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Introduction

If in doubt, all notations and assumptions are with respect to [4]. Please share with me any comments,
additional exercises or questions which you think are relevant or interesting.

Given an ordered set S = (S,≤) and A ⊆ S, we let

conv(A) := {x ∈ S : a ≤ x ≤ b for some a, b ∈ A}.

1. Day 1

Exercise 1.1. Let K = (K; 0, 1,+, ·, <) be an ordered field, and suppose V ⊆ K is a convex subring. Then
the field of fractions of V inside K is K, and V is a valuation ring of K. In particular, all convex subrings
considered in [4] are valuation rings.

Proof. Suppose x 6∈ V , and assume without loss of generality that x > 0. Then x > 1 and so 0 < x−1 < 1
which implies that x−1 ∈ V . This shows that K is the field of fractions of V , and it also shows that V is a
valuation ring of K. �

Exercise 1.2. Give an example of T , R |= T , and V ⊆ R such that V is a convex subring of R, but it is
not a T -convex subring of R.

Proof. Let R be an elementary extension of R̄ = (R; 0, 1,+,−, ·, <) with an element t ∈ R such that t > R.
Let T = Th(R, t) in the language of ordered rings augmented with an additional constant symbol for t. Now
define V := conv(Z) ⊆ R. Then V is a convex subring of (R, t), but it is not T -convex since t 6∈ V , and the
constant function x 7→ t : R→ R is 0-definable and continuous in (R, t).

Here is another example. Let T = Texp = Th(R; 0, 1,+,−, ·, <, exp). Let R be an elementary extension
of (R; 0, 1,+,−, ·, <, exp) with an element t ∈ R such that t > R. Define V = conv(Z[t]). Then t ∈ V , but
exp(t) 6∈ V . �

Exercise 1.3. Show that T is polynomially bounded iff for every R |= T and every convex subring V ⊆ R,
if P ⊆ V , then V is T -convex.

Exercise 1.4. Let (R, V ) |= Tconvex. Show that V is not a finite union of intervals and points. This shows
that the best we can hope for is that Tconvex is weakly o-minimal (which it is by [4, Proposition 3.16]).

Proof. By definition of Tconvex, there is t ∈ R such that t > V , so V has an upper bound. However V does
not have a least upper bound since t > V implies t−1 > V since V is a subring of R. Every nonempty finite
union of intervals and points which is bounded above has a least upper bound. Thus V is not a finite union
of intervals and points. �

Exercise 1.5. Suppose R′ 4tame R |= T . Given r ∈ R∩ conv(R′), show there is a unique r′ ∈ R′ such that
|r − r′| < ε for all positive ε ∈ R′.

Proof. Assume that r ∈ R ∩ conv(R′) and take r0, r1 ∈ R′ such that |r − ri| < ε for all positive ε ∈ R′
and i = 0, 1. By the triangle inequality, |r0 − r1| < ε for all positive ε ∈ R′. However, r0 − r1 ∈ R′. Thus
|r0 − r1| = 0 and so r0 = r1. �

Exercise 1.6. Give an example of R′ 4 R |= T such that R′ is not tame in R.
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Proof. Let T = RCF, let R′ = (Qrc; 0, 1,+,−, ·, <) and let R = (R; 0, 1,+,−, ·, <). Then R′ 4 R, but R′ is
not tame in R. Indeed, π ∈ R \R′ does not have a best approximation in Qrc. �

Exercise 1.7. If T has QE and is universally axiomatizable, then Tconvex and Ttame have QE by [4, Theorems
3.10 and 5.9]. Show that in this situation neither Tconvex nor Ttame are universally axiomatizable.

Exercise 1.8. Let γ : R → R be a continuous R-definable function. Define the 2-cells C1 := (−∞, γ), C2 :=
(γ,+∞). Note that R2 = C1∪Γ(γ)∪C2 is a cell decomposition of R2. Suppose f : R2 → R is an R-definable
function such that its restriction to each of C1, Γ(γ), and C2 separately is continuous, and for each i ∈ {1, 2},
the function f |Ci is either independent of the second variable, strictly increasing in the second variable, or
strictly decreasing in the second variable. Then f is continuous on all of R2. This is the key argument in [4,
Lemma 1.5].

Exercise 1.9. Let T be an arbitrary complete theory. T has definable skolem functions iff for every M |= T
and for every A ⊆ M , if A is definably closed, then A 4M , i.e., A is the underlying set of an elementary
substructure of M .

2. Day 2

Exercise 2.1. Prove Definable Choice [4, (1.7)].

Exercise 2.2. Show that Curve Selection [4, (1.8)] holds for a ∈ Rm iff a ∈ cl(A \ {a}).

Exercise 2.3. Show how to prove [4, Lemma 1.10] in the other cases for C.

Exercise 2.4. Show how [4, Lemma 1.10] can fail when the hypothesis “bounded” is removed.

Exercise 2.5. [3, pg. 96] If f : X → Rn is an injective continuous definable map on a closed bounded set
X ⊆ Rm, then f is a homeomorphism from X onto f(X).

Exercise 2.6. [3, pg. 96] Let f : X → Rn be a definable continuous map on a closed bounded set X ⊆ Rm

and let Y = f(X). Then we have:

(1) A definable set S ⊆ Y is closed iff f−1(S) is closed;
(2) A definable set g : Y → Rp is continuous iff g ◦ f : X → Rp is continuous.

Exercise 2.7. Show that (R, <) is tame in every linearly ordered extension.

3. Day 3

Exercise 3.1. Assume R′ |= T . Show that there is a proper elementary extension R < R′ such that R′
is maximal among elementary substructures of R contained in V := conv(R′). In such a situation we have
R′ 4tame R.

Exercise 3.2. Assume T satisfies the assumptions of [4]. Let R |= T , and let f : C → R be an R-definable
function. Show that the following are equivalent:

(1) f is continuous;
(2) given every R 4tame R′, if x ∈ CR′ is R-bounded, then fR′(x) is R-bounded and

stR(fR′(x)) = f(stR(x)).

(3) there is R 4tame R′, such that R ( R′ and if x ∈ CR′ is R-bounded, then fR′(x) is R-bounded and

stR(fR′(x)) = f(stR(x)).

In some sense this is a converse to [4, Lemma 1.13].

Exercise 3.3. Let R |= T . Show that the underlying valued field of R with valuation ring V is henselian.

Exercise 3.4. (This is taken from [2, §2]) Let f : R→ R be any function (not necessarily definable in some
o-minimal expansion of R). Show that

(1) Y := {y ∈ R>0 : limx→+∞(f(xy)− f(x)) ∈ R} is a multiplicative subgroup of (R×, ·, 1).
(2) Z := {z ∈ R : ∃y ∈ R>0, limx→+∞(f(xy)− f(x)) = z} is an additive subgroup of (R,+, 0).
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(3) The function L(f)(y) = limx→+∞(f(xy) − f(x)) : Y → Z is a surjective homomorphism. The
notation is to suggest that L(f) is somehow the “logarithmic part” of f , but this should not be
taken too seriously, as we could easily have Y = {1} and Z = {0}.

(4) The sets Y,Z and the function L(f) are ∅-definable in (R; 0, 1,+,−, ·, <, f) (again, no o-minimality
is assumed).

(5) If (R; 0, 1,+,−, ·, <, f) is o-minimal and limx→+∞(f(2x) − f(x)) ∈ R×, then Y = R>0 and L(f) =
loga for some a ∈ R>0. (Recall that every subgroup of (R,+) is either cyclic or dense, and every
endomorphism of (R,+) is either nowhere continuous or linear.) Conclude that log is definable,
hence so is ex.

Exercise 3.5. (Also taken from [2, §2]) Let f : R→ R be ultimately nonzero. Show that:

(1) The sets
Y := {y ∈ R>0 : lim

x→+∞
f(xy)/f(x) ∈ R}

Z := {z ∈ R>0 : ∃y ∈ R>0, lim
x→+∞

f(xy)/f(x) = z}

are multiplicative subgroups of (R×, ·, 1).
(2) The function P (f)(y) = limx→+∞(f(xy)/f(x)) : Y → Z is a surjective homomorphism. The

notation is to suggest that P (f) is somehow the “power part” of f , but again, this should not be
taken too seriously. We tend to write just Pf as convenient.

(3) The sets Y,Z and the function Pf are ∅-definable in (R; 0, 1,+,−, ·, <, f).
(4) If (R; 0, 1,+,−, ·, <, f) is o-minimal and 2 ∈ Y , then Y = R>0 and Pf is a power function.
(5) If there exists r ∈ R such that limx→+∞ f(x)/xr ∈ R×, then Y = R>0 and Pf = xr.
(6) Calculate Y, Z and Pf directly for the functions log x, xr log x, (log x)log x.

4. Hardy fields

This section mostly follows [2, §3], but also borrows some things from [1, §9.1].

Let G be the ring of germs at +∞ of real-valued functions whose domain is a subset of R containing an
interval (a,+∞), a ∈ R; the domain may vary and the ring operations are defined as usual. Given some
property P of real-valued functions as above (for instance, P could be “continuous”, or “differentiable”), we
say that a germ g ∈ G has property P if it is the germ of some function with property P. For differentiable
g ∈ G, we let g′ ∈ G denote the germ of the derivative of some differentiable representative of g.

Definition 4.1. A Hardy field is a subring K of G such that K is a field, all g ∈ K are differentiable, and
g′ ∈ K for all g ∈ K.

The following shows the relationship between Hardy fields and o-minimal expansions of the ordered field of
real numbers R̄ = (R; 0, 1,+, ·,−, <):

Proposition 4.2. If R is an expansion of R̄, then the following are equivalent:

(1) R is o-minimal.
(2) The germs of definable unary functions form a Hardy field.
(3) Every unary definable function is either ultimately zero or ultimately nonzero.

Proof. (1)⇒ (2) follows from the C1-Monotonicity Theorem.
(2)⇒ (3) is immediate from the field structure and definition of a germ.
(3) ⇒ (1) Let A ⊆ R be definable. We must show that A is a finite union of points and open intervals.

It suffices to show that bd(A) of A is finite, which (by Bolzano-Weierstrass) means showing that bd(A) is
bounded and discrete. Let f be the (definable) characteristic function of A. Then f is ultimately identically
1 or identically 0, so there is b ∈ R such that (b,∞) is either contained in A or disjoint from A. Similarly,
there is some a ∈ R such that (−∞, a) is either contained in A or disjoint from A. Hence bd(A) is bounded.
Fix x0 ∈ bd(A). By arguing as before with {1/(a − x0) : a ∈ A}, there is ε > 0 such that (x0, x0 + ε) is
either contained in A or disjoint from A, and similarly for (x0 − ε, x0). Thus bd(A) is discrete. �

We now fix R an o-minimal expansion of R̄ with field of exponents K and associated Hardy field H.

Exercise 4.3. (1) If f ∈ H, then limx→+∞ f(x) ∈ R ∪ {±∞}.
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(2) {(f, g) ∈ H× × H× : limx→+∞ f(x)/g(x) ∈ R×} is an equivalence relation. Denote the natural
quotient map by v. The image v(H×) is an ordered group by setting v(f) + v(g) = v(fg) and
v(f) > 0 iff limx→+∞ f(x) = 0. Denote the resulting absolute value on v(H×) by | · |. (Be careful:
This does not mean that |v(·)| = v(| · |).)

(3) If f, g ∈ H× and |f | ≥ |g|, then v(f) ≤ v(g) (note the reversal or the order!). The converse fails.
(4) If f, g ∈ H× and f 6= −g, then v(f + g) ≥ min(v(f), v(g)), with equality if v(f) 6= v(g).
(5) If f ∈ H× and r ∈ R×, then v(rf) = v(f) = v(|f |).
(6) If f ∈ H× and v(f) 6= 0, then exactly one of f, 1/f,−f or −1/f is infinitely increasing (i.e.,

limx→+∞ = +∞), and |v(f)| = |v(−f)| = |v(1/f)| = |v(−1/f)|.
(7) If f ∈ H \ R, then

v(f ′/f) = v((1/f)′/(1/f)) = v((−f)′/(−f)) = v((−1/f)′/(−1/f)).

Lemma 4.4 (HC). Let a, b ∈ H× be such that 0 < |v(a)| ≤ |v(b)|. Then v(a′/a) ≥ v(b′/b).

Proof. Without altering |v(a)|, |v(b)|, v(a′/a) or v(b′/b), we replace a by ±a or ±1/a, and b by ±b or ±1/b,
to reduce to the case that a and b are infinitely increasing

If va = vb, then va′ = vb′ by l’Hôpital’s Rule, so v(a′/a) = v(a′)− v(a) = v(b′)− v(b) = v(b′/b).
Suppose v(b) < v(a). Then b/a is infinitely increasing, so all of a, a′, b′ and (b/a)′ are positive, yielding

b′/b > a′/a > 0 by the quotient rule. Hence v(a′/a) ≥ v(b′/b). �

For f, g ∈ G, we write f ∼ g if g is ultimately nonzero and limx→+∞ f(x)/g(x) = 1. If f, g ∈ H×, then
vf = vg iff f ∼ cg for some c ∈ R×.

Lemma 4.5 (AC3). Let a, b ∈ H× be such that v(a) ≥ 0 and v(b) 6= 0. Then v(a′) > v(b′/b).

Proof. We may assume that v(a) = 0 by replacing a with a+ 1 if necessary. By l’Hôpital,

ab

b
∼ ab′ + a′b

b′
,

and so

a =
ab

b
∼ ab′ + a′b

b′
= a+ a′

b

b′
.

Then 1 ∼ 1 + (a′/a)b(b′/b), yielding v(a′/a) > v(b′/b). Finish by observing that v(a′/a) = v(a′)− v(a), and
v(a) = 0 by assumption. �

Lemma 4.6 (Partial asymptotic integration). If f ∈ H× and v(f) < v(1/x), then there exists g ∈ H× such
that g′ ∼ f .

Proof. Note that (xf)′ 6= 0.
Suppose v(f) ≥ v((xf)′), that is, v(f/(xf)′) ≥ 0. By (HC), v((f/(xf)′)′) > v(1/x), that is, v(x(f/(xf)′)′) >

0. Put g1 = xf2/(xf)′. Then g′1/f = 1 + x(f/(xf)′)′, so g′1 ∼ f .
Suppose v(f) < v((xf)′), equivalently, f ′/f ∼ −1/x. Then g′1 6= 0. Put g2 = fg1/g

′
1 and then g′2 ∼ f

follows, using

g′2
f
− 1 =

f ′/f

g′1/g1
− g′′1/g

′
1

g′1/g1
. �

Note:

(1) H is “closed under composition”: if f, g ∈ H× and f is infinitely increasing, then g ◦ f lies in H× as
well. The sign of v(g ◦ f) is the same as that of v(g).

(2) Not all Hardy fields are closed under composition: R(x, ex) is Hardy field that does not contain
ex ◦ x2.

(3) H is “closed under compositional inverse”: if f ∈ H and v(f) < 0, then f−1 of the ultimately-defined
compositional inverse of f also belongs to H.

Proposition 4.7 (Growth dichotomy). Either R is exponential or v(H×) = K · v(x).
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Proof. There are two cases to consider:
Case 1: There exists f ∈ H× such that v(f ′/f) 6= v(1/x) and v(f) 6= 0.
We show that R is exponential. By replacing f with −f if necessary, we arrange f > 0. By further

replacing f with 1/f if necessary, we arrange f to be infinitely increasing. By replacing f with f−1 if
necessary, we suppose that v(f ′/f) < v(1/x). By partial asymptotic integration, there is g ∈ H× such that
g′ ∼ f ′/f . Put h = g ◦ f−1; then h′ ∼ 1/x. By MVT, we have

h ◦ (2x)− h =
x

ξ
· ξh′ ◦ ξ

for some ξ ∈ H such that x < ξ < 2x. (Why?) Note that v(x/ξ) = 0 = v(ξh′ ◦ ξ), the latter by substituting
ξ into xh′. Thus

v(h ◦ (2x)− h) = v(x/ξ) + v(ξh ◦ ξ) = v(x/ξ) + v(xh′) = 0.

By exercise on L(f), R is exponential.
Case 2: For all f ∈ H×, if v(f ′/f) 6= v(1/x), then v(f) = 0.
We show that v(H×), if v(f ′/f) 6= v(1/x), then v(f) = 0.
We show first that Pf = xr for some r ∈ K. This is immediate if v(f) = 0 (for then Pf = 1 = x0), so

assume that v(f) 6= 0. Put g = (f ◦ (2x))/f ∈ H×. Observe that

x
g′

g
= 2x

f ′ ◦ (2x)

f ◦ (2x)
− xf ′

f
.

Since v(f) 6= 0, we have v(xf ′/f) = 0, and so v(g′/g) > v(1/x). By the case assumption, v(g) = 0, that is,
f ◦ (2x) ∼ cf for some c ∈ R×. Now apply Exercise on P (f).

To finish the proof, we now let f ∈ H× and show that v(f) = v(Pf). Since P ((Pf)/f) = 1 � R>0 (why?),
we are reduced to showing that if Pf = 1 � R>0, then v(f) = 0. By case assumption, it suffices to show that
v(xf ′/f) 6= 0. By MVT,

f ◦ (2x)

f
− 1 =

xf ′ ◦ ξ
f

=
x

ξ
· ξf

′ ◦ ξ
f ◦ ξ

· f ◦ ξ
f

where ξ ∈ H× and x < ξ < 2x. It suffices now to show that v((ξf ′ ◦ ξ)/f ◦ ξ) 6= 0 (for then v(xf ′/f) 6= 0 as
well). Since Pf(2) = 1, we have

0 = v(
f ◦ (2x)

f
− 1) = v(x/ξ) + v(

ξf ′ ◦ ξ
f ◦ ξ

) + v(
f ◦ ξ
f

).

Since v(ξ) = v(x), it suffices now to show that f ◦ ξ ∼ f , which follows easily from monotonicity – either
f ≤ f ◦ ξ ≤ f ◦ (2x) or f ≥ f ◦ ξ ≥ f ◦ (2x) – and that Pf(2) = 1 (that is, f ◦ (2x) ∼ f). �
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