Problem 1. Compute the determinant of this intimidating looking matrix $M = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \end{pmatrix}$. [Hint: How does row operation help here?]

Problem 2. Consider the quadrilateral in the \mathbb{R}^2 plane formed with these vertices: $(1,5)$, $(2,7)$, $(5,0)$, $(3, -3)$. Find its area.

Problem 3. Consider the system of equation $\begin{pmatrix} 2 & 1 & 8 & 7 \\ 2 & 2 & 6 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.

Solve for z directly.

Problem 4. Diagonalize the matrix $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, namely, find an eigenvectors of \mathbb{R}^3 for the matrix A. Can A be orthogonally diagonalizable? If so, produce an orthonormal basis of \mathbb{R}^3 for this matrix A.

Problem 5. Consider the matrix $B = \begin{pmatrix} 2 & k \\ 2 & 2 \end{pmatrix}$, where k is some real number. Find all real values of k such that B is invertible. Find all real values of k such that B is diagonalizable over the reals.

Problem 6. Consider the matrix $C = \begin{pmatrix} 1 & k & k^2 \\ 0 & 2 & k^3 \\ 0 & 0 & 3 \end{pmatrix}$. Find all real values of k such that C is invertible. Find all real values of k such that C is diagonalizable.

Problem 7. Let A be a 3×3 matrix with eigenvalues $\lambda = -2, 1, 2$. Using this information, complete the following chart for each 3×3 matrices below, if defined at all:

<table>
<thead>
<tr>
<th>A</th>
<th>Invertible?</th>
<th>Eigenvalues?</th>
<th>Diagonalizable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^{-1}</td>
<td>Yes</td>
<td>$-2, 1, 2$</td>
<td>Yes</td>
</tr>
<tr>
<td>A^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A + I$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A - 2I$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A^T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A^{-1} + A$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem 8. (1) Show that for any $n \times n$ square matrix A, both A and its transpose A^T have the same eigenvalues with exactly the same algebraic multiplicity. [Hint: Eigenvalues are from roots of characteristic polynomial.]

(2) Show that if two $n \times n$ matrices A and B are similar, then they have the same eigenvalues with exactly the same algebraic multiplicity.

Problem 9. Suppose A is a square matrix such that $A^2 = A$. Show that any nonzero vector $x \in \text{Im}(A)$ is in fact an eigenvector of A. What is the corresponding eigenvalue of this nonzero vector $x \in \text{Im}(A)$?

Problem 10. Find examples of matrices that satisfies the following table:

<table>
<thead>
<tr>
<th>Diagonalizable</th>
<th>Invertible</th>
<th>Not invertible</th>
</tr>
</thead>
<tbody>
<tr>
<td>No diagonalizable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem 11. Let A be an $n \times n$ matrix that is diagonalizable. Show that A^2 is also diagonalizable. In fact, show for any positive power k, the matrix A^k will be diagonalizable.

Problem 12. Suppose A is 3×3 such that $A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ and $\ker(A) = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$. Find A.

Problem 13. Find a 3×3 symmetric matrix A such that $A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ and that dim($\ker(A)$) = 2.

Problem 14. Find a 4×4 symmetric matrix A such that $A \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$ and $A \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

Problem 15. (1) Show that for any $n \times k$ matrix A (not necessarily square!), both matrices AA^T and $A^T A$ are diagonalizable.

(2) Show that any $n \times n$ orthogonal projection matrix P is diagonalizable. [Hint: Recall QR-factorization, and how we can re-express every orthogonal projection matrix, and then use (1) of this problem.]

On determinants.

Problem 13. Let A be an $n \times n$ symmetric matrix. Suppose that B is a symmetric matrix such that $A - B$ is invertible. Find all real values of k such that $B = kA$ is diagonalizable.
Problem 16. Let A and B both be $n \times n$. (1) Find examples of A and B where both are not invertible, but their sum $A + B$ is invertible.

(2) Find examples of A and B where both are not diagonalizable, but their sum $A + B$ is diagonalizable.

Problem 17. We know spectral theorem tells us that any real square symmetric matrix is orthogonally diagonalizable. Prove the converse statement, that is: If a real square matrix A has an orthonormal eigenbasis, then it is symmetric. [Hint: If it has an orthonormal eigenbasis, how can we factorize this matrix A? What kind of matrices are the “invertible factors” in A?]

Problem 18. Consider this intimidating looking matrix $M = \begin{pmatrix} 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 \end{pmatrix}$. Write down its characteristic polynomial. [Hint: Can you do this without actually calculate a determinant?]

Problem 19. [On matrix power and matrix power limits.]

(1) Find a closed form formula for the vector $A^k \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, where k is some positive integer. (This means express A^k as a 3×3 matrix where each entry is some function of k.)

(2) Find a closed form formula for the matrix power limit $\lim_{k \to \infty} A^k$.

Problem 20. Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, note A is a transition matrix (why?). Is this transition matrix A a positive transition matrix? Is this transition matrix A a regular transition matrix?

Problem 21. Let $A = \begin{pmatrix} 0 & 0.5 & 1 \\ 1 & 0 & 0 \\ 0 & 0.5 & 0 \end{pmatrix}$, compute the matrix power limit $\lim_{k \to \infty} A^k$. [Hint: Is this matrix a regular transition matrix?]

(2) Compute $\lim_{k \to \infty} \begin{pmatrix} 0.2 \\ 0.3 \\ 0.5 \end{pmatrix}$.

(3) Compute $\lim_{k \to \infty} \begin{pmatrix} 4 \\ 9 \\ 3 \end{pmatrix}$.

Problem 22. Find a regular transition matrix that is not invertible. Find an invertible matrix that is not a regular transition matrix.

Problem 23. Recall that the theorem of regular transition matrix tells us that if a matrix A is a regular transition matrix, then its matrix power limit $\lim_{k \to \infty} A^k$ always exist. This is a sufficient condition, however, but not a necessary condition for the matrix power limit to exist. Meaning: There is a transition matrix that is NOT regular, but its matrix power limit exist. Find an example of such transition matrix. [Hint: Think of the “easiest” example of a transition matrix.]

Problem 24. Show that every 2×2 regular transition matrix is diagonalizable. [Hint: What do we know about the eigenvalues of a regular transition matrix by the theorem?]

[Note that a regular transition matrix is not in general diagonalizable, here is an example: $A = \begin{pmatrix} 2/5 & 2/5 & 1/5 \\ 1/5 & 2/5 & 1/5 \\ 2/5 & 1/5 & 3/5 \end{pmatrix}$. Confession: I have to look one up.]

*** On complex numbers; matrices with complex eigenvalues. ***

Problem 25. Let $z = 2 + 4i$. Compute z^3. [Hint: Polar form and DeMoivre’s formula.]

Problem 26. (1) Find all complex numbers z such that $z^3 = 1$.

(2) Find all complex numbers w such that $w^3 = 3$.

Problem 27. Find all complex numbers z such that $z^2 = 2 + 4i$.

Problem 28. Diagonalize the matrix $A = \begin{pmatrix} 3 & -2 \\ 2 & 3 \end{pmatrix}$ over the complex numbers. That is, find an eigenbasis for \mathbb{C}^2 for A. Factorize A as PDP^{-1} where D is a diagonal matrix.

Problem 29. Factorize the matrix $A = \begin{pmatrix} 2 & -2 \\ 1 & 0 \end{pmatrix}$ as PRP^{-1}, where $R = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, a scaling-rotation matrix with both a and b real, and P a real invertible matrix.

*** On quadratic forms. ***

Problem 30. Find a symmetric matrix S such that $q(x) = 3x^2 - 3xy + xz + 4yz + 9y^2 - 3z^2$ can be expressed as $q(x) = x^T S x$, where $x = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
Problem 31. Suppose we have a quadratic form \(q(\vec{x}) = \vec{x}^T S \vec{x} \) with \(S \) some symmetric matrix is such that \(q(\vec{a}) = 0 \) for some nonzero vector \(\vec{a} \). Can \(S \) be invertible? If so, show an example that it can be. If not, prove why not.

Problem 32. Let \(q(x, y) = x^2 + kxy + y^2 \) be a quadratic form for some real number \(k \). Find all real numbers \(k \) such that \(q(x, y) \) is positive definite.

Problem 33. Does the function \(q(x, y) = 3x^2 + 2xy + 3y^2 \) have a unique minimum? Does it have a unique maximum? If so, find these points \((x, y)\) that \(q \) has a maximum or minimum.

*** Some True or False. ***

1. There is a system of linear equations over \(\mathbb{R} \) that has exactly two solutions.
2. If set \(S \) contains only one vector in \(\mathbb{R}^n \), then \(S \) is a linearly independent set.
3. If \(T : \mathbb{R}^k \rightarrow \mathbb{R}^n \) is a linear transformation, and \(\{ v_1, \ldots, v_l \} \) is linearly independent in \(\mathbb{R}^k \), then \(\{ Tv_1, \ldots, Tv_l \} \) is linearly independent in \(\mathbb{R}^n \).
4. If a matrix \(A \) has trivial kernel, i.e., \(\text{Ker}(A) \) contains just the zero vector, then \(A \) is invertible.
5. A basis for \(\mathbb{R}^7 \) can consist of less than 7 vectors.
6. Suppose \(v_1 \) and \(v_2 \) are two vectors in \(\mathbb{R}^3 \). It is possible to get \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix} \) as a result of Gram-Schmidt on \(v_1 \) and \(v_2 \) with respect to the dot product as inner product.
7. For any matrix \(A \), we always have \(\text{Im}(A) = \text{Ker}(A^T) \).
8. Given any inconsistent system \(Ax = b \), its least square solution found by solving the normal equation is always unique.
9. There exists an invertible matrix \(A \) whose square \(A^2 \) is the zero matrix.
10. If a square matrix \(A \) has \(\det(A) = 11 \), then we must have \(\det(3A) = 33 \).
11. For any two \(n \times n \) matrices \(A, B \), we have \(\det(A + B) = \det(A) + \det(B) \).
12. If \(A \) is an invertible square matrix with integer entries, then its inverse \(A^{-1} \) must also contain just integer entries.
13. There is a square matrix \(A \) that has only integer entries and determinant 1, but with inverse \(A^{-1} \) having non-integer entries.
14. If we perform row operations to a matrix \(A \), and got some matrix \(B \), then \(A \) and \(B \) will always have the same determinant.
15. If we perform row operations to a matrix \(A \), and got some matrix \(B \), then \(A \) and \(B \) will always have the same image.
16. If we perform row operations to a matrix \(A \), and got some matrix \(B \), then \(A \) and \(B \) will always have the same eigenvalues.
17. If a square matrix \(A \) has a diagonal that are all zeroes, then regardless of what the other entries are, \(A \) has determinant of zero and hence is not invertible.
18. Let \(A \) be a \(3 \times 5 \) matrix. If the kernel of \(A \) consists of at least 3 linearly independent vectors, then it is possible for \(\text{im}(A) = \mathbb{R}^3 \).
19. If an \(n \times n \) square matrix \(A \) has only one eigenvalue but repeated \(n \) times (that is, algebraic multiplicity is \(n \)), then \(A \) cannot be diagonalizable.
20. A diagonalizable matrix must be a diagonal matrix.
21. If a matrix is invertible, then it must be diagonalizable.
22. The sum of the geometric multiplicities of all the eigenvalues of an \(n \times n \) matrix always equal to \(n \).
23. Zero cannot ever be an eigenvalue of a square matrix.
24. Every vector in an eigenspace of a square matrix \(A \) is an eigenvector of \(A \).
25. There exists a linear transformation \(T : \mathbb{R}^5 \rightarrow \mathbb{R}^5 \) with eigenvalues 1 and \(-2 \), where the eigenspaces \(E_1 \) and \(E_{-2} \) are both dimension 3.
26. There is a square real symmetric matrix that is not diagonalizable.
27. There exists a quadratic form \(q(\vec{x}) = \vec{x}^T S \vec{x} \) that never equals to 0 for all input vector \(\vec{x} \).
28. A quadratic form is a linear transformation.
29. For \(\vec{x} \in \mathbb{R}^2 \), the function \(q(\vec{x}) = \vec{x}^T \begin{pmatrix} 2 & -1 \\ 7 & 8 \end{pmatrix} \vec{x} \) is not a quadratic form.
30. There exists a positive definite quadratic form \(q(\vec{x}) = \vec{x}^T S \vec{x} \) for some symmetric matrix \(S \) such that \(S \) is not invertible.
31. If \(S \) is a symmetric matrix such that \(\det(S) > 0 \), then \(q(\vec{x}) = \vec{x}^T S \vec{x} > 0 \) for all nonzero vector \(\vec{x} \).
32. Suppose \(M \) is a \(5 \times 5 \) matrix and the matrix \(M - 2I \) is invertible, then 2 is an eigenvalue of \(M \).
33. Suppose \(M \) is a \(5 \times 5 \) matrix and the matrix \(M - 5I \) has a rank of 3, rank\((M - 5I) = 3\), then 5 is an eigenvalue of \(M \).