

One of the following two relations must then be satisfied:

R1 = ±R2, (7)

R1R2 = α

g− h
. (8)

With Eq. (7), a nonzero solution satisfiesR2 = ±
√

(k2+ µ∓ α)/(g+ h). It exists wheng+ h > 0, providedk2+
µ∓ α > 0, and wheng+ h < 0, if k2+ µ∓ α < 0. Wheng = −h, one obtains solutions of the form (R1, R2) =
(±R,R) with arbitraryRandk2 = µ∓ α.
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FromEq. (8), one finds that

R2
2 =

µ− k2

2g
± 1

2

√(
µ− k2

g

)2

− 4α2

(g− h)2
, (9)

under the restriction that this expression must be positive. Whenα 
= 0, the term inside the square root is smaller
in magnitude than the one outside, so solutions of this type exist as long as (µ− k2)g ≥ 0 and the argument of the
square root in (9) is non-negative. Hence, for repulsive and attractive BECs, respectively, the first condition implies
µ > k2 andµ < k2. Whenh = 0, Eq. (9) takes the form

R2
2 = (2g)−1(µ− k2±

√
(µ− k2)2− 4α2).

For bothh = 0 andh = 2g, the condition on the argument of the square root implies that to obtain real solutions,
it is necessary to impose the condition|µ− k2| ≥ 2α.

To examine the stability of the plane waves, we substitute

ψj(x, t) = φj(x, t)[1+ εj(x, t)], |εj|2� 1,

into Eq. (3). This yields coupled linearized equations forε1(x, t) andε2(x, t). Assuming thatεj is periodic inx, it
can be expanded in a Fourier series,

εj(x, t) =
∞∑

n=−∞
ε̂jn(t) exp(iνnx),

where thenth mode has wavenumberνn. The perturbation growth rates that determine the stability of thenth mode
are then given by

λn = −2ikνn ± νn

√
−ν2

n − g(|R1|2+ |R2|2)±
√
g2(|R1|2− |R2|2)2+ 4h2|R1|2|R2|2, (10)

where the two sign combinations± are independent (so there are four distinct eigenvalues). Instability occurs when
the expression under the square root inEq. (10) has a positive real part, causing the side-band modesk + νn, k − νn
of the perturbed solution to grow exponentially. In single-component condensates, this can occur only forg < 0[49].

Eigenvalues whose interior square root inEq. (10) has a+ sign will produce the instability before ones with a
− sign, so we only need to check the former case. For example, ifh = 2g, the instability occurs if

ν2
n + g

(
|R1|2+ |R2|2−

√
|R1|4+ 14|R2

1R
2
2| + |R2|2

)
< 0. (11)

Stability conditions for the plane-wave solutions toEq. (3) with V = 0 can be obtained for all the possible sign com-
binations ofgandh. We do not display them here, as they are rather cumbersome to write (although straightforward
to compute).

3. Modulated amplitude waves

We now generalize the above analysis to consider the two-component GP system in the presence of an OL
potential. Toward this aim, we introduce solutions toEq. (3) that describe coherent structures of the form

ψj(x, t) = Rj(x) exp[i(θ(x)− µt)], j = 1,2. (12)

InsertingEq. (12) into Eq. (3) and equating real and imaginary parts of the resulting equations yields
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µR1 = −R′′1 + R1(θ′)2+ gR3
1+ V (x)R1+ hR2

2R1+ αR2,

µR2 = −R′′2 + R2(θ′)2+ gR3
2+ V (x)R2+ hR2

1R2+ αR1, (13)

0= R1θ
′′ + R′1θ

′, 0= R2θ
′′ + R′2θ

′, (14)

where the prime stands for d/dx. Eq. (14) imply that

θ(x) = c1

∫
dx′

R2
1(x′)

= c2

∫
dx′

R2
2(x′)

, (15)

with arbitrary integration constantsc1 andc2, soR1(x) = bR2(x) for some constantb unlessc1 = c2 = 0. In other
words,R1(x) andR2(x) are different in this context only when one considers solutions with null “angular momenta.”
In the latter situation,Eq. (13) assume the form

R′1 = S1, S′1 = −µR1+ gR3
1+ hR1R

2
2+ αR2+ V (x)R1,

R′2 = S2, S′2 = −µR2+ gR3
2+ hR2

1R2+ αR1+ V (x)R2. (16)

When the potentialV (x) is sinusoidal,Eq. (16) are (linearly and nonlinearly) coupled cubic Mathieu equations.

4. Averaged equations and spatial subharmonic resonances

To achieve some analytical understanding of the spatial resonances in linearly coupled BECs, we averageEq. (16)
in the physically relevant case of the OL potential,

V (x) = V0 cos(2κx). (17)

DefiningV0 ≡ −εṼ0, g ≡ εg̃, h ≡ εh̃, andα ≡ εα̃, Eq. (16) may be written

R′′1 + µR1 = −εṼ0R1 cos(2κx)+ εg̃R3
1+ εh̃R1R

2
2+ εα̃R2,

R′′2 + µR2 = −εṼ0R2 cos(2κx)+ εg̃R3
2+ εh̃R2

1R2+ εα̃R1. (18)

Assumingµ > 0, we insert the ansatz

Rj(x) = Aj(x) cos(
√
µx)+ Bj(x) sin(

√
µx),

R′j(x) = −√µAj(x) sin(
√
µx)+√µBj(x) cos(

√
µx) (19)

(with j = 1,2) into Eq. (18). Differentiating the first equation of (19) and comparing it with the second yields a
consistency condition,

A′j cos(
√
µx)+ B′j sin(

√
µx) = 0, j = 1,2,

that must be satisfied for this procedure to be valid. Inserting these equations into Eq. (18) yields a set of coupled
differential equations forAj andBj, whose right-hand sides are expanded as truncated Fourier series to isolate
contributions from different harmonics[44,42]. The leading contribution in these equations is ofO(ε), so the
equations assume a general form

A′j = εFAj (A1, A2, B1, B2, x)+O(ε2), B′j = εFBj (A1, A2, B1, B2, x)+O(ε2). (20)

Whenε = 0, Eq. (18) decompose into two uncoupled harmonic oscillators. We have computed the exact functions
FAj andFBj in Eq. (20) and provide them inAppendix A.

Our objective is to isolate the parts of the functionsAj(x) andBj(x) that vary slowly in comparison with the
fast oscillations of cos(

√
µx) and sin(

√
µx) and to derive averaged equations governing their slow evolution. To
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commence averaging, we decomposeAj andBj into the sum of slowly varying parts and small rapidly oscillating
ones (which are written as power-series expansions inε):

Aj = Āj + εWAj (Ā1, Ā2, B̄1, B̄2, x)+O(ε2), Bj = B̄j + εWBj (Ā1, Ā2, B̄1, B̄2, x)+O(ε2). (21)

Here, thegenerating functionsWAj , WBj are chosen so as to eliminate all the rapidly oscillating terms inEq. (20)
after the substitution ofEq. (21).

This procedure yields evolution equations for the averaged quantitiesĀj and B̄j [44], which we henceforth
denote simply asAj andBj. (All other terms in the originally definedAj andBj are cancelled out by the choice
of the generating functions.) As we shall see, the slow-flow equations so derived are different in resonant and
non-resonant situations.

4.1. The non-resonant case

When
√
µ 
= κ [recall thatκ is half the wave number of the OL potential; seeEq. (17)], which is the non-resonant

case, effective equations governing the slow evolution are

A′1 =
ε√
µ

[
−3g̃

8
B1(A2

1+ B2
1)− α̃

2
B2− h̃

4
A1A2B2− h̃

8
B1(A2

2+ 3B2
2)

]
+O(ε2),

A′2 =
ε√
µ

[
−3g̃

8
B2(A2

2+ B2
2)− α̃

2
B1− h̃

4
A1A2B1− h̃

8
B2(A2

1+ 3B2
1)

]
+O(ε2),

B′1 =
ε√
µ

[
3g̃

8
A1(A2

1+ B2
1)+ α̃

2
A2+ h̃

4
A2B1B2+ h̃

8
A1(3A2

2+ B2
2)

]
+O(ε2),

B′2 =
ε√
µ

[
3g̃

8
A2(A2

2+ B2
2)+ α̃

2
A1+ h̃

4
A1B1B2+ h̃

8
A2(3A2

1+ B2
1)

]
+O(ε2). (22)

In this case, the OL does not contribute toO(ε) terms, so the terms explicitly written inEqs. (22) correspond to
what one would obtain from coupled Duffing equations, asEqs. (18) reduce to coupled Duffing oscillators in the
absence of the OL potential[43]. These contributions yield the wavenumber–amplitude relations for decoupled
condensates,[38,39]as well as mode–wavenumber relations produced by the coupling terms[44].

The non-resonantEqs. (22) give rise to three types of equilibria, at whichA′1 = A′2 = B′1 = B′2 = 0: the trivial
(zero) equilibrium and those which we will call double modes and quadruple modes. These have, respectively, two
and four nonzero amplitudesAj, Bj. Single-mode and triple-mode equilibria do not exist. Different double modes
that can be found areπ/2 phase shifts of each other: these are “A1A2” equilibria withA1, A2 
= 0 andB1 = B2 = 0,
and “B1B2” ones withA1 = A2 = 0 andB1, B2 
= 0.

TheA1A2 equilibria satisfy

A2
1 = A2

2 = ∓
4α

3(g+ h)
, (23)

where the signs− and+ arise, respectively, when (g+ h) < 0, and (g+ h) > 0 (recall thatα > 0). In the former
and latter cases, we find thatA1 = A2 andA1 = −A2, respectively. This yields the following twoA1A2 equilibria:

(A1, A2, B1, B2) = ±
(√

4α

3(g+ h)
,−
√

4α

3(g+ h)
,0,0

)
, if g+ h > 0,

(A1, A2, B1, B2) = ±
(√

−4α

3(g+ h)
,

√
−4α

3(g+ h)
,0,0

)
, if g+ h < 0. (24)
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Similar expressions for theB1B2 equilibria are obtained by phase shifting theA1A2 modes byπ/2.
We have examined the stability of the approximate stationary solutions corresponding to the double-mode

equilibria obtained above with direct simulations of the coupled GP equations (3). Typically, the simulations generate
solutions that oscillate in time (as the initial configurations are not exact stationary solutions) without developing
any apparent instability.

One can also find four sets of quadruple-mode equilibria in whichA2
1 = A2

2 andB2
1 = B2

2. In the first two sets,
A2 is arbitrary:

(A1, A2, B1, B2) = ±
(
−A2, A2,±

√
−A2

2+
4α

3(g+ h)
,∓
√
−A2

2+
4α

3(g+ h)

)
, if g+ h > 0,

(A1, A2, B1, B2) = ±
(
A2, A2,±

√
−A2

2−
4α

3(g+ h)
,±
√
−A2

2−
4α

3(g+ h)

)
, if g+ h < 0. (25)

In the second two sets,B2 is arbitrary:

(A1, A2, B1, B2) = ±
(
±
√
−B2

2 +
4α

3(g+ h)
,∓
√
−B2

2 +
4α

3(g+ h)
,−B2, B2

)
, if g+ h > 0,

(A1, A2, B1, B2) = ±
(
±
√
−B2

2 −
4α

3(g+ h)
,±
√
−B2

2 −
4α

3(g+ h)
, B2, B2

)
, if g+ h < 0. (26)

Each of the expressions (25) and (26) includes four equilibria, as there are two possible choices of the exterior signs.
The presence of the arbitrary amplitudes in these expressions means that the quadruple-mode stationary solutions are
obtained as rotations of the above double-mode ones given, respectively, byEq. (24) and by those same equations with
an additionalπ/2 phase shift. Accordingly, direct simulations ofEq. (3) starting with the approximate quadruple-
mode stationary states reveal only oscillations but no instability growth, just as with simulations initiated by the
approximate dual-mode stationary solutions.

4.2. Subharmonic resonances

The most fundamental spatial resonance is a subharmonic one of type 2:1:1[44,42,21]. In this situation, the
parameterµ from the initial plane-wave approximation (4) [recall thatµ1 = µ2 ≡ µ] is of the form

µ = κ2+ εµ̃1+O(ε2), (27)

whereεµ̃1 is thedetuningconstant[42,44,43]. [Recall thatε is a small parameter; we assume ˜µ1 = O(1).] In this
situation, new terms occur inEq. (22). This leads to equations that include a contribution from the OL potential,

A′1 =
ε

κ

[(
µ̃1

2
− Ṽ0

4

)
B1− 3g̃

8
B1(A2

1+ B2
1)− α̃

2
B2− h̃

4
A1A2B2− h̃

8
B1(A2

2+ 3B2
2)

]
+O(ε2),

A′2 =
ε

κ

[(
µ̃1

2
− Ṽ0

4

)
B2− 3g̃

8
B2(A2

2+ B2
2)− α̃

2
B1− h̃

4
A1A2B1− h̃

8
B2(A2

1+ 3B2
1)

]
+O(ε2),

B′1 =
ε

κ

[
−
(
µ̃1

2
+ Ṽ0

4

)
A1+ 3g̃

8
A1(A2

1+ B2
1)+ α̃

2
A2+ h̃

4
A2B1B2+ h̃

8
A1(3A2

2+ B2
2)

]
+O(ε2),

B′2 =
ε

κ

[
−
(
µ̃1

2
+ Ṽ0

4

)
A2+ 3g̃

8
A2(A2

2+ B2
2)+ α̃

2
A1+ h̃

4
A1B1B2+ h̃

8
A2(3A2

1+ B2
1)

]
+O(ε2). (28)
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Eq. (28) has three types of equilibria whenα 
= 0: the trivial one, double modes, and quadruple modes. Whenα = 0,
we also find single-mode equilibria and extra double-mode ones. Triple-mode stationary solutions never appear.
All the equilibria ofEq. (28), except for the trivial one, correspond to spatially periodic stationary solutions of the
underlying system (18).

There are two kinds ofA1A2 (double-mode) equilibria. The first satisfiesA2
1 = A2

2, so that the two components
have equal amplitudes:

(A1, A2, B1, B2) = ±
(√
−4α+ 2(2µ1+ V0)

3(g+ h)
,

√
−4α+ 2(2µ1+ V0)

3(g+ h)
,0,0

)
,

(A1, A2, B1, B2) = ±
(√

4α+ 2(2µ1+ V0)

3(g+ h)
,−
√

4α+ 2(2µ1+ V0)

3(g+ h)
,0,0

)
. (29)

A crucial issue is the dynamical stability of these solutions, which we tested with direct simulations of the underlying
Eq. (3). We found that they arestable, as exemplified inFig. 1for κ = µ = 1.

The otherA1A2 double-mode equilibrium hasunequalcomponentsA1 andA2 [note that in the non-resonant
case considered above, the double-mode equilibria, which are given byEq. (24) and by aπ/2 phase shift thereof,
always have equal nonzero components]:

A2
1+ A2

2 =
2(2µ1+ V0)

3g
> 0,

(A1, A2, B1, B2) = ±



√√√√2µ1+ V0

3g
± 1

3

√
(2µ1+ V0)2

g2
− 16α2

(g− h)2
,

√√√√2µ1+ V0

3g
∓ 1

3

√
(2µ1+ V0)2

g2
− 16α2

(g− h)2
,0,0


 , (30)

where the interior+ sign in the first component corresponds to the− sign in the second, and vice versa. The exterior
sign± is independent of the interior one. A necessary condition for the existence of this solution is

∣∣∣∣2µ1+ V0

g

∣∣∣∣ ≥ 4α

|g− h| .

In particular, whenh = 2g, which is a case of special physical relevance (as explained above), the solution becomes

(A1, A2, B1, B2) = ±
(√

1

3g
[2µ1+ V0±

√
(2µ1+ V0)2− 16α2],

√
1

3g
[2µ1+ V0∓

√
(2µ1+ V0)2− 16α2],0,0

)
, (31)

provided|2µ1+ V0| ≥ 4α.
In fact, the existence of pairs of equilibria in which the two components have unequal amplitudes that are mirror

images of each other is a manifestation ofspontaneous symmetry breakingin the present model, which is described
by the symmetric system of coupled equations (3). A similar phenomenon was studied in detail (in terms of soliton
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Fig. 1. An example of evolution of theA1A2 double mode withequalamplitudes|A1| and|A2| in the case of the 2:1:1 subharmonic resonance,
constructed as per Eq. (29) forκ = µ = 1, V0 = 0.1, g = h = 0.025, andα = 0.02. The left subplot shows the spatio-temporal evolution of
|ψ1|2 by means of grayscale contour plots (|ψ2|2 behaves similarly). The right subplot displays snapshots of the field|ψ1|2 for t = 99 (upper
panel) andt = 105 (lower panel). In these panels, the optical-lattice potential is shown by a dashed line. The results have been obtained through
numerical integration of Eq. (3) in time.

solutions) in the aforementioned model of dual-core nonlinear optical fibers, which includes only linear coupling
between two equations[33].

The stability of the asymmetric stationary solutions, which correspond to equilibria with unequal components,
was also simulated in the framework ofEq. (3). We show the results of a typical simulation inFig. 2. As seen in the

Fig. 2. The same as in Fig. 1, but for theA1A2 double mode withunequalamplitudes|A1| and|A2|, given by Eq. (30). The top panel in the right
subplot shows the time evolution of the numbers of atoms in the two components,N1,2 =

∫ |ψ1,2|2 dx, by dashed and dash-dotted lines (the
sum of the two,N = N1 +N2, is shown by the solid line). The right panel also shows the fields|ψ1|2 and|ψ2|2 (by solid and dash-dotted lines,
respectively) att = 105 andt = 210. The OL potential is shown by the dashed line. Oscillations of matter between the two components are
clearly discernible. The parameters areg = 0.025,h = 0.005,α = −0.02,V0 = 0.3, andκ = µ = 1. (Recall that the sign ofα can be chosen
arbitrarily.)
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figure, these states are subject to periodic oscillations between the two components (which is possible only in the
presence of the linear coupling between them).

The resonantEq. (28) give rise to two types ofB1B2 dual-mode equilibria. The first satisfiesB2
1 = B2

2 and

(A1, A2, B1, B2) = ±
(

0,0,

√
−4α+ 2(2µ1− V0)

3(g+ h)
,

√
−4α+ 2(2µ1− V0)

3(g+ h)

)
,

(A1, A2, B1, B2) = ±
(

0,0,

√
4α+ 2(2µ1− V0)

3(g+ h)
,−
√

4α+ 2(2µ1− V0)

3(g+ h)

)
. (32)

The second type satisfies

B2
1 + B2

2 =
2(2µ1− V0)

3g
> 0,

(A1, A2, B1, B2) = ±


0,0,

√√√√2µ1− V0

3g
± 1

3

√
(2µ1− V0)2

g2
− 16α2

(g− h)2
,

√√√√2µ1− V0

3g
∓ 1

3

√
(2µ1− V0)2

g2
− 16α2

(g− h)2


 . (33)

As above, the interior+ sign in the first component is paired to the− sign in the second, and vice versa, whereas
the exterior± is independent. A necessary condition for the existence of this solution is∣∣∣∣2µ1− V0

g

∣∣∣∣ ≥ 4α

|g− h| . (34)

Whenh = 2g, the present solution becomes

(A1, A2, B1, B2) = ±
(

0,0,

√
1

3g
[2µ1− V0±

√
(2µ1− V0)2− 16α2],

√
1

3g
[2µ1− V0∓

√
(2µ1− V0)2− 16α2]

)
, (35)

provided|2µ1− V0| ≥ 4α.
Unlike the non-resonant case, the resonantB1B2 modes arenot precise phase shifts of theA1A2 modes, as

the spatial parametric excitation resulting from the OL has only the cosine harmonic. Nevertheless, the equations
describing these two classes of modes are similar, differing only in the sign ofV0. Direct simulations demonstrate
that the stability of stationary solutions corresponding to theB1B2 equilibria is similar to that of theA1A2 double-
mode equilibria considered above: the symmetric ones with|B1| = |B2| arestable, and the asymmetric solutions
with |B1| 
= |B2| areunstable.

We have also found two sets of quadruple modes in the resonant case. The first set satisfiesB1 = B2,A1 = −A2,
and

A2
1 =

V0

2h
+ α

h
+ 2µ1

3g+ h
, (36)
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B2
1 = −

V0

2h
− α

h
+ 2µ1

3g+ h
. (37)

A necessary condition for its existence is

2µ1

3g+ h
>

∣∣∣∣V0

2h
+ α

h

∣∣∣∣ ,
and hence it is necessary thatµ1/(3g+ h) > 0. The second set of quadruple modes satisfiesB1 = −B2, A1 = A2,
and

A2
1 =

V0

2h
− α

h
+ 2µ1

3g+ h
, (38)

B2
1 = −

V0

2h
+ α

h
+ 2µ1

3g+ h
. (39)

A necessary existence condition for this mode to exist is

2µ1

3g+ h
>

∣∣∣∣V0

2h
− α

h

∣∣∣∣ ,
which also implies thatµ1/(3g+ h) > 0.

We considered quadruple modes in the presence of detuning, soµ1 
= 0. This is rather difficult to implement
numerically, as—in view of the periodic boundary conditions inxemployed in the numerical integration scheme—it
is necessary to matchboth the potential and initial condition to the size of the integration domain. Nevertheless,
we were able to perform stability simulations in this case too. We show an example of these simulations inFig. 3.
We observe that the quadruple mode isunstableagainst long-wave perturbations, in this case withα = 0 (no linear
coupling between BEC components).

Whenα = 0, one can find additional double-mode equilibria and four single-mode ones, the latter of which take
the form (A1,0,0,0), (0, A2,0,0), (0,0, B1,0), (0,0,0, B2), with

A2
1 = A2

2 =
2(2µ1+ V0)

3g
> 0, (40)

B2
1 = B2

2 = −
2(2µ1− V0)

3g
> 0. (41)

TheAj- andBj-modes both exist whenV0/g > 0. In this case (α = 0), matter cannot be exchanged between the
components. In this same situation, there is also anA1B2 double-mode equilibrium [of the form (A1,0,0, B2)],
which satisfies

A2
1 =

4µ1

3g+ h
+ 2V0

3g− h
> 0, B2

2 =
4µ1

3g+ h
− 2V0

3g− h
> 0. (42)

FromEq. (42), it follows that a necessary condition for this mode to exist is 8µ1/(3g+ h) > 0. Its counterpart is
anA2B1 equilibrium, in which the subscripts 1 and 2 are swapped inEq. (42).

One can extend the analysis to higher order spatial resonances in BECs (from the lowest subharmonic resonance
considered here) either by considering higher order corrections to the averaged equations or by employing a per-
turbative scheme based on elliptic functions, as has been done for single-component BECs in OLs[39,38]. Toward
this aim, it may be fruitful to utilize an action-angle formulation and the elliptic-function structure of solutions to
Eq. (16) whenV0 = 0. However, detailed consideration of higher order resonances is beyond the scope of this work.
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Fig. 3. A typical example of the long-wave instability of a quadruple (four-amplitude) stationary state in the resonant case. The parameters are
µ = 1.5791,κ = 1.2320,V0 = 0.1, g = 0.025,h = 0.05 andα = 0, and the size of the integration box isL = 255.

5. Ternary BECs in optical lattices

To evince the generality of the above analysis, we briefly consider its extension to a BEC model of three hyperfine
states coupled by two different microwave fields, which is also a physically relevant situation[19]. The corresponding
coupled GP equations (with� = 1 andm = 1/2) are

i
∂ψ1

∂t
= −∇2ψ1+ g|ψ1|2ψ1+ V (x)ψ1+ h12|ψ2|2ψ1+ h13|ψ3|2ψ1+ α12ψ2+ α13ψ3,

i
∂ψ2

∂t
= −∇2ψ2+ g|ψ2|2ψ2+ V (x)ψ2+ h12|ψ1|2ψ2+ h23|ψ3|2ψ2+ α12ψ1+ α23ψ3,

i
∂ψ3

∂t
= −∇2ψ3+ g|ψ3|3ψ3+ V (x)ψ3+ h13|ψ1|2ψ3+ h23|ψ2|2ψ3+ α13ψ1+ α23ψ2, (43)

where the self- and cross-scattering coefficients areg := g1 = g2 = g3 andhjk, and the linear coupling constants
areαjk. (The signs ofαjk cannot be determined arbitrarily.)

As in the binary case, we start with the general form (12) for stationary solutions, withθ1(x) = θ2(x) = θ3(x) ≡
θ(x) andµ1 = µ2 = µ3 ≡ µ. Then, as above, we setcj = 0 (i.e., θ = 0) in Eq. (15) to consider standing wave
solutions and arrive at the following equations:

R′1 = S1, S′1 = −µR1+ gR3
1+ h12R1R

2
2+ h13R1R

2
3+ α12R2+ α13R3+ V (x)R1,

R′2 = S2, S′2 = −µR2+ gR3
2+ h12R

2
1R2+ h23R2R

2
3+ α12R1+ α23R3+ V (x)R2,

R′3 = S3, S′3 = −µR3+ gR3
3+ h13R

2
1R3+ h23R

2
2R3+ α13R1+ α23R2+ V (x)R3, (44)

whereV (x) is the sinusoidal OL potential discussed before.
One can averageEq. (44) with the same procedure that we applied toEq. (16) and thereby derive both resonant

and non-resonant equations describing the system’s slow dynamics. In particular, for the most fundamental resonant
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case (the lowest order, 2:1:1:1, resonance), the averaged equations are

A′1 =
ε

κ

[(
µ̃1

2
− Ṽ0

4

)
B1− 3g̃

8
B1(A2

1+ B2
1)− α̃12

2
B2− α̃13

2
B3

− h̃12

4
A1A2B2− h̃13

4
A1A3B3− h̃12

8
B1(A2

2+ 3B2
2)− h̃13

8
B1(A2

3+ 3B2
3)

]
+O(ε2),

A′2 =
ε

κ

[(
µ̃1

2
− Ṽ0

4

)
B2− 3g̃

8
B2(A2

2+ B2
2)− α̃12

2
B1− α̃23

2
B3− h̃12

4
A1A2B1− h̃23

4
A2A3B3

− h̃12

8
B2(A2

1+ 3B2
1)− h̃23

8
B2(A2

3+ 3B2
3)

]
+O(ε2),

A′3 =
ε

κ

[(
µ̃1

2
− Ṽ0

4

)
B3− 3g̃

8
B3(A2

3+ B2
3)− α̃13

2
B1− α̃23

2
B2− h̃13

4
A1A3B1− h̃23

4
A2A3B2

− h̃13

8
B3(A2

1+ 3B2
1)− h̃23

8
B3(A2

2+ 3B2
2)

]
+O(ε2),

B′1 =
ε

κ

[
−
(
µ̃1

2
+ Ṽ0

4

)
A1+ 3g̃

8
A1(A2

1+ B2
1)+ α̃12

2
A2+ α̃13

2
A3+ h̃12

4
A2B1B2+ h̃13

4
A3B1B3

+ h̃12

8
A1(3A2

2+ B2
2)+ h̃13

8
A1(3A2

3+ B2
3)

]
+O(ε2),

B′2 =
ε

κ

[
−
(
µ̃1

2
+ Ṽ0

4

)
A2+ 3g̃

8
A2(A2

2+ B2
2)+ α̃12

2
A1+ α̃23

2
A3+ h̃12

4
A1B1B2+ h̃23

4
A3B2B3

+ h̃12

8
A2(3A2

1+ B2
1)+ h̃23

8
A2(3A2

3+ B2
3)

]
+O(ε2),

B′3 =
ε

κ

[
−
(
µ̃1

2
+ Ṽ0

4

)
A3+ 3g̃

8
A3(A2

3+ B2
3)+ α̃13

2
A1+ α̃23

2
A2+ h̃13

4
A1B1B3+ h̃23

4
A2B2B3

+ h̃13

8
A3(3A2

1+ B2
1)+ h̃23

8
A3(3A2

2+ B2
2)

]
+O(ε2). (45)

One can find double-mode solutions to (45) that are analogous to those ofEq. (28). For example, if|α13| = |α23|,
so that the first and second components in the ternary condensate have the same strength in their linear coupling
to the third component, there exists a double-mode equilibrium withA2

1 = A2
2 andA3 = B1 = B2 = B3 = 0. The

values ofA1 andA2 are exactly as for binary BECs [seeEq. (29)], except thatα andh in the solution are replaced by
α12 andh12. Further, in this case, one findsA1 = −A2 for α13 = α23 andA1 = A2 for α13 = −α23. In fact, these
modes are a straightforward extension of their two-component counterparts, as the third component is absent in the
stationary solution. Furthermore, the stability of the symmetric double-mode equilibria, reported above, ensures the
stability of these solutions in the ternary model.

The situation is more interesting forasymmetrictwo-mode solutions, such as the ones corresponding toEq. (30),
which are, simultaneously, solutions toEq. (43) with A3 = B3 = 0, providedA1 = −(α23/α13)A2. [Note that this
relation is used to determineα23/α13, asA1 andA2 are determined fromEq. (30).] Direct simulations of the three-
component GPEq. (43) with h := h12 = h13 = h23 show that these asymmetric solutions are unstable, just as in the
two-component model. The instability development, illustrated inFig. 4, leads to an interesting dynamical interplay
between the components. In particular, as a result of the instability, the third component is eventually excited, which
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Fig. 4. The same as in Fig. 2, but for the three-component (ternary) model. The bottom panel of the left plot shows the spatio-temporal evolution
of the third component (which is absent in the unperturbed, unstable two-mode solution), and the thick solid line on the right shows the evolution
of the number of atoms in this component (top subplot). Its spatial profile is shown as well (middle and bottom subplots, fort = 35.1 and
t = 70.2, respectively). Periodic oscillations of matter betweenall three componentsare evident, cf. the oscillations in the two-component
model, displayed in Fig. 2. The parameters areg = 0.025,h = 0.005,α12 = α13 = −0.02,V0 = 0.3, andκ = µ = 1. The quantityα23 ≈ 0.117
is determined from the values ofα12 = α13 = −0.02 (see text).

leads to periodic oscillation of matter between all three components; i.e., in this case, we observe a true example of
three-component dynamics.

6. Conclusions

In this work, we analyzed spatial structures in coupled Gross–Pitaevskii (coupled GP) equations, which include
both nonlinear and linear interactions, in an OL potential. The model describes a BEC consisting of a mixture
of two different hyperfine states of one atomic species, which are linearly coupled by a resonant electromagnetic
field. In the absence of the OL, we found plane-wave solutions and examined their stability. In the presence of the
OL, we derived a system of averaged equations to describe a spatially modulated state, which is coupled to the
periodic potential through a subharmonic resonance. We found equilibria of the latter system and examined the
stability of the corresponding spatially periodic solutions to the coupled GP equations using direct simulations. We
demonstrated that symmetric dual-mode resonant states with two equal amplitudes are stable, whereas asymmetric
ones (with unequal amplitudes) generating solutions that oscillate periodically in time. The latter type of dynamical
behavior is only possible in the presence of linear coupling between BEC components. We also found (unstable)
four-mode stationary solutions. Finally, a three-component generalization of the model was introduced and briefly
considered. In this case, we found that the unstable asymmetric two-mode solution, with one component originally
empty, develops time-periodic oscillations in which the initially empty component becomes populated.
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Appendix A

The functionsFAj andFBj , which appear inEq. (20), can be written as a sum of harmonic contributions. To
simplify the notation, we write ˜g, h̃, α̃, andṼ0 simply asg, h, α, andV.

In the non-resonant case,FA1 = GA1/
√
µ, where

GA1(A1, A2, A3, A4, x) =
[
−α

2
− 3g

8
B1(A2

1+ B2
1)− h

4
A1A2B2− h

8
B1(A2

2+ 3B2
2)

]

+
[
−α

2
− g

4
A1(A2

1+ 3B2
1)− h

2
A2B1B2− h

4
A1(A2

2+ B2
2)

]
sin(2
√
µx)

+
[
g

8
A1(3B2

1 − A2
1)+ h

4
A1B1B2+ h

8
A1(B2

2 − A2
2)

]
sin(4
√
µx)+

[
−V

4
A1

]

× sin(2[κ −√µ]x)+
[
V

4

]
sin(2[κ +√µ]x)+

[
g

2
B3

1 +
α

2
B2+ h

2
B1B

2
2

]

× cos(2
√
µx)+

[
g

8
B1(3A2

1− B2
1)+ h

4
A1A2B2+ h

8
B1(A2

2− B2
2)

]
cos(4
√
µx)

+
[
V

2
B1

]
cos(2κx)+

[
−V

4

]
cos(2[κ −√µ]x)+

[
−V

4

]
cos(2[κ +√µ]x),

(A.1)

andFB1 = GB1/
√
µ, where

GB1(A1, A2, A3, A4, x) =
[
α

2
A2+ 3g

8
A1(A2

1+ B2
1)+ h

4
A2B1B2+ h

8
A1(A2

2+ B2
2)

]

+
[
α

2
B2+ g

4
B1(3A2

1+ B2
1)+ h

2
A1A2B2+ h

4
B1(A2

2+ B2
2)

]
sin(2
√
µx)

+
[
g

8
B1(3A2

1− B2
1)+ h

4
A1A2B2+ h

8
B1(A2

2− B2
2)

]
sin(4
√
µx)+

[
V

4
B1

]

× sin(2[κ −√µ]x)+
[
−V

4

]
sin(2[κ +√µ]x)+

[
α

2
A2+ g

2
A3

1+
h

2
A1A

2
2

]

× cos(2
√
µx)+

[
g

8
A1(A2

1− 3B2
1)− h

4
A2B1B2+ h

8
A1(A2

2− B2
2)

]
cos(4
√
µx)

+
[
−V

2
A1

]
cos(2κx)+

[
−V

4
A1

]
cos(2[κ −√µ]x)

+
[
−V

4
A1

]
cos(2[κ +√µ]x). (A.2)

Only O(1) [i.e., constant harmonic] terms remain after averaging.
In the resonant case, one obtains, after averaging, an extra term depending on the periodic potentialV, because

a term that was a prefactor of a non-constant harmonic in (A.1) and (A.2) has become a coefficient in front of the
O(1) term. Other harmonic terms are also simplified due to the resonance, but they nevertheless do not contribute
to the averaged equations because they are still prefactors of non-constant harmonics. The extra terms withµ1 arise
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from Taylor expanding in powers ofε and keeping the leading-order terms. In the resonant case,FA1 = GA1/κ and
FB1 = GB1/κ.

In both the resonant and non-resonant cases, the expressions forFA2 andFB2 are obtained by switching the
subscripts 1←→ 2 in the equations above.
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