
Intrinsic complexity

Yiannis N. Moschovakis
UCLA and University of Athens

Panhellenic Logic Symposium 11, July 12 – 16, 2017, Delphi

The Euclidean algorithm

• For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of calls to rem ε makes to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

• Is ε optimal for computing gcd(a, b) from {rem, =0}?
Basic Conjecture I For every algorithm α which computes
gcd(a, b) from {rem, =0}

(∃r > 0)
[
(for infinitely many pairs a ≥ b)[calls{rem}(α, a, b) ≥ r log(a)]

]

• Can we derive lower complexity bounds for natural mathematical
problems which restrict all algorithms?

Yiannis N. Moschovakis: Intrinsic complexity 1/21

The Value Complexity I

• A classical method for establishing intrinsic complexity lower
bounds which assumes practically nothing about “what algorithms are”

Horner’s rule: For any field F and n ≥ 1, the value of a
polynomial of degree n can be computed using no more than n
multiplications and n additions in F :

a0 + a1x + a2x
2 + · · ·+ anx

n = a0 + x
(
a1 + a2x + · · ·+ anx

n−1
)

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least
n multiplications/divisions and at least n additions/subtractions to
compute a0 + a1x + a2x

2 + · · ·+ anx
n when ~a, x are algebraically

independent complex numbers (the generic case)

. . . because it takes that many applications of the field operations
to construct the value a0 + a1x + a2x

2 + · · ·+ anx
n from a0, . . . , an, x

Yiannis N. Moschovakis: Intrinsic complexity 2/21

The Value Complexity II

Theorem (van den Dries)

If an algorithm α computes gcd(x , y) from 0, 1, +,−, iq, rem, ·, < and

calls(α, x , y) = the number of calls to the primitives

α makes to compute gcd(x , y),

then for all sufficiently large a > b such that a2 = 1 + 2b2 (Pell pairs),

calls(α, a + 1, b) ≥ 1

4

√
log log b

. . . because it takes at least that many applications of the
primitives to construct the value gcd(a + 1, b) from a + 1 and b
when (a, b) is a large Pell pair

• This is the best lower bound known for the gcd function from
the primitives of (N, 0, 1, +, ·) expanded with arithmetic division

Yiannis N. Moschovakis: Intrinsic complexity 3/21

General aim

• The method of value complexity cannot yield lower bounds for
decision problems, because their output (tt or ff) is available with
no computation

• We will develop a general method for deriving widely applicable
lower complexity bounds for algorithms which decide relations from
specified primitives. e.g.,

• The nullity (0-testing) relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

from some or all of the field primitives and =

• The coprimeness relation

x⊥⊥y ⇐⇒ x , y > 1 & gcd(x , y) = 1

from various primitives on N = {0, 1, . . .}
• I will list some of the applications at the end, but my main aim in this
lecture is to make the homomorphism method precise and to justify it

Yiannis N. Moschovakis: Intrinsic complexity 4/21

Sample result: the intrinsic calls-complexity
Proposition For every structure A = (A, c1, . . . ,R1, . . . , f1, . . .)
and every n-ary relation R(~x) on A, there is a a function

callsR : An → N ∪ {∞}
such that, if α is any (deterministic or non-deterministic) algorithm
which decides R from the primitives of A, then for every ~x ,

(?) callsR(~x) ≤ the number of distinct calls to the primitives

that α needs to make to decide R(~x)

• We will define callsR from R and A with no reference to “algorithms”;

• (?) is a theorem for algorithms specified by computation models
— recursive programs, RAMs, Turing machines with oracles . . .

• it is plausible for all algorithms from specified primitives,from
natural assumptions about such objects;

• and it yields the best known lower bounds for the nullity and
coprimeness problems from various primitives

Yiannis N. Moschovakis: Intrinsic complexity 5/21

Outline

(1) Preliminaries

(2) Uniform processes and the Homomorphism Test

(3) Coprimeness in N
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with van Den Dries, 2009)
Abstract recursion and intrinsic complexity,

forthcoming (2018) in the ASL Lecture Notes in Logic series

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations,
Lower bounds for computations with the floor operation

J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992)

Verification complexity of linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992),

Test complexity of generic polynomials

Yiannis N. Moschovakis: Intrinsic complexity 6/21

(Partial) structures

• A vocabulary is a finite set Φ of function symbols, each with a
specified arity nφ and sort sφ ∈ {a, boole}; and a (partial)
Φ-structure is a pair

A = (A,ΦA) = (A, {φA}φ∈Φ),

where φA : Anφ ⇀ Asφ
with Aa = A and Aboole = {tt,ff}

• N = (N, 0, 1, +, ·,=), the standard structure of arithmetic

• A¹U = (U, {φA¹U}φ∈Φ), for any U ⊆ A and f : An ⇀ As , with

(f ¹U)(~x) = w ⇐⇒ ~x ∈ Un, w ∈ Us & f (~x) = w

• The (equational) diagram of a Φ-structure is the set of its basic
equations,

eqdiag(A) = {(φ,~x ,w) : ~x ∈ Anφ , w ∈ Asφ
, and φA(~x) = w}

• We allow A = ∅ and φA the totally undefined nφ-ary partial
function with values in Asφ

, in which case eqdiag(A) = ∅
Yiannis N. Moschovakis: Intrinsic complexity 7/21

Substructures and homomorphisms

• Substructures (pieces): For any two Φ-structures U,A:

U ⊆p A ⇐⇒ U ⊆ A & (∀φ ∈ Φ)[φU v φA]

Substructures may be finite and not closed under Φ

• Generated substructures: With ~x = (x1, . . . , xn), G0(A,~x) = {~x} and

Gk+1(A,~x) = Gk(A,~x) ∪ {φA(t1, . . . , tm) | t1, . . . , tm ∈ Gk(A,~x)}
A is generated by ~x if A =

⋃
k Gk(A,~x)

• A homomorphism π : U → V is any π : U → V such that for all
φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

• May have x 6= y , π(x) = π(y), unless (=, x , y , ff) ∈ eqdiag(U)

• π is an embedding if it is injective (in which case it preserves 6=)

• We use finite substructures U ⊆p A to represent calls to the
primitives by an algorithm during a computation in A

Yiannis N. Moschovakis: Intrinsic complexity 8/21

Algorithms from primitives – the basic intuition

• An n-ary algorithm α of A = (A,Φ) (or from Φ)“computes”
some n-ary partial function or relation

α = αA : An ⇀ As

using the primitives in Φ as oracles and nothing else about A

• We understand this to mean that in the course of a
“computation” of α(~x), the algorithm may request from the oracle
for any φA any particular value φA(~u), for arguments ~u which it
has already computed from ~x , and that if the oracles cooperate, then
“the computation” of α(~x) is completed in a finite number of “steps”

• The notion of a uniform process, coming up next, attempts to
capture minimally (in the style of abstract model theory) these
aspects of algorithms from specified primitives

• It does not capture their effectiveness, but their uniformity
—that an algorithm applies “the same” (possibly not effective or
non-deterministic) “procedure” to all arguments in its input set

Yiannis N. Moschovakis: Intrinsic complexity 9/21

Uniform processes: I The Locality Axiom

• A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary partial
function

αU : Un ⇀ Us

It defines the partial function or relation αA : An ⇀ As

• For an algorithm α, intuitively, αU is the restriction to U of the
partial function computed by α when the oracles respond only to
questions with answers in eqdiag(U)

• We sometimes use the notation for satisfaction,

U |= α(~x) = w ⇐⇒ αU(~x) = w ,

U |= α(~x)↓ ⇐⇒ (∃w)[αU(~x) = w]

Yiannis N. Moschovakis: Intrinsic complexity 10/21

Uniform processes: II The Homomorphism Axiom

• If α is an n-ary uniform process of A, U,V ⊆p A, and
π : U → V is a homomorphism, then

U |= α(~x) = w =⇒ V |= α(π~x) = πw (x1, . . . , xn ∈ U, w ∈ Us)

In particular, if U ⊆p A, then αUvαA

• For algorithms: when asked for φU(~x), the oracle for φ may
consistently provide φV(π~x), if π is a homomorphism

• The Homomorphism Axiom is obvious for the identity embedding
I : U ½ A, but it is a strong restriction for algorithms from rich
primitives (stacks, higher type constructs, etc.)

• It can be verified for all (deterministic and non-deterministic)
algorithms specified by the standard computation models,
provided all their primitives are included in Φ

Yiannis N. Moschovakis: Intrinsic complexity 11/21

Uniform processes: III The Finiteness Axiom

• If α is an n-ary uniform process of A, then

A |= α(~x) = w

=⇒ there is a finite U ⊆p A generated by ~x such that U |= α(~x) = w

• For every call φ(~u) to the primitives, the algorithm must
construct the arguments ~u , and so the entire computation takes
place within a finite substructure generated by the input ~x

• We write

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x and U |= α(~x) = w ,

U `c α(~x)↓ ⇐⇒ (∃w)[U `c α(~x) = w]

We read U `c α(~x)↓ as “U computes α(~x)”
and we think of (U,~x ,w) as a computation of α on the input ~x

Yiannis N. Moschovakis: Intrinsic complexity 12/21

? Uniform processes, summary

• I The Locality Axiom: A uniform process α of a structure
A = (A, ΦA) with arity n and sort s ∈ {a, boole} assigns to each
substructure U ⊆p A an n-ary partial function αU : Un ⇀ Us

It defines the partial function or relation αA : An ⇀ As

U |= α(~x) = w ⇐⇒ αU = w , U |= α(~x)↓ ⇐⇒ αU(~x)↓

• II The Homomorphism Axiom: If U,V ⊆p A and π : U → V is a
homomorphism, then αU(~x) = w =⇒ αV(π~x) = πw

U `c α(~x)↓ ⇐⇒ U is finite, generated by ~x and αU(~x)↓

• III The Finiteness Axiom: A |= α(~x)↓ =⇒ (∃U ⊆p A)[U `c α(~x)↓]

• Uniform processes do not capture computability:
If A is generated by its primitives, then every f : An ⇀ As is
computed by a uniform process of A

Yiannis N. Moschovakis: Intrinsic complexity 13/21

Complexity measures generated by substructure norms

• For any vocabulary Φ, a Φ-substructure norm is an operation µ
which assigns to every pair (U,~x) of a finite Φ-structure U and a
tuple ~x ∈ Un that generates it a number µ(U,~x) and respects
isomorphisms, i.e.,

(1) U is finite, generated by x1, . . . , xn ∈ U & π : U½→V

=⇒ µ(U, x1, . . . , xn) = µ(V, π(x1), . . . , π(xn))

• Example: µ(U,~x) = |eqdiag(U)| = the size of the diagram of U

• For any Φ-substructure norm µ, any n-ary uniform process α on
a Φ-structure A and any ~x ∈ An,

Cµ(α,~x) = min{µ(U,~x) : U ⊆p A & U `c α(~x)↓}

• These are the complexity measures to which we can apply the
homomorphism method

Yiannis N. Moschovakis: Intrinsic complexity 14/21

? Three basic complexity measures for uniform processes

• callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

= the least number of calls to φ ∈ Φ0 α must make to compute αA(~x)

• Uvis = {u ∈ U | u occurs in eqdiag(U)} (the visible part of U)

• size(α,~x) = min{|Uvis| : U `c α(~x)↓}
= the least number of members of A that α must see)

• depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
= the least number of calls α must execute in sequence

Theorem depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) = callsΦ(α,~x)

• These are not larger than similarly named standard complexity
functions for algorithms defined by standard computation models
(at least for depth and calls)

Yiannis N. Moschovakis: Intrinsic complexity 15/21

?? The forcing °A and certification °A
c relations

f (x)

π(x)

U
π(f (x))

f

x

f

π

π

Suppose f : An ⇀ As , f (~x)↓ , U ⊆p A

• A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

so for relations ~x ∈ Un &
(
f (~x) ⇐⇒ f (π(~x))

)

U °A f (~x)↓ ⇐⇒ every homomorphism π : U → A respects f at ~x

U °A
c f (~x)↓ ⇐⇒ U is finite, generated by ~x and U °A f (~x)↓

Yiannis N. Moschovakis: Intrinsic complexity 16/21

? The intrinsic µ-complexity in A of f : An ⇀ As

Cµ(A, f ,~x) = min{µ(U,~x) : U °A
c f (~x)↓} ∈ N ∪ {∞}

Lemma
If µ is any Φ- substructure norm and α is a uniform process which
computes f : An ⇀ As in a Φ-structure A, then

Cµ(A, f ,~x) ≤ Cµ(α,~x) (f (~x)↓)

Lemma (The Homomorphism Test)

Suppose µ is a substructure norm (e.g., callsΦ0 , size, depth), A is a

Φ-structure, f : An ⇀ As , f (~x)↓ ,m ∈ N , and

for every finite U ⊆p A which is generated by ~x ,(
f (~x) ∈ Us & µ(U,~x) < m

)
=⇒ (∃π : U → A)[f (π(~x)) 6= π(f (~x))];

then Cµ(A, f ,~x) ≥ m .

Yiannis N. Moschovakis: Intrinsic complexity 17/21

A lower bound for coprimeness on N
A = (N, 0, 1, +,−· , iq, rem, =, <,Ψ), Ψ a finite set of Presburger functions

Theorem (van den Dries, ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),

(2)
∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a

In particular, the conclusion of (2) holds with some r
• for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =

√
2)

• for Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

Theorem (Pratt 2008, unpublished)

There is a non-deterministic algorithm εnd of Nε which decides
coprimeness, is at least as effective as the Euclidean everywhere and

calls(εnd , Fk+1, Fk) ≤ K log log Fk+1

• The theorem is best possible from its hypotheses

Yiannis N. Moschovakis: Intrinsic complexity 18/21

Horner’s rule for polynomial 0-testing
The nullity relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Theorem
Let F be the field of real or complex numbers
If n ≥ 1 and a0, . . . , an, x are algebraically independent, then:

(1) calls{·,÷}(F , NF ,~a, x) = n

(2) calls{·,÷,=}(F , NF ,~a, x) = n + 1

(3) calls{+,−}(F ,NF ,~a, x) = n − 1

(4) calls{+,−,=}(F , NF ,~a, x) = n (Horner needs n + 1)

• The method for constructing the required homomorphsm in (1)
is an elaboration of Winograd’s proof of the {·,÷}-optimality of
Horner’s rule for poly evaluation

• For algebraic decision trees, (1) is due to Bürgisser and Lickteig
(1992) and results similar to (3), (4) are due to Bürgisser, Lickteig
and Shub (1992). These papers use very different methods

Yiannis N. Moschovakis: Intrinsic complexity 19/21

Two open problems about coprimeness

Let A = (N, 0, 1, +,−· , iq, rem,=)

(1) Basic Conjecture II For some r > 0 and infinitely many pairs (a, b),

calls(A,⊥⊥, a, b) ≥ r log max(a, b)

• We proved this with a double log and Pratt’s example shows that
our proof does not establish it with a single log, but there may be
an entirely different proof

(2) Basic Conjecture III For every algorithm α of A expressed by
a deterministic recursive program which decides the coprimeness
relation, there is some r > 0 and infinitely many (a, b) such that

calls(α, a, b) ≥ r log max(a, b)

• The deterministic recursive programs of a structure A (arguably)
express faithfully all the deterministic algorithms from A

Yiannis N. Moschovakis: Intrinsic complexity 20/21

. . . and a general, vague open problem

• For a (total) structure A and a function f : An → As , do any of
the complexity functions

~a 7→ depth(A, f ,~a), size(A, f ,~a), calls(A; f ,~a)

encode interesting model theoretic properties of (A, f)?

. . . perhaps for specific, algebraic structures and “natural” f ?

THE END

Yiannis N. Moschovakis: Intrinsic complexity 21/21

