
University of California

Los Angeles

The defocusing energy-critical nonlinear

Schrödinger equation in dimensions five and

higher

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Monica Visan

2006



c© Copyright by

Monica Visan

2006



The dissertation of Monica Visan is approved.

Michael Gutperle

Michael Hitrik

Christoph Thiele

Terence Tao, Committee Chair

University of California, Los Angeles

2006

ii
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Abstract of the Dissertation

The defocusing energy-critical nonlinear

Schrödinger equation in dimensions five and

higher

by

Monica Visan

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2006

Professor Terence Tao, Chair

We consider the initial value problem for the defocusing energy-critical nonlinear

Schrödinger equation in R× Rn, n ≥ 5,

(∗)


iut + ∆u = |u|

4
n−2 u

u(0, x) = u0(x),

where the initial data u0 is chosen to belong to the energy-space Ḣ1(Rn), and

u(t, x) is a complex-valued function in spacetime Rt × Rn
x.

We use the induction on energy technique introduced by J. Bourgain and

extend the frequency-localized interaction Morawetz inequality introduced by

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao in dimension n = 3

to higher dimensions.

The results obtained are global well-posedness, scattering, and global L
2(n+2)

n−2

t,x

spacetime bounds for solutions to the initial value problem (∗).

x



CHAPTER 1

Introduction

We study the initial value problem for the defocusing energy-critical nonlinear

Schrödinger equation in R× Rn, n ≥ 5,

(1.1)


iut + ∆u = |u|

4
n−2 u

u(0, x) = u0(x)

where u(t, x) is a complex-valued function in spacetime Rt × Rn
x.

This equation has Hamiltonian

(1.2) E(u(t)) =

∫
Rn

1
2
|∇u(t, x)|2 + n−2

2n
|u(t, x)|

2n
n−2 dx.

Since (1.2) is preserved by the flow corresponding to (1.1), we shall refer to it as

the energy and often write E(u) for E(u(t)).

We are interested in this particular nonlinearity because it is critical with

respect to the energy norm. That is, the scaling u 7→ uλ where

(1.3) uλ(t, x) := λ−
n−2

2 u
(
λ−2t, λ−1x

)
maps a solution of (1.1) to another solution of (1.1), and u and uλ have the same

energy.

A second conserved quantity we will occasionally rely on is the mass ‖u(t)‖2
L2

x
.

However, since the equation is L2
x-supercritical with respect to the scaling (1.3),
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we do not have bounds on the mass that are uniform across frequencies. Indeed,

the low frequencies may simultaneously have small energy and large mass.

It is known that if the initial data u0 has finite energy, then (1.1) is locally

well-posed (see, for instance [6], [36]). That is, there exists a unique local-in-

time solution that lies in C0
t Ḣ

1
x ∩ L

2(n+2)
n−2

t,x and the map from the initial data to

the solution is uniformly continuous in these norms. If in addition the energy

is small, it is known that the solution exists globally in time1 and scattering

occurs (see [36]); that is, there exist solutions u± of the free Schrödinger equation

(i∂t +∆)u± = 0 such that ‖u(t)−u±(t)‖Ḣ1
x
→ 0 as t → ±∞. However, for initial

data with large energy, the local well-posedness arguments do not extend to give

global well-posedness.

Global well-posedness in Ḣ1
x(R3) for the energy-critical NLS in the case of

large (but finite) energy, radially-symmetric initial data was first obtained by

J. Bourgain ([2], [3]) and subsequently by M. Grillakis, [20]. T. Tao, [35], settled

the problem for arbitrary dimensions (with an improvement in the final bound

due to a simplification of the argument), but again only for radially symmetric

data. A major breakthrough in the field was made by J. Colliander, M. Keel,

G. Staffilani, H. Takaoka, and T. Tao in [15] where they obtained global well-

posedness and scattering for the energy-critical NLS in dimension n = 3 with

arbitrary initial data. Recently, E. Ryckman and M. Vişan, [29], obtained global

well-posedness and scattering for the energy-critical NLS in dimension n = 4;

the argument follows closely the one in [15], but the derivation of the frequency-

localized interaction Morawetz inequality is significantly simpler and yields an

improvement in the final bound.

1One should compare this result to the case of the focusing energy-critical NLS, where an
argument of Glassey [18] shows that certain Schwartz data will blow up in finite time; for
instance, this will occur whenever the potential energy exceeds the kinetic energy.
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The main result of this thesis is to extend to dimensions n ≥ 5 the global

well-posedness results for (1.1) in the energy-space:

Theorem 1.1. For any u0 with finite energy (i.e., E(u0) < ∞) there exists a

unique global solution u ∈ C0
t Ḣ

1
x ∩ L

2(n+2)
n−2

t,x to (1.1) such that

(1.4)

∫ ∞

−∞

∫
Rn

|u(t, x)|
2(n+2)

n−2 dxdt ≤ C(E(u0))

for some constant C(E(u0)) depending only on the energy.

As is well known (see, for instance, [36]), the L
2(n+2)

n−2

t,x bound also gives scatter-

ing and asymptotic completeness:

Corollary 1.2. Let u0 have finite energy and let u be the unique global solution

in C0
t Ḣ

1
x ∩L

2(n+2)
n−2

t,x to (1.1). Then there exist finite energy solutions u± to the free

Schrödinger equation (i∂t + ∆)u± = 0 such that

‖u±(t)− u(t)‖Ḣ1
x
→ 0 as t → ±∞.

Furthermore, the maps u0 7→ u±(0) are homeomorphisms of Ḣ1(Rn).

As we will see, treating dimensions n ≥ 5 introduces several new difficulties

relative to [15] and [29]. For the most part, these stem from the small power of

the nonlinearity in (1.1). For example, |u|
4

n−2 u is not a smooth function of u, ū

for any n ≥ 5, which immediately implies the failure of persistence of regular-

ity. Moreover, as the power of the nonlinearity is no longer an even integer in

dimensions n ≥ 5, the difference of two nonlinearities cannot be written as a poly-

nomial. Instead, we will make use of the following inequalities: Let F : C → C

be given by F (z) = |z|
4

n−2 z. Then,

Fz(z) = n
n−2

|z|
4

n−2 and Fz̄(z) = 2
n−2

|z|
4

n−2 z2

|z|2 ,(1.5)

3



where Fz, Fz̄ are the usual complex derivatives

Fz :=
1

2

(∂F

∂x
− i

∂F

∂y

)
, Fz̄ :=

1

2

(∂F

∂x
+ i

∂F

∂y

)
.

Note that in dimensions n > 6, the functions z 7→ Fz(z) and z 7→ Fz̄(z) are no

longer Lipschitz continuous; however, they are Hölder continuous of order 4
n−2

.

Thus, writing

(1.6) F (u + v)− F (v) =

∫ 1

0

[
Fz

(
v + θu

)
u + Fz̄

(
v + θu

)
ū
]
dθ,

we estimate

∣∣F (u + v)− F (v)
∣∣ . |u||v|

4
n−2 + |u|

n+2
n−2(1.7)

and

∣∣F (u + v)− F (u)− F (v)
∣∣ .


|u||v|

4
n−2 , |u| ≤ |v|

|v||u|
4

n−2 , |v| < |u|.
(1.8)

Moreover, by the chain rule and the Lipschitz/Hölder continuity of the derivatives

Fz and Fz̄, we get

∣∣∇(F (u + v)− F (u)− F (v)
)∣∣ .


(
|∇u||v|+ |∇v||u|

)(
|u| 13 + |v| 13

)
, n = 5

|∇u||v|
4

n−2 + |∇v||u|
4

n−2 , n ≥ 6.

(1.9)

1.1 Outline of the proof of Theorem 1.1

Our argument follows the scheme of [15] and we summarize it below.

For an energy E ≥ 0 we define the quantity M(E) by

M(E) := sup ‖u‖
L

2(n+2)
n−2

t,x (I×Rn)

,

4



where I ⊂ R ranges over all compact time intervals and u ranges over all Ṡ1

solutions2 to (1.1) on I × Rn with E(u) ≤ E. For E < 0 we define M(E) = 0

since, of course, there are no negative energy solutions.

From the local well-posedness theory (see Lemma 3.1), we know that (1.1)

is locally wellposed in Ṡ1. Moreover, from the global well-posedness theory for

small initial data, we see that M(E) is finite for small energies E. Our task is to

show that M(E) < ∞ for all E > 0 as Theorem 1.1 follows from this claim by a

standard argument. More precisely, given initial data u0 with energy E, we let

Ω1 = {T : ∃u ∈ Ṡ1([0, T ]× Rn) solving (1.1) with ‖u‖Ṡ1([0,T ]×Rn) ≤ C1(E)}

and

Ω2 = {T : ∃u ∈ Ṡ1([0, T ]× Rn) solving (1.1) with ‖u‖Ṡ1([0,T ]×Rn) < ∞}.

Here C1(E) = C(E, M(E))E and C(E, M(E)) is the constant from Lemma 3.4.

Note that by definition and Fatou’s lemma, Ω1 is a closed set. By the local

well-posedness theory (see Lemma 3.3), if T ∈ Ω1 then there exists ε sufficiently

small such that [T, T + ε] ⊂ Ω2. In particular, as 0 lies in Ω1, we get that a small

neighbourhood of 0, say [0, ε], lies in Ω2. Hence, to obtain a global solution to

(1.1) it suffices to see that Ω2 ⊂ Ω1. By the definition of M(E), given T ∈ Ω2 we

immediately get

‖u‖
L

2(n+2)
n−2

t,x ([0,T ]×Rn)

≤ M(E).

Combining this estimate with Lemma 3.4 we obtain T ∈ Ω1.

We will prove that M(E) < ∞ by contradiction. Assume M(E) is not always

finite. From perturbation theory (see Lemma 3.1), we see that the set {E :

M(E) < ∞} is open. Since it is also connected and contains zero, there exists a

2See Sections 1.2 and 2.1 for the notation and definitions appearing in the outline of the
proof.
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critical energy, 0 < Ecrit < ∞, such that M(Ecrit) = ∞ but M(E) < ∞ for all

E < Ecrit. From the definition of Ecrit and Lemma 3.4, we get

Lemma 1.3 (Induction on energy hypothesis). Let t0 ∈ R and let v(t0) be an

Ḣ1
x function with E(v(t0)) ≤ Ecrit − η for some η > 0. Then there exists a global

Ṡ1 solution v to (1.1) on R× Rn with initial data v(t0) at time t0, such that

‖v‖
L

2(n+2)
n−2

t,x (R×Rn)

≤ M(Ecrit − η).

Moreover, we have

‖v‖Ṡ1(R×Rn) ≤ C(Ecrit − η, M(Ecrit − η)).

We will need a few small parameters for the contradiction argument. Specif-

ically, we will need

1 � η0 � η1 � η2 � η3 � η4 � η5 > 0

where each ηj is allowed to depend on the critical energy and any of the larger

η’s. We will choose ηj small enough such that, in particular, it will be smaller

than any constant depending on the previous η’s used in the argument.

As M(Ecrit) is infinite, given any η5 > 0 there exist a compact interval I∗ ⊂ R

and an Ṡ1 solution u to (1.1) on I∗ × Rn with E(u) ≤ Ecrit but

(1.10) ‖u‖
L

2(n+2)
n−2

t,x (I∗×Rn)

> 1/η5.

Note that we may assume E(u) ≥ 1
2
Ecrit, since otherwise we would get

‖u‖
L

2(n+2)
n−2

t,x (I∗×Rn)

≤ M(1
2
Ecrit) < ∞

and we would be done.

This suggests we make the following definition:

6



Definition 1.4. A minimal energy blowup solution to (1.1) is an Ṡ1 solution u

on a time interval I∗ ⊂ R with energy

(1.11) 1
2
Ecrit ≤ E(u(t)) ≤ Ecrit

and huge L
2(n+2)

n−2

t,x -norm in the sense of (1.10).

Note that conservation of energy together with (1.11) and Sobolev embedding

imply

(1.12) ‖u‖
L∞t L

2n
n−2
x (I∗×Rn)

. 1

and also

(1.13) ‖u‖L∞t Ḣ1
x(I∗×Rn) ∼ 1,

where, following our standard convention, the constants are allowed to depend

on Ecrit.

In Chapter 2 we recall the standard linear Strichartz estimates that we will

use throughout the proof of Theorem 1.1. We also record the inhomogeneous

Strichartz estimates that will be useful in deriving the frequency-localized inter-

action Morawetz inequality. Finally, we refine the bilinear Strichartz estimates

of [15] using a lemma of M. Christ and A. Kiselev. The main application of the

bilinear Strichartz estimates is to control the interaction between high and low

frequencies when deriving the frequency localization result. In fact, because of

the small power of the nonlinearity in higher dimensions, we have to control in-

teractions between uhi and fractional powers of ulo (and vice versa); this is dealt

with via interpolation and the refined bilinear Strichartz estimates.

In Chapter 3, we record perturbation results from [36] that we will use re-

peatedly in the proof of Theorem 1.1.
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In Chapter 4 we prove various localization and concentration results. We ex-

pect that a minimal energy blowup solution should be localized in both physical

and frequency space. For if not, it could be decomposed into two essentially sepa-

rate solutions, each with strictly smaller energy than the original. By Lemma 1.3

we can then extend these smaller energy solutions to all of I∗. As each of the

separate evolutions exactly solves (1.1), we expect their sum to solve (1.1) ap-

proximately. We could then use the perturbation theory results (specifically

Lemma 1.3) to bound the L
2(n+2)

n−2

t,x -norm of u in terms of η0, η1, η2, η3, and η4, thus

contradicting the fact that η5 can be chosen arbitrarily small in (1.10).

The spatial concentration result follows in a similar manner, but is a bit more

technical. To derive it, we use an idea of Bourgain, [2], and restrict our analysis

to a subinterval I0 ⊂ I∗. We need to use both the frequency localization result

and the fact that the potential energy of a minimal energy blowup solution is

bounded away from zero in order to prove spatial concentration.

In Chapter 5 we obtain the frequency-localized interaction Morawetz inequal-

ity (5.1), which will be used to derive a contradiction to the frequency localization

and spatial concentration results just described.

A typical example of a Morawetz inequality for (1.1) is the bound∫
I

∫
Rn

|u(t, x)|
2n

n−2

|x|
dxdt . sup

t∈I
‖u(t)‖2

Ḣ1/2(Rn)

for all time intervals I and all sufficiently regular solutions u : I × Rn → C.

This estimate is not particularly useful for the energy-critical problem since

the Ḣ
1/2
x -norm is supercritical with respect to the scaling (1.3). To get around

this problem, J. Bourgain and M. Grillakis introduced a spatial cutoff obtaining

the variant ∫
I

∫
|x|≤A|I|1/2

|u(t, x)|
2n

n−2

|x|
dxdt . A|I|1/2E(u)

8



for all A ≥ 1, where |I| denotes the length of the time interval I. While this

estimate is better suited for the energy-critical NLS (it involves the energy on the

right-hand side), it only prevents concentration of u at the spatial origin x = 0.

This is especially useful in the spherically-symmetric case u(t, x) = u(t, |x|), since

the spherical symmetry combined with the bounded energy assumption can be

used to show that u cannot concentrate at any location other than the spatial

origin. However, it does not provide much information about the solution away

from the origin. Following [15], we develop a frequency-localized interaction

Morawetz inequality which is better suited to handle nonradial solutions.

While the previously mentioned Morawetz inequalities were a priori esti-

mates, the frequency-localized interaction Morawetz inequality we will develop

is not; it only applies to minimal energy blowup solutions. While our model in

obtaining this estimate is [15], there are two significant differences. We man-

age to avoid localizing in space (which adds significantly to the complexity of

[15]); however, the low power of the nonlinearity necessitates decomposing the

high-frequency portions of the minimal energy blowup solution into a ‘good’ part,

which is in Ṡ0
⋂

Ṡ1, and a ‘bad’ part which lives outside the Strichartz trapezoid.

While having slower decay in time than the ‘good’ part, the ‘bad’ part has better

spatial decay. This splitting of the high frequencies together with Hölder-type

estimates (used as a substitute for the standard fractional chain rule) enable us to

control the error terms appearing in the frequency-localized interaction Morawetz

inequality. This machinery is employed to derive (5.1) in dimensions n ≥ 6. In

dimension n = 5, the derivation of the frequency-localized interaction Morawetz

inequality is somewhat simpler (for details see Appendix C). One should mention

that the method used to obtain this inequality in dimension n = 5 also works in

dimensions 6, 7, and 8; in dimensions n ≥ 9 the small power of the nonlinearity

causes the argument to fail.

9



A corollary of (5.1) (in all dimensions n ≥ 5) is good L3
t L

6n
3n−4
x control over

the high-frequency part of a minimal energy blowup solution. One then has to

use Sobolev embedding to bootstrap this to L
2(n+2)

n−2

t,x control. However, it is also

necessary to make sure that the solution is not shifting its energy from low to

high frequencies causing the L
2(n+2)

n−2

t,x -norm to blow up while the L3
t L

6n
3n−4
x -norm

stays bounded. This is done in Chapter 6, where we prove a frequency-localized

mass almost conservation law that prevents energy evacuation to high modes.

We put all these pieces together in Chapter 7 where the contradiction argu-

ment is concluded.

1.2 Notation

We will often use the notation X . Y whenever there exists some constant

C, possibly depending on the critical energy and the dimension n but not on

any other parameters, so that X ≤ CY . Similarly we will write X ∼ Y if

X . Y . X. We say X � Y if X ≤ cY for some small constant c, again

possibly depending on the critical energy and the dimension n. We will use the

abbreviation O(X) to denote a quantity that resembles X, that is, a finite linear

combination of terms that look like X, but possibly with some factors replaced by

their complex conjugates. We also use the notation 〈x〉 := (1 + |x|2)1/2. We will

use the notation X+ := X + ε, for some 0 < ε � 1; similarly X− := X − ε. The

derivative operator ∇ refers to the space variable only. We will occasionally write

subscripts to denote spatial derivatives and will use the summation convention

over repeated indices.

We define the Fourier transform on Rn to be

f̂(ξ) :=

∫
Rn

e−2πix·ξf(x)dx.

10



We will make frequent use of the fractional differentiation operators |∇|s de-

fined by

|̂∇|sf(ξ) := |ξ|sf̂(ξ).

These define the homogeneous Sobolev norms

‖f‖Ḣs
x

:= ‖|∇|sf‖L2
x
.

Let eit∆ be the free Schrödinger propagator. In physical space this is given

by the formula

eit∆f(x) =
1

(4πit)n/2

∫
Rn

ei|x−y|2/4tf(y)dy,

while in frequency space one can write this as

(1.14) êit∆f(ξ) = e−4π2it|ξ|2 f̂(ξ).

In particular, the propagator preserves the above Sobolev norms and obeys the

dispersive inequality

(1.15) ‖eit∆f‖L∞x . |t|−
n
2 ‖f‖L1

x

for all times t 6= 0. We also recall Duhamel’s formula

u(t) = ei(t−t0)∆u(t0)− i

∫ t

t0

ei(t−s)∆(iut + ∆u)(s)ds.(1.16)

We will also need some Littlewood-Paley theory. Specifically, let ϕ(ξ) be a

smooth bump supported in the ball |ξ| ≤ 2 and equalling one on the ball |ξ| ≤ 1.

For each dyadic number N ∈ 2Z we define the Littlewood-Paley operators

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ),

P̂>Nf(ξ) := (1− ϕ(ξ/N))f̂(ξ),

P̂Nf(ξ) := [ϕ(ξ/N)− ϕ(2ξ/N)]f̂(ξ).

11



Similarly we can define P<N , P≥N , and PM<·≤N := P≤N −P≤M , whenever M and

N are dyadic numbers. We will frequently write f≤N for P≤Nf and similarly for

the other operators.

The Littlewood-Paley operators commute with derivative operators, the free

propagator, and complex conjugation. They are self-adjoint and bounded on

every Lp
x and Ḣs

x space for 1 ≤ p ≤ ∞ and s ≥ 0. They also obey the following

Sobolev and Bernstein estimates that we will use repeatedly:

‖P≥Nf‖Lp
x

. N−s‖|∇|sP≥Nf‖Lp
x
,

‖|∇|sP≤Nf‖Lp
x

. N s‖P≤Nf‖Lp
x
,

‖|∇|±sPNf‖Lp
x
∼ N±s‖PNf‖Lp

x
,

‖P≤Nf‖Lq
x

. N
n
p
−n

q ‖P≤Nf‖Lp
x
,

‖PNf‖Lq
x

. N
n
p
−n

q ‖PNf‖Lp
x
,

whenever s ≥ 0 and 1 ≤ p ≤ q ≤ ∞.

For instance, we can use the above Bernstein estimates and the kinetic energy

bound (1.13) to control the mass at high frequencies

(1.17) ‖P>Mu‖L2(Rn) .
1

M
for all M ∈ 2Z.

For any dyadic frequency N ∈ 2Z, the kernel of the operator P≤N is not

positive. To resolve this problem, we introduce an operator P ′
≤N . More precisely,

if K≤N is the kernel associated to P≤N , we let P ′
≤N be the operator associated

to N−n(K≤N)2. Please note that since ϕ(ξ) is symmetric, K≤N ∈ R and thus

N−n(K≤N)2 ≥ 0. Moreover, as

[N−n(K≤N)2 ]̂ (ξ) = N−nϕ(ξ/N) ∗ ϕ(ξ/N),

the kernel of P ′
≤N is bounded in L1

x independently of N . Therefore, the operator

P ′
≤N is bounded on every Lp

x for 1 ≤ p ≤ ∞. Furthermore, for s ≥ 0 and

12



1 ≤ p ≤ q ≤ ∞, we have

‖|∇|sP ′
≤Nf‖Lp

x
. N s‖P ′

≤Nf‖Lp
x
,

‖P ′
≤Nf‖Lq

x
. N

n
p
−n

q ‖P ′
≤Nf‖Lp

x
.
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CHAPTER 2

Strichartz numerology

In this chapter we recall the Strichartz estimates and develop bilinear Strichartz

estimates in R1+n.

We use Lq
tL

r
x to denote the spacetime norm

‖u‖Lq
t Lr

x(R×Rn) = ‖u‖q,r :=
(∫

R

(∫
Rn

|u(t, x)|rdx
)q/r

dt
)1/q

,

with the usual modifications when q or r is infinity, or when the domain R×Rn

is replaced by some smaller spacetime region. When q = r we abbreviate Lq
tL

r
x

by Lq
t,x.

2.1 Linear Strichartz estimates

We say that a pair of exponents (q, r) is Schrödinger-admissible if 2
q
+ n

r
= n

2
and

2 ≤ q, r ≤ ∞. If I × Rn is a spacetime slab, we define the Ṡ0(I × Rn) Strichartz

norm by

(2.1) ‖u‖Ṡ0(I×Rn) := sup
(∑

N

‖PNu‖2
Lq

t Lr
x(I×Rn)

)1/2

where the supremum is taken over all admissible pairs (q, r). For s > 0 we also

define the Ṡs(I × Rn) Strichartz norm to be

‖u‖Ṡs(I×Rn) := ‖|∇|su‖Ṡ0(I×Rn).

14



We observe the inequality

(2.2)
∥∥∥(∑

N

|fN |2
)1/2∥∥∥

Lq
t Lr

x(I×Rn)
≤
(∑

N

‖fN‖2
Lq

t Lr
x(I×Rn)

)1/2

for all 2 ≤ q, r ≤ ∞ and arbitrary functions fN , which one proves by interpolating

between the trivial cases (2, 2), (2,∞), (∞, 2), and (∞,∞). In particular, (2.2)

holds for all admissible exponents (q, r). Combining this with the Littlewood-

Paley inequality, we find

‖u‖Lq
t Lr

x(I×Rn) .
∥∥∥(∑

N

|PNu|2
)1/2∥∥∥

Lq
t Lr

x(I×Rn)

.
(∑

N

‖PNu‖2
Lq

t Lr
x(I×Rn)

)1/2

. ‖u‖Ṡ0(I×Rn),

which in particular implies

(2.3) ‖∇u‖Lq
t Lr

x(I×Rn) . ‖u‖Ṡ1(I×Rn).

In fact, by (2.3) and Sobolev embedding, the Ṡ1 norm controls the following

spacetime norms:

Lemma 2.1. For any Ṡ1 function u on I × Rn, we have

‖∇u‖∞,2 + ‖∇u‖3, 6n
3n−4

+ ‖∇u‖ 2(n+2)
n−2

,
2n(n+2)

n2+4

+ ‖∇u‖ 2(n+2)
n

,
2(n+2)

n

+ ‖∇u‖2, 2n
n−2

+ ‖u‖∞, 2n
n−2

+ ‖u‖3, 6n
3n−10

+ ‖u‖ 2(n+2)
n−2

,
2(n+2)

n−2

+ ‖u‖ 2(n+2)
n

,
2n(n+2)

n2−2n−4

+ ‖u‖2, 2n
n−4

. ‖u‖Ṡ1

where all spacetime norms are on I × Rn.

Next, we recall the Strichartz estimates:

15



-
1
r

61
q

r(4, 4)

r
(∞, 2)

r(2, 2n
n−2

)r(2, 2n
n−4

)

r
(∞, 2n

n−2
)

r(2(n+2)
n−2

, 2(n+2)
n−2

)

r(2, 2n
n−1

)r?
(2, 2n(n−2)

n2−3n−2
)

r ( 2n
n−2

, 2n2

(n+1)(n−2)
)

r (2(n+2)
(n−2)

, 2n(n+2)
(n−2)(n+3)

)

r (3, 6n
3n−4

)

r(2, 2n(n−2)
n2+n−10

)r?
(2, 2n

n+2
)

Figure 2.1: The Strichartz trapezoid (n > 10).

Lemma 2.2. Let I be a compact time interval, s ≥ 0, and let u : I × Rn → C be

a solution to the forced Schrödinger equation

iut + ∆u =
M∑

m=1

Fm

for some functions F1, . . . , FM . Then,

(2.4) ‖|∇|su‖Ṡ0(I×Rn) . ‖u(t0)‖Ḣs(Rn) +
M∑

m=1

‖|∇|sFm‖L
q′m
t L

r′m
x (I×Rn)

for any time t0 ∈ I and any admissible exponents (q1, r1), . . . , (qm, rm). As usual,

p′ denotes the dual exponent to p, that is, 1/p + 1/p′ = 1.
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Proof. To prove Lemma 2.2, let us first make the following reductions. We

note that it suffices to take M = 1, since the claim for general M follows from

Duhamel’s formula and the triangle inequality. We can also take s to be 0, since

the estimate for s > 0 follows by applying |∇|s to both sides of the equation and

noting that |∇|s commutes with i∂t + ∆. As the Littlewood-Paley operators also

commute with i∂t + ∆, we have

(i∂t + ∆)PNu = PNF1

for all dyadic N ’s. Applying the standard Strichartz estimates (see [25]), we get

‖PNu‖Lq
t Lr

x(I×Rn) . ‖PNu(t0)‖L2
x

+ ‖PNF1‖
L

q′1
t L

r′1
x (I×Rn)

(2.5)

for all admissible exponents (q, r) and (q1, r1). Squaring (2.5), summing in N ,

using the definition of the Ṡ0-norm and the Littlewood-Paley inequality, together

with the dual of (2.2), we get the claim.

We recall next the inhomogeneous Strichartz estimates. We say that the pair

(q, r) is Schrödinger-acceptable if 1 ≤ q, r ≤ ∞ and 1
q

< n(1
2
− 1

r
), or (q, r) =

(∞, 2). We have the following result, which is a special case of Theorem 1.4 from

[16]:

Theorem 2.3. Let I be a compact time interval. Let (q, r) and (q̃, r̃) be two

Schrödinger-acceptable pairs satisfying the scaling condition 1
q
+ 1

q̃
= n

2

(
1− 1

r
− 1

r̃
)

and either

1

q
+

1

q̃
= 1,

n− 2

n
<

r

r̃
<

n

n− 2
,

1

r
≤ 1

q
, and

1

r̃
≤ 1

q̃
,

or

1

q
+

1

q̃
< 1 and

n− 2

n
≤ r

r̃
≤ n

n− 2
.
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Then, ∥∥∥∫
s<t

ei(t−s)∆F (s)ds
∥∥∥

Lq
t Lr

x(I×Rn)
. ‖F‖

Lq̃′
t Lr̃′

x (I×Rn)
.

In particular, let us record the following inhomogeneous Strichartz estimates

that we will use to derive the frequency-localized interaction Morawetz inequality:∥∥∥∫
s<t

ei(t−s)∆F (s)ds
∥∥∥

L2
t L

2n(n−2)

n2−3n−2
x (I×Rn)

. ‖F‖
L2

t L

2n(n−2)

n2+n−10
x (I×Rn)

(2.6)

and ∥∥∥∫
s<t

ei(t−s)∆F (s)ds
∥∥∥

L2
t L

2n(n−2)

n2−3n−2
x (I×Rn)

. ‖F‖
L

2(n−2)(n+2)

n2+3n−14
t,x (I×Rn)

.(2.7)

We leave it to the reader to check that the hypotheses of Theorem 2.3 are satisfied

for (q, r) = (2, 2n(n−2)
n2−3n−2

) and (q̃, r̃) = (2, 2n(n−2)
n2−5n+10

) or q̃ = r̃ = 2(n−2)(n+2)
n2−3n+6

, as long

as n ≥ 5.

2.2 Bilinear Strichartz estimates

In this section we develop bilinear Strichartz estimates that we will use later,

in particular, in deriving the frequency localization result. We will adapt the

bilinear Strichartz estimate obtained in [15], which is in turn a refinement of a

Strichartz estimate due to J. Bourgain (see [1]), to better suit our nonlinearity.

The reason for which we need to make this modification is that the power of

the nonlinearity gets smaller as the dimension increases and we have no hope of

placing it in L1
t Ḣ

s
x for n > 6. In order to achieve our goal, we will use a lemma

due to M. Christ and A. Kiselev, [9]. The following version is from H. Smith and

C. Sogge, [30]:

Lemma 2.4. Let X, Y be Banach spaces and let k(t, s) be the kernel of an op-

erator T : Lp([0, T ]; X) → Lq([0, T ]; Y ). Define the lower triangular operator

18



T̃ : Lp([0, T ]; X) → Lq([0, T ]; Y ) by

T̃ f(t) =

∫ t

0

k(t, s)f(s)ds.

Then, the operator T̃ is bounded from Lp([0, T ]; X) to Lq([0, T ]; Y ) and ‖T̃‖ .

‖T‖, provided p < q.

We are now ready to state and prove the following

Lemma 2.5. Fix n ≥ 2. For any spacetime slab I × Rn, any t0 ∈ I, and any

δ > 0, we have

(2.8) ‖uv‖L2
t,x(I×Rn) ≤ C(δ)

(
‖u(t0)‖Ḣ

−1/2+δ
x

+ ‖|∇|−
1
2
+δ(i∂t + ∆)u‖

Lq′
t Lr′

x (I×Rn)

)
×
(
‖v(t0)‖

Ḣ
n−1

2 −δ
x

+ ‖|∇|
n−1

2
−δ(i∂t + ∆)v‖

Lq̃′
t Lr̃′

x (I×Rn)

)
,

for any Schrödinger-admissible pairs (q, r) and (q̃, r̃) satisfying q, q̃ > 2.

Proof. Throughout the proof all spacetime norms will be on the slab I × Rn. We

define

‖w‖k,q,r := ‖w(t0)‖Ḣk
x

+ ‖|∇|k(i∂t + ∆)w‖q′,r′

and

Fk,q,r = {w : ‖w‖k,q,r < ∞}.

With this notation our goal is to show

‖uv‖2,2 ≤ C(δ)‖u‖− 1
2
+δ,q,r‖v‖n−1

2
−δ,q̃,r̃,

for any (q, r) and (q̃, r̃) Schrödinger admissible pairs satisfying q, q̃ > 2.

The bilinear Strichartz estimate derived in [15] (see their Lemma 3.4) reads

‖uv‖2,2 ≤ C(δ)‖u‖− 1
2
+δ,∞,2‖v‖n−1

2
−δ,∞,2,(2.9)
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which proves the case q = q′ = ∞. We will combine this result with Lemma 2.4

to obtain the full set of exponents. A particular case of (2.9) is

‖ei(t−t0)∆u(t0)e
i(t−t0)∆v(t0)‖2,2 ≤ C(δ)‖u(t0)‖

Ḣ
− 1

2+δ
x

‖v(t0)‖
Ḣ

n−1
2 −δ

x

.(2.10)

Now fix (q, r) a Schrödinger admissible pair with q > 2 and fix v ∈ Fn−1
2
−δ,∞,2.

Consider the operator u 7→ uv; we claim that this operator is bounded from

F− 1
2
+δ,q,r to L2

t,x. Indeed, using Duhamel’s formula for u we estimate

‖uv‖2,2 ≤ ‖ei(t−t0)∆u(t0)v‖2,2 +
∥∥∥(∫ t

t0

ei(t−s)∆(i∂t + ∆)u(s)ds
)
v
∥∥∥

2,2
.

Using Duhamel’s formula for v and (2.10), we get

‖ei(t−t0)∆u(t0)v‖2,2 . ‖ei(t−t0)∆u(t0)e
i(t−t0)∆v(t0)‖2,2

+
∥∥∥ei(t−t0)∆u(t0)

∫ t

t0

ei(t−s)∆(i∂t + ∆)v(s)ds
∥∥∥

2,2

≤ C(δ)‖u(t0)‖
Ḣ
− 1

2+δ
x

‖v(t0)‖
Ḣ

n−1
2 −δ

x

+ C(δ)‖u(t0)‖
Ḣ
− 1

2+δ
x

∫
R
‖(i∂t + ∆)v(s)‖

Ḣ
n−1

2 −δ
x

ds

≤ C(δ)‖u(t0)‖
Ḣ
− 1

2+δ
x

‖v‖n−1
2
−δ,∞,2

≤ C(δ)‖u‖− 1
2
+δ,q,r‖v‖n−1

2
−δ,∞,2.

In order to conclude our claim, it suffices to see that∥∥∥(∫ t

t0

ei(t−s)∆(i∂t + ∆)u(s)ds
)
v
∥∥∥

2,2
≤ C(δ)‖u‖− 1

2
+δ,q,r‖v‖n−1

2
−δ,∞,2.(2.11)

By Lemma 2.4, for q > 2, (2.11) is implied by∥∥∥(∫
R

ei(t−s)∆(i∂t + ∆)u(s)ds
)
v
∥∥∥

2,2
≤ C(δ)‖u‖− 1

2
+δ,q,r‖v‖n−1

2
−δ,∞,2.

But now, using again a Duhamel expansion for v and proceeding as before, we
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get ∥∥∥eit∆
(∫

R
e−is∆(i∂t + ∆)u(s)ds

)
v
∥∥∥

2,2

.
∥∥∥∫

R
e−is∆(i∂t + ∆)u(s)ds

∥∥∥
Ḣ
− 1

2+δ
x

‖v‖n−1
2
−δ,∞,2.

By the standard linear Strichartz estimates,∥∥∥∫
R

e−is∆(i∂t + ∆)u(s)ds
∥∥∥

Ḣ
− 1

2+δ
x

. ‖|∇|−
1
2
+δ(i∂t + ∆)u‖q′,r′ . ‖u‖− 1

2
+δ,q,r,

and (2.11) follows.

To conclude the proof of Lemma 2.5, we run the same argument for v ∈

Fn−1
2
−δ,q̃,r̃ with u ∈ F− 1

2
+δ,q,r fixed.
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CHAPTER 3

Perturbation Theory

In this chapter we review the local theory for (1.1). As mentioned in the introduc-

tion, the Cauchy problem for (1.1) is locally well-posed in Ḣ1(Rn). A large part

of the local theory for the energy-critical NLS is due to Cazenave and Weissler,

[5], [6], who showed the existence of local solutions for large energy data and

that of global solutions for small energy data. As is to be expected for a criti-

cal equation, the time of existence of the local solutions depends on the profile

of the initial data and not only on its energy. They also proved uniqueness of

these solutions in certain Strichartz spaces in which the solution was shown to

depend continuously1 on the initial data in the energy space Ḣ1(Rn). A later

argument of Cazenave, [7], also demonstrates that the uniqueness is in fact un-

conditional in the category of strong solutions (see also [24], [17], [15] for some

related arguments).

These preliminary results are not completely satisfactory as the arguments

that establish continuous dependence on the data do not establish uniformly

continuous dependence on the data in energy-critical spaces. In [15] and [29], it

was shown that the dependence on the data is Lipschitz in dimensions n = 3,

respectively n = 4, results which extend nicely to treat dimensions n = 5, 6; see

[36]. However, in dimensions n > 6, the low power of the nonlinearity causes the

1For the defocusing energy-critical NLS the continuity was established in Lq
t Ḣ

1
x for any

q ≤ ∞. See [7] for details.
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same argument to fail; in this case, the dependence on the data was shown to be

Hölder continuous (rather than Lipschitz) in [36].

Closely related to the continuous dependence on the data and an essential tool

for induction on energy type arguments is the stability theory for the equation

(1.1). More precisely, given an approximate solution

(3.1)


iũt + ∆ũ = |ũ|

4
n−2 ũ + e

ũ(t0, x) = ũ0(x) ∈ Ḣ1(Rn)

to (1.1), with e small in a suitable space and ũ0 and u0 close in Ḣ1
x, is it possible to

show that the solution u to (1.1) stays very close to ũ? Note that the question of

continuous dependence on the data corresponds to the case e = 0. In dimensions

n = 3, 4, an analysis based on Strichartz estimates yields a satisfactory theory;

see [15], [29]. In the general case, particularly n > 6, a more careful analysis is

needed; the relevant results were obtained by T. Tao and M. Vişan, [36], and we

record them below.

Lemma 3.1 (Long-time perturbations). Let I be a compact time interval and let

ũ be an approximate solution to (1.1) on I × Rn in the sense that

(i∂t + ∆)ũ = |ũ|
4

n−2 ũ + e

for some function e. Assume that

‖ũ‖
L

2(n+2)
n−2

t,x (I×Rn)

≤ M(3.2)

‖ũ‖L∞t Ḣ1
x(I×Rn) ≤ E(3.3)

for some constants M, E > 0. Let t0 ∈ I and let u(t0) close to ũ(t0) in the sense

that

‖u(t0)− ũ(t0)‖Ḣ1
x
≤ E ′(3.4)
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for some E ′ > 0. Assume also the smallness conditions(∑
N

‖PN∇ei(t−t0)∆
(
u(t0)− ũ(t0)

)
‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x (I×Rn)

)1/2

≤ ε(3.5)

‖∇e‖
L2

t L
2n

n+2
x (I×Rn)

≤ ε(3.6)

for some 0 < ε ≤ ε1, where ε1 = ε1(E, E ′, M) is a small constant. Then there

exists a solution u to (1.1) on I × Rn with the specified initial data u(t0) at time

t = t0 satisfying

‖∇(u− ũ)‖
L

2(n+2)
n−2

t L

2n(n+2)

n2+4
x (I×Rn)

≤ C(E, E ′, M)
(
ε + ε

7
(n−2)2

)
(3.7)

‖u− ũ‖Ṡ1(I×Rn) ≤ C(E, E ′, M)
(
E ′ + ε + ε

7
(n−2)2

)
(3.8)

‖u‖Ṡ1(I×Rn) ≤ C(E, E ′, M).(3.9)

Here, C(E, E ′, M) > 0 is a non-decreasing function of E, E ′, M , and the dimen-

sion n.

Remark 3.2. By Strichartz estimates and Plancherel’s theorem, we have(∑
N

‖PN∇ei(t−t0)∆
(
u(t0)− ũ(t0)

)
‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x (I×Rn)

)1/2

.
(∑

N

‖PN∇(u(t0)− ũ(t0)
)
‖2
∞,2

)1/2

. ‖∇(u(t0)− ũ(t0)
)
‖∞,2

. E ′

on the slab I × Rn; hence, the hypothesis (3.5) is redundant if E ′ = O(ε).

We end this chapter with a few related results. The first asserts that if a

solution cannot be continued strongly beyond a time T∗, then the L
2(n+2)

n−2

t,x -norm

must blow up at that time.
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Lemma 3.3 (Standard blowup criterion, [5], [6], [36]). Let u0 ∈ Ḣ1
x and let u be

a strong Ṡ1 solution to (1.1) on the slab [t0, T0]× Rn such that

‖u‖
L

2(n+2)
n−2

t,x ([t0,T0]×Rn)

< ∞.(3.10)

Then there exists δ = δ(u0) > 0 such that the solution u extends to a strong Ṡ1

solution to (1.1) on the slab [t0, T0 + δ]× Rn.

The last result we mention here was used in the proof of Lemma 3.1 above

and shows that once we have L
2(n+2)

n−2

t,x control of a finite-energy solution, we control

all Strichartz norms as well. Details can be found in [36].

Lemma 3.4 (Persistence of regularity). Let 0 ≤ s < 1 + 4
n−2

, I a compact time

interval, and u a finite-energy solution to (1.1) obeying

‖u‖
L

2(n+2)
n−2

t,x (I×Rn)

≤ M.

Then, if t0 ∈ I and u(t0) ∈ Ḣs
x, we have

(3.11) ‖u‖Ṡs(I×Rn) ≤ C(M, E(u))‖u(t0)‖Ḣs
x
.

Proof. We first consider the case 0 ≤ s ≤ 1. We subdivide the interval I into

N ∼ (1 + M
η

)
2(n+2)

n−2 subintervals Ij = [tj, tj+1] such that on each slab Ij × Rn we

have

‖u‖
L

2(n+2)
n−2

t,x (Ij×Rn)

≤ η,

where η is a small positive constant to be chosen momentarily. By Strichartz and

the fractional chain rule (see for instance [8, 23]), on each slab Ij ×Rn we obtain

‖u‖Ṡs(Ij×Rn) . ‖u(tj)‖Ḣs
x

+ ‖|∇|s
(
|u|

4
n−2 u

)
‖

L
2(n+2)

n+4
t,x (Ij×Rn)

. ‖u(tj)‖Ḣs
x

+ ‖|∇|su‖
L

2(n+2)
n

t,x (Ij×Rn)
‖u‖

4
n−2

L
2(n+2)

n−2
t,x (Ij×Rn)

. ‖u(tj)‖Ḣs
x

+ η
4

n−2‖u‖Ṡs(Ij×Rn).
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Choosing η sufficiently small, we obtain

‖u‖Ṡs(Ij×Rn) . ‖u(tj)‖Ḣs
x
.

For the range of s under discussion, i.e., 0 ≤ s ≤ 1, the conclusion (3.11) follows

by adding these estimates over all subintervals Ij.

We now consider the case 1 < s < 1+ 4
n−2

. As the solution u has finite energy,

from the previous case with s = 1, we deduce that

‖∇u‖
L

2(n+2)
n−2

t L

2n(n+2)

n2+4
x (I×Rn)

. ‖u‖Ṡ1(I×Rn) ≤ C(M, E(u))‖u(t0)‖Ḣ1
x
.

We subdivide the interval I into N ∼ (1 + C(M,E(u))
η

)
2(n+2)

n−2 subintervals Ij =

[tj, tj+1] such that on each slab Ij × Rn we have

‖∇u‖
L

2(n+2)
n−2

t L

2n(n+2)

n2+4
x (Ij×Rn)

≤ η,

where η is a small positive constant to be chosen later. By Sobolev embedding,

we also have

‖u‖
L

2(n+2)
n−2

t,x (Ij×Rn)

. η.

By Strichartz, on each slab Ij × Rn we obtain

‖u‖Ṡs(Ij×Rn) . ‖u(tj)‖Ḣs
x

+ ‖|∇|s
(
|u|

4
n−2 u

)
‖

L
2(n+2)

n+4
t,x (Ij×Rn)

. ‖u(tj)‖Ḣs
x

+ ‖|∇|s−1
(
∇uFz(u) +∇ūFz̄(u)

)
‖

L
2(n+2)

n+4
t,x (Ij×Rn)

.(3.12)
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By the fractional product rule (see [8, 23]) and Sobolev embedding, we estimate

‖|∇|s−1
(
∇uFz(u)

)
‖

L
2(n+2)

n+4
t,x (Ij×Rn)

. ‖|∇|su‖
L

2(n+2)
n

t,x (Ij×Rn)
‖Fz(u)‖

L
n+2

2
t,x (Ij×Rn)

+ ‖∇u‖
L

2(n+2)
n

t L

2n(n+2)

n2−2(n+2)(s−1)
x (Ij×Rn)

‖|∇|s−1Fz(u)‖
L

n+2
2

t L

n(n+2)
2n+(n+2)(s−1)
x (Ij×Rn)

. ‖u‖Ṡs(Ij×Rn)‖u‖
4

n−2

L
2(n+2)

n−2
t,x (Ij×Rn)

+ ‖|∇|su‖
L

2(n+2)
n

t,x (Ij×Rn)
‖|∇|s−1Fz(u)‖

L
n+2

2
t L

n(n+2)
2n+(n+2)(s−1)
x (Ij×Rn)

. η
4

n−2‖u‖Ṡs(Ij×Rn) + ‖u‖Ṡs(Ij×Rn)‖|∇|
s−1Fz(u)‖

L
n+2

2
t L

n(n+2)
2n+(n+2)(s−1)
x (Ij×Rn)

.

Similarly,

‖|∇|s−1
(
∇ūFz̄(u)

)
‖

L
2(n+2)

n+4
t,x (Ij×Rn)

. η
4

n−2‖u‖Ṡs(Ij×Rn) + ‖u‖Ṡs(Ij×Rn)‖|∇|
s−1Fz̄(u)‖

L
n+2

2
t L

n(n+2)
2n+(n+2)(s−1)
x (Ij×Rn)

,

so (3.12) becomes

‖u‖Ṡs(Ij×Rn) . ‖u(tj)‖Ḣs
x

+ η
4

n−2‖u‖Ṡs(Ij×Rn)(3.13)

+ ‖u‖Ṡs(Ij×Rn)‖|∇|
s−1Fz(u)‖

L
n+2

2
t L

n(n+2)
2n+(n+2)(s−1)
x (Ij×Rn)

+ ‖u‖Ṡs(Ij×Rn)‖|∇|
s−1Fz̄(u)‖

L
n+2

2
t L

n(n+2)
2n+(n+2)(s−1)
x (Ij×Rn)

.

In order to estimate

‖|∇|s−1Fz(u)‖
L

n+2
2

t L

n(n+2)
2n+(n+2)(s−1)
x (Ij×Rn)

and

‖|∇|s−1Fz̄(u)‖
L

n+2
2

t L

n(n+2)
2n+(n+2)(s−1)
x (Ij×Rn)

,
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we will exploit the Hölder continuity of the functions z 7→ Fz(z) and z 7→ Fz̄(z).

Using Proposition A.1 with α := 4
n−2

, σ := s − 1, s := r, and p = n(n+2)
2n+(n+2)(s−1)

,

and applying Sobolev embedding, we get

‖|∇|s−1Fz(u)‖
L

n(n+2)
2n+(n+2)(s−1)
x

. ‖u‖
4

n−2
− s−1

r

L
( 4

n−2−
s−1

r )p1
x

‖|∇|ru‖
s−1

r

L
s−1

r p2
x

. ‖u‖
4

n−2
− s−1

r

L
( 4

n−2−
s−1

r )p1
x

‖∇u‖
s−1

r

L

n(s−1)p2
nr+(1−r)(s−1)p2
x

.

Choosing p2 such that n(s−1)p2

nr+(1−r)(s−1)p2
= 2n(n+2)

n2+4
and applying Hölder’s inequality

with respect to time, on the slab Ij × Rn we get

‖|∇|s−1Fz(u)‖
L

n+2
2

t L

n(n+2)
2n+(n+2)(s−1)
x

. ‖u‖
4

n−2
− s−1

r

L
2(n+2)

n−2
t,x

‖∇u‖
s−1

r

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x

. η
4

n−2 .

Similarly,

‖|∇|s−1Fz̄(u)‖
L

n+2
2

t L

n(n+2)
2n+(n+2)(s−1)
x

. η
4

n−2 ,

and hence, returning to our previous computation, i.e., (3.13), we obtain

‖u‖Ṡs(Ij×Rn) . ‖u(tj)‖Ḣs
x

+ η
4

n−2‖u‖Ṡs(Ij×Rn).

Choosing η sufficiently small, we get

‖u‖Ṡs(Ij×Rn) . ‖u(tj)‖Ḣs
x
.

The claim (3.11) follows by adding these bounds over all time intervals Ij.
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CHAPTER 4

Frequency Localization and Space

Concentration

Recall from the introduction that we expect a minimal energy blowup solution

to be localized in both frequency and space. In this chapter we will prove that

this is indeed the case (we will not actually prove that the solution is localized

in space, just that it concentrates; see the discussion after the proof of Corollary

4.4).

4.1 Frequency localization

Proposition 4.1 (Frequency delocalization ⇒ spacetime bound). Let η > 0 and

suppose there exist a dyadic frequency Nlo > 0 and a time t0 ∈ I∗ such that we

have the energy separation conditions

(4.1) ‖P≤Nlo
u(t0)‖Ḣ1

x
≥ η

and

(4.2) ‖P≥K(η)Nlo
u(t0)‖Ḣ1

x
≥ η.

If K(η) is sufficiently large depending on η, we have

(4.3) ‖u‖
L

2(n+2)
n−2

t,x (I∗×Rn)

≤ C(η).
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Proof. Let 0 < ε = ε(η) � 1 be a small number to be chosen later. If K(η) is suffi-

ciently large depending on ε, then one can find ε−2 disjoint intervals [ε2Nj, ε
−2Nj]

contained in [Nlo, K(η)Nlo]. By (1.13) and the pigeonhole principle, we may find

an Nj such that the localization of u(t0) to the interval [ε2Nj, ε
−2Nj] has very

little energy:

‖Pε2Nj≤·≤ε−2Nj
u(t0)‖Ḣ1

x
. ε.(4.4)

As both the statement and conclusion of the proposition are invariant under the

scaling (1.3), we normalize Nj = 1.

Define ulo(t0) := P≤εu(t0) and uhi(t0) = P≥ε−1u(t0). We claim that uhi and

ulo have smaller energy than u.

Lemma 4.2. If ε is sufficiently small depending on η, we have

E(ulo(t0)), E(uhi(t0)) ≤ Ecrit − cηC .

Proof. We will prove this for ulo; the proof for uhi is similar. Define uhi′(t0) :=

P>εu(t0) so that u(t0) = ulo(t0) + uhi′(t0) and consider the quantity

(4.5) |E(u(t0))− E(ulo(t0))− E(uhi′(t0))|.

By the definition of energy, we can bound (4.5) by

(4.6) |〈∇ulo(t0),∇uhi′(t0)〉|+
∣∣∣∫

Rn

(
|u(t0)|

2n
n−2 − |ulo(t0)|

2n
n−2 − |uhi′(t0)|

2n
n−2

)
dx
∣∣∣.

We deal with the potential energy term first. We have the pointwise estimate

∣∣|u| 2n
n−2 − |ulo|

2n
n−2 − |uhi′|

2n
n−2

∣∣ .

|uhi′||ulo|

n+2
n−2 , |uhi′| ≤ |ulo|

|ulo||uhi′|
n+2
n−2 , |ulo| ≤ |uhi′|.

Take the case |uhi′(t0)| ≤ |ulo(t0)| and use Hölder to estimate

‖uhi′(t0)|ulo(t0)|
n+2
n−2‖L1

x
. ‖uhi′(t0)‖L2

x
‖ulo(t0)‖

n+2
n−2

L
2(n+2)

n−2
x

.
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An application of Bernstein and Sobolev embedding yields

‖ulo(t0)‖
L

2(n+2)
n−2

x

. ε
n−2
n+2‖ulo(t0)‖

L
2n

n−2
x

. ε
n−2
n+2‖ulo(t0)‖Ḣ1

x
. ε

n−2
n+2 .

Similarly, by Bernstein and (4.4),

‖uhi′(t0)‖L2
x

.
∑
N>ε

‖PNu(t0)‖L2
x

.
∑
N>ε

N−1‖PNu(t0)‖Ḣ1
x

.
∑

N>ε−2

N−1 +
∑

ε<N≤ε−2

N−1ε . ε2 + εε−1

. 1.

Thus, for |uhi′(t0)| ≤ |ulo(t0)|,

‖uhi′(t0)|ulo(t0)|
n+2
n−2‖L1

x
. ε.

Now take the case |ulo(t0)| ≤ |uhi′(t0)| and use Hölder and the previous esti-

mates on ‖uhi′(t0)‖L2
x

to get

‖ulo(t0)|uhi′(t0)|
n+2
n−2‖L1

x
. ‖|ulo(t0)|

4
n−2 |uhi′(t0)|2‖L1

x
. ‖ulo(t0)‖

4
n−2

L∞x
‖uhi′(t0)‖2

L2
x

. ‖ulo(t0)‖
4

n−2

L∞x
.

Another application of Bernstein plus Sobolev embedding yields

‖ulo(t0)‖L∞x . ε
n−2

2 ‖ulo(t0)‖
L

2n
n−2
x

. ε
n−2

2 ‖ulo(t0)‖Ḣ1
x

. ε
n−2

2 .

Hence, if |ulo(t0)| ≤ |uhi′(t0)|, we have ‖ulo(t0)|uhi′(t0)|
n+2
n−2‖L1

x
. ε2. Combining

the two cases, we get control over the potential energy term in (4.6):∣∣∣∫
Rn

(
|u(t0)|

2n
n−2 − |ulo(t0)|

2n
n−2 − |uhi′(t0)|

2n
n−2

)
dx
∣∣∣ . ε.

Next, we deal with the kinetic energy part of (4.6). We estimate

|〈∇ulo(t0),∇uhi′(t0)〉| . |〈∇P>εP≤εu(t0),∇u(t0)〉|

. ‖∇P>εP≤εu(t0)‖L2
x
‖∇u(t0)‖L2

x
.
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As

‖∇u(t0)‖L2
x

. 1

and

‖∇P>εP≤εu(t0)‖L2
x

= ‖(∇P>εP≤εu(t0))
∧‖L2

x

= ‖ξϕ(ξ/ε)(1− ϕ(ξ/ε))û(t0)(ξ)‖L2
x

. ε‖ûhi′(t0)‖L2
x

. ε,

we obtain control over the kinetic energy term in (4.6),

|〈∇ulo(t0),∇uhi′(t0)〉| . ε.

Therefore (4.5) . ε. As

E(u) ≤ Ecrit

and, by hypothesis,

E(uhi′(t0)) & ‖uhi′(t0)‖2
Ḣ1

x
& η2,

the triangle inequality implies E(ulo(t0)) ≤ Ecrit − cηC , provided we choose ε

sufficiently small.

Similarly, one proves E(uhi(t0)) ≤ Ecrit − cηC .

Now, as E(ulo(t0)), E(uhi(t0)) ≤ Ecrit− cηC < Ecrit, we can apply Lemma 1.3

to deduce that there exist Ṡ1 solutions ulo and uhi on the slab I∗×Rn with initial

data ulo(t0) and uhi(t0) such that

‖ulo‖Ṡ1(I∗×Rn) ≤ C(η)(4.7)

and

‖uhi‖Ṡ1(I∗×Rn) ≤ C(η).(4.8)
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From Lemma 3.4, we also have

‖ulo‖Ṡ1+s(I∗×Rn) . C(η)‖ulo(t0)‖Ḣ1+s ≤ C(η)εs, ∀ 0 < s < 4
n−2

(4.9)

and

‖uhi‖Ṡ0(I∗×Rn) . C(η)‖uhi(t0)‖L2
x
≤ C(η)ε.(4.10)

Define ũ := ulo + uhi. We claim that ũ is a near-solution to (1.1).

Lemma 4.3. We have

iũt + ∆ũ = |ũ|
4

n−2 ũ− e

where the error e obeys the bound

(4.11) ‖∇e‖
L2

t L
2n

n+2
x (I∗×Rn)

. C(η)ε
3

(n−2)(2n+1) .

Proof. In order to estimate one derivative of the error term

e = |ũ|
4

n−2 ũ− |ulo|
4

n−2 ulo − |uhi|
4

n−2 uhi = F (ulo + uhi)− F (ulo)− F (uhi),

we use (1.9) to obtain

‖∇e‖
L2

t L
2n

n+2
x (I∗×Rn)

. ‖∇ulo|uhi|
4

n−2‖
L2

t L
2n

n+2
x (I∗×Rn)

+ ‖∇uhi|ulo|
4

n−2‖
L2

t L
2n

n+2
x (I∗×Rn)

in dimension n ≥ 6 and

‖∇e‖
L2

t L
10
7

x (I∗×Rn)
. ‖∇ulo|uhi||ulo|

1
3‖

L2
t L

10
7

x (I∗×Rn)

+ ‖∇uhi|ulo||uhi|
1
3‖

L2
t L

10
7

x (I∗×Rn)

+ ‖∇ulo|uhi|
4
3‖

L2
t L

10
7

x (I∗×Rn)
+ ‖∇uhi|ulo|

4
3‖

L2
t L

10
7

x (I∗×Rn)

in dimension n = 5.
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Thus, proving (4.11) amounts to showing

‖∇ulo|uhi|
4

n−2‖
L2

t L
2n

n+2
x (I∗×Rn)

. C(η)ε
3

(n−2)(2n+1) , n ≥ 5(4.12)

‖∇uhi|ulo|
4

n−2‖
L2

t L
2n

n+2
x (I∗×Rn)

. C(η)ε
3

(n−2)(2n+1) , n ≥ 5(4.13)

‖∇ulo|uhi||ulo|
1
3‖

L2
t L

10
7

x (I∗×Rn)
. C(η)ε

1
11 , n = 5(4.14)

‖∇uhi|ulo||uhi|
1
3‖

L2
t L

10
7

x (I∗×Rn)
. C(η)ε

1
11 , n = 5.(4.15)

To prove (4.12), we make use of Hölder, interpolation, (4.7), (4.8), (4.9), and

(4.10):

‖∇ulo|uhi|
4

n−2‖2, 2n
n+2

. ‖|uhi|
4

n−2‖∞,
n(n−2)
2(n−1)

‖∇ulo‖2,
2n(n−2)

n2−4n

. ‖uhi‖
4

n−2

∞, 2n
n−1

‖|∇|1+
2

n−2 ulo‖2, 2n
n−2

. ‖uhi‖
2

n−2

∞,2 ‖uhi‖
2

n−2

∞, 2n
n−2

‖|∇|1+
2

n−2 ulo‖Ṡ0(I∗×Rn)

. ‖uhi‖
2

n−2

Ṡ0(I∗×Rn)
‖uhi‖

2
n−2

Ṡ1(I∗×Rn)
‖ulo‖

Ṡ
1+ 2

n−2 (I∗×Rn)

. C(η)ε
4

n−2 ,

where all spacetime norms are on I∗ × Rn. We turn now towards (4.13); on

I∗ × Rn, we estimate

‖∇uhi|ulo|
4

n−2‖2, 2n
n+2

.
∥∥∣∣∇uhiulo|ulo|2n

∣∣ n
(n−2)(n+1)

∥∥ 4(n+1)
n(2n+1)

2(n−2)(n+1)
n

,1
‖∇uhi‖

1− 4
(n−2)(2n+1)

2, 2n
n−2

.

Using (4.8), we get

‖∇uhi‖
1− 4

(n−2)(2n+1)

L2
t L

2n
n−2
x (I∗×Rn)

. ‖uhi‖
1− 4

(n−2)(2n+1)

Ṡ1(I∗×Rn)
. C(η).

Fixing t ∈ I∗, we use Hölder to estimate∫
Rn

∣∣∇uhi(t)ulo(t)|ulo|2n(t)
∣∣pdx

.
∑

N1≤···≤N2n+1

∫
Rn

∣∣∇uhi(t)PN1ulo(t)PN2ulo(t) · · ·PN2n+1ulo(t)
∣∣pdx

.
∑

N1≤···≤N2n+1

‖∇uhi(t)PN1ulo(t)‖p
L2

x
‖PN2ulo(t)‖p

Lr
x
· · · ‖PN2n+1ulo(t)‖p

Lr
x
,
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where we denoted p := n
(n−2)(n+1)

and r := 4n2

2n2−3n−4
.

Integrating with respect to time, on the slab I∗ × Rn we get∥∥∣∣∇uhiulo|ulo|2n
∣∣ n

(n−2)(n+1)
∥∥

L
2(n−2)(n+1)

n
t L1

x

.
∑

N1≤···≤N2n+1

‖∇uhiPN1ulo‖p

L2
t,x
‖PN2ulo‖p

L∞t Lr
x
· · · ‖PN2n+1ulo‖p

L∞t Lr
x

(4.16)

By Bernstein,

‖PNulo‖L∞t Lr
x

. N
3n+4
4n ‖PNulo‖L∞t L2

x
.

Thus, in view of (4.7) and (4.9), we obtain

‖PNulo‖L∞t Lr
x

. C(η) min(N−n−4
4n , N−n−4

4n
−sεs)(4.17)

for all 0 < s < 4
n−2

.

To bound ‖∇uhiPN1ulo‖L2
t,x(I∗×Rn) we use the bilinear Strichartz estimates we

have developed in Lemma 2.5. On I∗ × Rn we estimate

‖∇uhiPN1ulo‖L2
t,x
≤ C(δ)

(
‖∇uhi(t0)‖Ḣ

−1/2+δ
x

+ ‖|∇|−
1
2
+δ(i∂t + ∆)∇uhi‖

L
2(n+2)

n+4
t,x

)
×
(
‖PN1ulo(t0)‖

Ḣ
n−1

2 −δ
x

+ ‖|∇|
n−1

2
−δ(i∂t + ∆)PN1ulo‖

L
2(n+2)

n+4
t,x

)
.(4.18)

Interpolating between ‖uhi(t0)‖L2
x

. ε and ‖∇uhi(t0)‖L2
x

. 1, we get

‖∇uhi(t0)‖Ḣ
−1/2+δ
x

. ε
1
2
−δ.(4.19)

Using (4.8) and (4.10), we estimate

‖(i∂t + ∆)uhi‖
L

2(n+2)
n+4

t,x (I∗×Rn)

= ‖|uhi|
4

n−2 uhi‖
L

2(n+2)
n+4

t,x (I∗×Rn)

. ‖uhi‖
L

2(n+2)
n

t,x (I∗×Rn)
‖uhi‖

4
n−2

L
2(n+2)

n−2
t,x (I∗×Rn)

. ‖uhi‖Ṡ0(I∗×Rn)‖uhi‖
4

n−2

Ṡ1(I∗×Rn)

. εC(η)
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and

‖∇(i∂t + ∆)uhi‖
L

2(n+2)
n+4

t,x (I∗×Rn)

= ‖∇
(
|uhi|

4
n−2 uhi

)
‖

L
2(n+2)

n+4
t,x (I∗×Rn)

. ‖∇uhi‖
L

2(n+2)
n

t,x (I∗×Rn)
‖uhi‖

4
n−2

L
2(n+2)

n−2
t,x (I∗×Rn)

. ‖uhi‖
n+2
n−2

Ṡ1(I∗×Rn)
. C(η).

Interpolating between the two estimate above, we obtain

‖|∇|−
1
2
+δ(i∂t + ∆)∇uhi‖

L
2(n+2)

n+4
t,x (I∗×Rn)

. C(η)ε
1
2
−δ.

Hence, combining this with (4.19) gives

‖∇uhi(t0)‖Ḣ
−1/2+δ
x

+ ‖|∇|−
1
2
+δ(i∂t + ∆)∇uhi‖

L
2(n+2)

n+4
t,x (I∗×Rn)

. C(η)ε
1
2
−δ.(4.20)

We turn now to the factor in (4.18) containing PN1ulo and use Bernstein, (4.7),

and (4.9) to estimate

‖PN1ulo(t0)‖
Ḣ

n−1
2 −δ

x

. C(η) min(N
n−3

2
−δ

1 , N
n−3

2
−δ−s

1 εs),

for every 0 < s < 4
n−2

. Similarly, by Bernstein and (4.7),

‖|∇|
n−1

2
−δ(i∂t + ∆)PN1ulo‖

L
2(n+2)

n+4
t,x (I∗×Rn)

. N
n−3

2
−δ

1 ‖∇(i∂t + ∆)PN1ulo‖
L

2(n+2)
n+4

t,x (I∗×Rn)

. N
n−3

2
−δ

1 ‖∇ulo‖
L

2(n+2)
n

t,x (I∗×Rn)
‖ulo‖

4
n−2

L
2(n+2)

n−2
t,x (I∗×Rn)

. N
n−3

2
−δ

1 ‖ulo‖
n+2
n−2

Ṡ1(I∗×Rn)

. C(η)N
n−3

2
−δ

1 ,

while by Bernstein, (4.9), and the same arguments as in the proof of Lemma 3.4,
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for any 0 < s < 4
n−2

we have

‖|∇|
n−1

2
−δ(i∂t + ∆)PN1ulo‖

L
2(n+2)

n+4
t,x (I∗×Rn)

. N
n−3

2
−δ−s

1 ‖|∇|1+s(i∂t + ∆)ulo‖
L

2(n+2)
n+4

t,x (I∗×Rn)

. N
n−3

2
−δ−s

1 ‖∇ulo‖
4

n−2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x (I∗×Rn)

‖ulo‖Ṡ1+s(I∗×Rn)

. C(η)N
n−3

2
−δ−s

1 εs.

Hence, for any 0 < s < 4
n−2

we obtain

‖PN1ulo(t0)‖
Ḣ

n−1
2 −δ

x

+ ‖|∇|
n−1

2
−δ(i∂t + ∆)PN1ulo‖

L
2(n+2)

n+4
t,x (I∗×Rn)

. C(η) min(N
n−3

2
−δ

1 , N
n−3

2
−δ−s

1 εs).(4.21)

Thus, putting together (4.18), (4.20), and (4.21), we get

‖∇uhiPN1ulo‖L2
t,x(I∗×Rn) . C(η)ε

1
2
−δ min(N

n−3
2
−δ

1 , N
n−3

2
−δ−s

1 εs).(4.22)

Returning to our earlier computation, (4.16), and using (4.17) and (4.22), we

conclude∥∥∣∣∇uhiulo|ulo|
n−4

2

∣∣ 4
n−2
∥∥

L
n−2

2
t L1

x(I∗×Rn)

. C(η)ε( 1
2
−δ)p

∑
N1≤···≤N2n+1

[
min(N

n−3
2
−δ

1 , N
n−3

2
−δ−s

1 εs)
]p · · ·

· · ·
[
min(N

−n−4
4n

2n+1 , N
−n−4

4n
−s

2n+1 εs)
]p

.

In order to estimate the sum, we split it into three parts as follows:

∑
N1≤···≤N2n+1

=
∑

N1≤···≤N2n+1≤ε

+
2n∑

j=2

∑
N1≤···≤Nj≤ε

ε≤Nj+1≤···≤N2n+1

+
∑

ε≤N1≤···≤N2n+1

= I + II + III.
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We have

I .
∑

N1≤···≤N2n+1≤ε

N
p(n−3

2
−δ)

1 N
−p n−4

4n
2 · · ·N−p n−4

4n
2n+1

.
∑
N1≤ε

N
p(n−3

2
−δ)

1 N
−p n−4

2
1

. ε( 1
2
−δ)p

II .
2n∑

j=2

∑
N1≤···Nj≤ε

ε≤Nj+1≤···≤N2n+1

N
p(n−3

2
−δ)

1 N
−p n−4

4n
2 · · ·N−p n−4

4n
j ×

×N
−p(n−4

4n
+s)

j+1 εsp · · ·N−p(n−4
4n

+s)

2n+1 εsp

.
2n∑

j=2

εsp(2n+1−j)
∑

N1≤ε≤Nj+1

N
p(n−3

2
−δ)−p n−4

4n
(j−1)

1 N
−p(n−4

4n
+s)(2n+1−j)

j+1

. ε( 1
2
−δ)p

III .
∑

ε≤N1≤···≤N2n+1

N
p(n−3

2
−δ−s)

1 εspN
−p(n−4

4n
+s)

2 εsp · · ·N−p(n−4
4n

+s)

2n+1 εsp

. εsp(2n+1)
∑
ε≤N1

N
p(n−3

2
−δ−s)−p(n−4

4n
+s)2n

1

. εsp(2n+1)
∑
ε≤N1

N
p[ 1

2
−δ−(2n+1)s]

1

. ε( 1
2
−δ)p,

where the last inequality follows as soon as we choose 0 < s < 4
n−2

such that

1
2
− δ − (2n + 1)s < 0; in particular, it holds for s = 1

2(2n+1)
.

Putting everything together, we obtain

‖∇uhi|ulo|
4

n−2‖
L2

t L
2n

n+2
x (I∗×Rn)

. C(η)ε(1−2δ) 4
(n−2)(2n+1)

and (4.13) follows by choosing δ sufficiently small.
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We examine next (4.14). Using Hölder, interpolation, (4.7), (4.8), (4.9), and

(4.10) we estimate

‖∇ulo|uhi||ulo|
1
3‖2, 10

7
. ‖∇ulo‖2, 10

3
‖uhi‖∞,3‖ulo‖

1
3
∞,5

. ‖ulo‖Ṡ1‖uhi‖
1
6
∞,2‖uhi‖

5
6

∞, 10
3

‖|∇|
3
2 ulo‖

1
3
∞,2

. C(η)ε
1
6 ε

1
6

. C(η)ε
1
11 .

Finally, we consider (4.15). By Hölder and conservation of energy, we estimate

‖∇uhi|ulo||uhi|
1
3‖2, 10

7
. ‖∇uhi‖

1
3

∞, 10
3

‖∇uhi|ulo|‖2, 5
3

. ‖∇uhi|ulo|‖2, 5
3
.

By interpolation,

‖∇uhi|ulo|‖2, 5
3

. ‖∇uhi‖
1
2

2, 10
3

‖∇uhi|ulo|2‖
1
2

2, 10
9

. C(η)‖∇uhi|ulo|2‖
1
2

2, 10
9

.

Using Hölder, Bernstein, (4.7), (4.8), (4.9), (4.10), and (4.22), we estimate

‖∇uhi|ulo|2‖2, 10
9

.
∑

N1≤N2

‖∇uhiPN1ulo‖2,2‖PN2ulo‖∞, 5
2

.
∑

N1≤N2

C(η)ε
1
2
−δ min(N1−δ

1 , N1−δ−s
1 εs)N

− 1
2

2 ‖∇PN2ulo‖∞,2

. C(η)ε
1
2
−δ
∑

N1≤N2

min(N1−δ
1 , N1−δ−s

1 εs) min(N
− 1

2
2 , N

− 1
2
−s

2 εs).

Decomposing the sum into three sums, i.e.,
∑

ε≤N1≤N2
,
∑

N1≤ε≤N2
, and

∑
N1≤N2≤ε,

and taking s > 1
4
, we get

‖∇uhi|ulo|2‖2, 10
9

. C(η)ε1−2δ.

(4.15) follows by taking δ sufficiently small.

Next, we derive estimates on u from those on ũ via perturbation theory. More

precisely, we know from (4.4) that

‖u(t0)− ũ(t0)‖Ḣ1
x

. ε
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and hence, by Remark 3.2,(∑
N

‖PN∇ei(t−t0)∆
(
u(t0)− ũ(t0)

)
‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x (I∗×Rn)

)1/2

. ε.

By Strichartz, we also have that

‖ũ‖L∞t Ḣ1
x(I∗×Rn) . ‖ũ‖Ṡ1(I∗×Rn) . ‖ulo‖Ṡ1(I∗×Rn) + ‖uhi‖Ṡ1(I∗×Rn) . C(η)

and hence,

‖ũ‖
L

2(n+2)
n−2

t,x (I∗×Rn)

. ‖ũ‖Ṡ1(I∗×Rn) . C(η).

So in view of (4.11), if ε is sufficiently small depending on η, we can apply

Lemma 3.1 to deduce the bound (4.3). This concludes the proof of Proposition

4.1.

Comparing (4.3) with (1.10) gives the desired contradiction if u satisfies the

hypotheses of Proposition 4.1. We therefore expect u to be localized in frequency

for each t. Indeed we have:

Corollary 4.4 (Frequency localization of energy at each time). Let u be a min-

imal energy blowup solution of (1.1). Then, for each time t ∈ I∗ there exists a

dyadic frequency N(t) ∈ 2Z such that for every η4 ≤ η ≤ η0 we have small energy

at frequencies � N(t)

(4.23) ‖P≤c(η)N(t)u(t)‖Ḣ1
x
≤ η,

small energy at frequencies � N(t)

(4.24) ‖P≥C(η)N(t)u(t)‖Ḣ1
x
≤ η,

and large energy at frequencies ∼ N(t)

(4.25) ‖Pc(η)N(t)<·<C(η)N(t)u(t)‖Ḣ1
x
∼ 1,

where the values of 0 < c(η) � 1 � C(η) < ∞ depend on η.

40



Proof. For t ∈ I∗ define

N(t) := sup{N ∈ 2Z : ‖P≤Nu(t)‖Ḣ1
x
≤ η0},

which is clearly positive. As ‖u‖L∞t Ḣ1
x
∼ 1, N(t) is also finite. From the definition

of N(t) we have that

‖P≤2N(t)u(t)‖Ḣ1
x

> η0.

Let η4 ≤ η ≤ η0. If C(η) � 1 then we must have (4.24), since otherwise

Proposition 4.1 would imply ‖u‖
L

2(n+2)
n−2

t,x (I∗×Rn)

. C(η), which would contradict u

being a minimal energy blowup solution.

Also, as by the definition of N(t), ‖P≤N(t)u(t)‖Ḣ1
x
≤ η0, ‖u‖L∞t Ḣ1

x
∼ 1 and

(4.24) imply that

‖PN(t)<·<C(η0)N(t)u(t)‖Ḣ1
x
∼ 1(4.26)

and therefore,

‖Pc(η)N(t)<·<C(η)N(t)u(t)‖Ḣ1
x
∼ 1

for all η4 ≤ η ≤ η0. Thus, if c(η) � 1 then ‖P≤c(η)N(t)u(t)‖Ḣ1
x
≤ η for all

η4 ≤ η ≤ η0, since otherwise (4.26) and Proposition 4.1 would again imply

‖u‖
L

2(n+2)
n−2

t,x (I∗×Rn)

. C(η).

4.2 Space concentration

Having shown that a minimal energy blowup solution must be localized in fre-

quency, we turn our attention to space. In physical space, we will not need the full

strength of a localization result. We will settle instead for a weaker property con-

cerning the spatial concentration of a minimal energy blowup solution. Roughly,

concentration will mean large at some point, while we reserve localization to mean
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simultaneously concentrated and small at points far from the concentration point.

To obtain the concentration result, we use an idea of Bourgain (see [2]). We di-

vide the interval I∗ into three consecutive subintervals I∗ = I− ∪ I0 ∪ I+, each

containing a third of the L
2(n+2)

n−2

t,x mass of u:∫
I

∫
Rn

|u(t, x)|
2(n+2)

n−2 dxdt =
1

3

∫
I∗

∫
Rn

|u(t, x)|
2(n+2)

n−2 dxdt for I = I−, I0, I+.

It is on the middle interval I0 that we will show space concentration. The first

step is:

Proposition 4.5 (Potential energy bounded from below). For any minimal en-

ergy blowup solution to (1.1) and all t ∈ I0 we have

(4.27) ‖u(t)‖
L

2n
n−2
x

≥ η1.

Proof. If the linear evolution of the solution does not concentrate at some point

in spacetime, then we can use the small data theory and iterate. So say the linear

evolution concentrates at some point (t1, x1). If the solution is small in L
2n

n−2
x at

time t = t0, we show that t0 must be far from t1. We then remove the energy

concentrating at (t1, x1) and use induction on energy.

More formally, we will argue by contradiction. Suppose there exists some time

t0 ∈ I0 such that

(4.28) ‖u(t0)‖
L

2n
n−2
x

< η1.

Using (1.3) we scale N(t0) = 1. If the linear evolution ei(t−t0)∆u(t0) had small

L
2(n+2)

n−2

t,x -norm then, by perturbation theory (see Lemma 3.1), the nonlinear solu-

tion would have small L
2(n+2)

n−2

t,x -norm as well. Hence, we may assume

‖ei(t−t0)∆u(t0)‖
L

2(n+2)
n−2

t,x (R×Rn)

& 1.
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On the other hand, Corollary 4.4 implies that

‖Plou(t0)‖Ḣ1
x

+ ‖Phiu(t0)‖Ḣ1
x

. η0,

where Plo = P<c(η0) and Phi = P>C(η0). Strichartz estimates yield

‖ei(t−t0)∆Plou(t0)‖
L

2(n+2)
n−2

t,x (R×Rn)

+ ‖ei(t−t0)∆Phiu(t0)‖
L

2(n+2)
n−2

t,x (R×Rn)

. η0.

Thus,

‖ei(t−t0)∆Pmedu(t0)‖
L

2(n+2)
n−2

t,x (R×Rn)

∼ 1

where Pmed = 1− Plo − Phi. However, Pmedu(t0) has bounded energy (by (1.13))

and Fourier support in c(η0) . |ξ| . C(η0); an application of Strichartz and

(1.17) yields

‖ei(t−t0)∆Pmedu(t0)‖
L

2(n+2)
n

t,x

. ‖Pmedu(t0)‖L2
x

. C(η0).

Combining these estimates with Hölder we get

‖ei(t−t0)∆Pmedu(t0)‖L∞t,x
& c(η0).

In particular, there exist a time t1 ∈ R and a point x1 ∈ Rn so that

|ei(t1−t0)∆(Pmedu(t0))(x1)| & c(η0).(4.29)

We may perturb t1 so that t1 6= t0 and, by time reversal symmetry, we may take

t1 < t0. Let δx1 be the Dirac mass at x1. Define f(t1) := Pmedδx1 and for t > t1

define f(t) := ei(t−t1)∆f(t1). One should think of f(t1) as basically u at (t1, x1).

The point is then to compare u(t0) to the linear evolution of f(t1) at time t0. We

will show that f(t) is fast decaying in any Lp
x-norm for 1 ≤ p ≤ ∞.

Lemma 4.6. For any t ∈ R and any 1 ≤ p ≤ ∞ we have

‖f(t)‖Lp
x

. C(η0)〈t− t1〉
n
p
−n

2 .
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Proof. We may translate so that t1 = x1 = 0. By Bernstein and the unitarity of

eit∆, we get

‖f(t)‖L∞x . C(η0)‖f(t)‖L2
x

= C(η0)‖Pmedδx1‖L2
x

. C(η0).

By (1.15) we also have

‖f(t)‖L∞x . |t|−
n
2 ‖Pmedδx1‖L1

x
. C(η0)|t|−

n
2 .

Combining these two estimates, we obtain

‖f(t)‖L∞x . C(η0)〈t〉−
n
2 .

This proves the lemma in the case p = ∞.

For other p’s we use (1.14) to write

f(t, x) =

∫
Rn

e2πi(x·ξ−2πt|ξ|2)φmed(ξ)dξ

where φmed is the Fourier multiplier corresponding to Pmed. For |x| � 1 + |t|,

repeated integration by parts shows |f(t, x)| . |x|N for any N ≤ 0. On |x| .

1 + |t|, one integrates using the above L∞
x -bound.

From (4.28) and Hölder we have

|〈u(t0), f(t0)〉| . ‖f(t0)‖
L

2n
n+2
x

‖u(t0)‖
L

2n
n−2
x

. η1C(η0)〈t1 − t0〉.

On the other hand, by (4.29) we get

|〈u(t0), f(t0)〉| = |〈ei(t1−t0)∆Pmedu(t0), δx1〉| & c(η0).

So 〈t1 − t0〉 & c(η0)/η1, i.e., t1 is far from t0. In particular, the time of concen-

tration must be far from where the L
2n

n−2
x -norm is small.
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Also, from Lemma 4.6 we see that f has small L
2(n+2)

n−2

t L
2n(n+2)

n2+4
x -norm to the

future of t0 (recall t1 < t0):

‖f‖
L

2(n+2)
n−2

t L

2n(n+2)

n2+4
x ([t0,∞)×Rn)

. C(η0)‖〈· − t1〉−
n−2
n+2‖

L
2(n+2)

n−2
t ([t0,∞))

. C(η0)|t1 − t0|−
n−2

2(n+2) . C(η0)η
n−2

2(n+2)

1 .(4.30)

Now we use the induction hypothesis. Split u(t0) = v(t0) + w(t0) where

w(t0) = δeiθ∆−1f(t0) for some small δ = δ(η0) > 0 and phase θ to be chosen

later.1 One should think of w(t0) as the contribution coming from the point

(t1, x1) where the solution concentrates. We will show that for an appropriate

choice of δ and θ, v(t0) has slightly smaller energy than u. By the definition of f

and an integration by parts we have

1

2

∫
Rn

|∇v(t0)|2dx =
1

2

∫
Rn

|∇u(t0)−∇w(t0)|2dx

=
1

2

∫
Rn

|∇u(t0)|2dx− δRe

∫
Rn

e−iθ∇∆−1f(t0) · ∇u(t0)dx

+ O(δ2‖∆−1f(t0)‖2
Ḣ1

x
)

≤ Ecrit + δRe e−iθ〈u(t0), f(t0)〉+ O(δ2C(η0)).

Choosing δ and θ appropriately we get

1

2

∫
Rn

|∇v(t0)|2dx ≤ Ecrit − c(η0).

Also, by Lemma 4.6 we have

‖w(t0)‖
L

2n
n−2
x

. C(η0)‖f(t0)‖
L

2n
n−2
x

. C(η0)〈t1 − t0〉−1 . C(η0)η1.

So, by (4.28) and the triangle inequality we obtain∫
Rn

|v(t0)|
2n

n−2 dx . C(η0)η
2n

n−2

1 .

1The presence of ∆−1 in the definition of w(t0) is due to the fact that inner products are
taken in Ḣ1

x.
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Combining the above two energy estimates and taking η1 sufficiently small de-

pending on η0, we obtain

E(v(t0)) ≤ Ecrit − c(η0).

Lemma 1.3 implies that there exists a global solution v to (1.1) with initial data

v(t0) at time t0 satisfying

‖v‖Ṡ1(R×Rn) . C(η0).

In particular,

‖v‖L∞t Ḣ1
x([t0,∞)×Rn) . C(η0)

and

‖v‖
L

2(n+2)
n−2

t,x ([t0,∞)×Rn)

. C(η0).

Moreover, by Bernstein,

‖w(t0)‖Ḣ1
x

. δ‖∇∆−1f(t0)‖L2
x

. C(η0).

By (4.30) and frequency localization, we estimate

∑
N

‖PN∇ei(t−t0)∆w(t0)‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x ([t0,∞)×Rn)

.
∑

N≤C(η0)

‖PN∇ei(t−t0)∆w(t0)‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x ([t0,∞)×Rn)

+
∑

C(η0)<N

‖PN∇ei(t−t0)∆w(t0)‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x ([t0,∞)×Rn)

.
∑

N≤C(η0)

N2C(η0)‖f‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x ([t0,∞)×Rn)

+
∑

C(η0)<N

N−2‖f‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x ([t0,∞)×Rn)

. C(η0)η
n−2
n+2

1
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and hence(∑
N

‖PN∇ei(t−t0)∆w(t0)‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x ([t0,∞)×Rn)

) 1
2

. C(η0)η
n−2

2(n+2)

1 .

So, if η1 is sufficiently small depending on η0, we can apply Lemma 3.1 with

ũ = v and e = 0 to conclude that u extends to all of [t0,∞) and obeys

‖u‖
L

2(n+2)
n−2

t,x ([t0,∞)×Rn)

. C(η0, η1).

As [t0,∞) contains I+, the above estimate contradicts (1.10) if η5 is chosen suf-

ficiently small. This concludes the proof of Proposition 4.5.

Using (4.27) we can deduce the desired concentration result:

Proposition 4.7 (Spatial concentration of energy at each time). For any min-

imal energy blowup solution to (1.1) and for each t ∈ I0, there exists x(t) ∈ Rn

such that

(4.31)

∫
|x−x(t)|≤C(η1)/N(t)

|∇u(t, x)|2dx & c(η1)

and

(4.32)

∫
|x−x(t)|≤C(η1)/N(t)

|u(t, x)|pdx & c(η1)N(t)
n−2

2
p−n

for all 1 < p < ∞, where the implicit constants depend on p.

Proof. Fix t and normalize N(t) = 1. By Corollary 4.4 we have

‖P<c(η1)u(t)‖Ḣ1
x

+ ‖P>C(η1)u(t)‖Ḣ1
x

. η100
1 .

Sobolev embedding implies

‖P<c(η1)u(t)‖
L

2n
n−2
x

+ ‖P>C(η1)u(t)‖
L

2n
n−2
x

. η100
1
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and so, by (4.27),

‖Pmedu(t)‖
L

2n
n−2
x

& η1,(4.33)

where Pmed = Pc(η1)≤·≤C(η1). On the other hand, by (1.17) we have

‖Pmedu(t)‖L2
x

. C(η1).(4.34)

Thus, by Hölder, (4.33), and (4.34), we get

‖Pmedu(t)‖L∞x & c(η1).

In particular, there exists a point x(t) ∈ Rn so that

(4.35) c(η1) . |Pmedu(t, x(t))|.

As our function is now localized both in frequency and in space, all the Sobolev

norms are practically equivalent. So let’s consider the operator Pmed∇∆−1 and

let Kmed denote its kernel. Then,

c(η1) . |Pmedu(t, x(t))| . |Kmed ∗ ∇u(t, x(t))|

.
∫

Rn

|Kmed(x(t)− x)||∇u(t, x)|dx

∼
∫
|x−x(t)|<C(η1)

|Kmed(x(t)− x)||∇u(t, x)|dx

+

∫
|x−x(t)|≥C(η1)

|Kmed(x(t)− x)||∇u(t, x)|dx

. C(η1)
(∫

|x−x(t)|<C(η1)

|∇u(t, x)|2dx
)1/2

+

∫
|x−x(t)|≥C(η1)

|∇u(t, x)|
|x− x(t)|100n

dx,

where in order to obtain the last inequality we used Cauchy-Schwarz and that

Kmed is a Schwartz function. Therefore, by (1.13) we have

c(η1) .
(∫

|x−x(t)|<C(η1)

|∇u(t, x)|2dx
)1/2

+ C(η1)
−α

for some α > 0, proving (4.31).
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Now let K̃med be the kernel associated to Pmed and let 1 < p < ∞. As above,

we get

c(η1) .
∫

Rn

|K̃med(x(t)− x)||u(t, x)|dx

∼
∫
|x−x(t)|<C(η1)

|K̃med(x(t)− x)||u(t, x)|dx

+

∫
|x−x(t)|≥C(η1)

|K̃med(x(t)− x)||u(t, x)|dx

. C(η1)
(∫

|x−x(t)|<C(η1)

|u(t, x)|pdx
)1/p

+ ‖u(t)‖
L

2n
n−2
x

(∫
|x−x(t)|≥C(η1)

1

|x− x(t)|100n· 2n
n+2

dx
)n+2

2n

. C(η1)
(∫

|x−x(t)|<C(η1)

|u(t, x)|pdx
)1/p

+ C(η1)
−α

for some α > 0, which, after scaling, proves (4.32).
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CHAPTER 5

Frequency-Localized Interaction Morawetz

Inequality

The goal of this chapter is to prove

Proposition 5.1 (Frequency-localized interaction Morawetz estimate (FLIM)).

Assuming u is a minimal energy blowup solution to (1.1) and N∗ < c(η2)Nmin,

we have∫
I0

∫
Rn

∫
Rn

|P≥N∗u(t, y)|2|P≥N∗u(t, x)|2

|x− y|3
dxdydt(5.1)

+

∫
I0

∫
Rn

∫
Rn

|P≥N∗u(t, y)|2|P≥N∗u(t, x)|
2n

n−2

|x− y|
dxdydt . η1N

−3
∗ .

Here, Nmin := inft∈I0 N(t).

Remark 5.2. Nmin > 0. Indeed, if Nmin = inft∈I0 N(t) = 0, there would exist a

sequence {tj}j∈N ⊂ I0 such that N(tj) → 0 as j → ∞. By passing, if necessary,

to a subsequence, we may assume {tj}j∈N converges to t∞ ∈ I0. By definition

(see Corollary 4.4),

‖P≤2N(tj)u(tj)‖Ḣ1
x

> η0.

From the triangle inequality, we get

η0 < ‖P≤2N(tj)u(tj)‖Ḣ1
x
≤ ‖P≤2N(tj)(u(tj)− u(t∞))‖Ḣ1

x
+ ‖P≤2N(tj)u(t∞)‖Ḣ1

x

. ‖u(tj)− u(t∞)‖Ḣ1
x

+ ‖P≤2N(tj)u(t∞)‖Ḣ1
x
.

50



As u ∈ C0
t Ḣ

1
x(I0 × Rn), a limiting argument combined with the dominated con-

vergence theorem leads to a contradiction.

As the right-hand side in (5.1) does not depend on |I0|, this estimate excludes

the formation of solitons, at least for frequencies ‘close’ to Nmin and provided |I0|

is taken sufficiently large. Frequencies much larger than Nmin will be dealt with

in Chapter 6.

5.1 An interaction virial identity and a general interaction

Morawetz estimate

The calculations in this section are difficult to justify without additional assump-

tions on the solution. This obstacle can be dealt with in the standard manner:

mollify the initial data and the nonlinearity to make the interim calculations valid

and observe that the mollifications can be removed at the end. For expository

reasons, we skip the details and keep all computations on a formal level.

We start by recalling the standard Morawetz action centered at a point. Let

a be a function on the slab I × Rn and φ satisfying

iφt + ∆φ = N(5.2)

on I × Rn. We define the Morawetz action centered at zero to be

M0
a (t) = 2

∫
Rn

aj(x)Im(φ(x)φj(x))dx.

A calculation establishes

Lemma 5.3.

∂tM
0
a =

∫
Rn

(−∆∆a)|φ|2 + 4

∫
Rn

ajkRe(φjφk) + 2

∫
Rn

aj{N , φ}j
p,
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where we define the momentum bracket to be {f, g}p = Re(f∇ḡ − g∇f̄) and

repeated indices are implicitly summed.

Note that when N is the energy-critical nonlinearity in dimension n, we have

{N , φ}p = − 2
n
∇(|φ|

2n
n−2 ).

Now let a(x) = |x|. For this choice of the function a, one should interpret

M0
a as a spatial average of the radial component of the L2

x-mass current. Easy

computations show that in dimension n ≥ 4 we have the following identities:

aj(x) =
xj

|x|

ajk(x) =
δjk

|x|
− xjxk

|x|3

∆a(x) =
n− 1

|x|

−∆∆a(x) =
(n− 1)(n− 3)

|x|3

and hence,

∂tM
0
a = (n− 1)(n− 3)

∫
Rn

|φ(x)|2

|x|3
dx + 4

∫
Rn

(δjk

|x|
− xjxk

|x|3
)
Re(φjφk)(x)dx

+ 2

∫
Rn

xj

|x|
{N , φ}j

p(x)dx

= (n− 1)(n− 3)

∫
Rn

|φ(x)|2

|x|3
dx + 4

∫
Rn

1

|x|
|∇0φ(x)|2dx

+ 2

∫
Rn

x

|x|
{N , φ}p(x)dx,

where we use ∇0 to denote the complement of the radial portion of the gradient,

that is, ∇0 = ∇− x
|x|

(
x
|x| · ∇

)
.

We may center the above argument at any other point y ∈ Rn. Choosing

a(x) = |x− y|, we define the Morawetz action centered at y to be

My
a (t) = 2

∫
Rn

x− y

|x− y|
Im(φ(x)∇φ(x))dx.
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The same considerations now yield

∂tM
y
a = (n− 1)(n− 3)

∫
Rn

|φ(x)|2

|x− y|3
dx + 4

∫
Rn

1

|x− y|
|∇yφ(x)|2dx

+ 2

∫
Rn

x− y

|x− y|
{N , φ}p(x)dx.

We are now ready to define the interaction Morawetz potential, which is a

way of quantifying how mass is interacting with (moving away from) itself:

M interact(t) =

∫
Rn

|φ(t, y)|2My
a (t)dy

= 2Im

∫
Rn

∫
Rn

|φ(t, y)|2 x− y

|x− y|
∇φ(t, x)φ(t, x)dxdy.

One gets immediately the easy estimate

|M interact(t)| ≤ 2‖φ(t)‖3
L2

x
‖φ(t)‖Ḣ1

x
.

Calculating the time derivative of the interaction Morawetz potential, we get

the following virial-type identity:

∂tM
interact =(n− 1)(n− 3)

∫
Rn

∫
Rn

|φ(y)|2|φ(x)|2

|x− y|3
dxdy(5.3)

+ 4

∫
Rn

∫
Rn

|φ(y)|2|∇yφ(x)|2

|x− y|
dxdy(5.4)

+ 2

∫
Rn

∫
Rn

|φ(y)|2 x− y

|x− y|
{N , φ}p(x)dxdy(5.5)

+ 2

∫
Rn

∂yk
Im(φφk)(y)My

a dy(5.6)

+ 4Im

∫
Rn

∫
Rn

{N , φ}m(y)
x− y

|x− y|
∇φ(x)φ(x)dxdy,(5.7)

where the mass bracket is defined to be {f, g}m = Im(fḡ).

As far as the terms in the above identity are concerned, at the end of the

section we will establish
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Lemma 5.4. (5.6) + (5.4) ≥ 0.

Thus, integrating over the compact interval I0 we get:

Proposition 5.5 (Interaction Morawetz inequality).

(n− 1)(n− 3)

∫
I0

∫
Rn

∫
Rn

|φ(t, y)|2|φ(t, x)|2

|x− y|3
dxdydt

+ 2

∫
I0

∫
Rn

∫
Rn

|φ(t, y)|2 x− y

|x− y|
{N , φ}p(t, x)dxdydt

≤ 4‖φ‖3
L∞t L2

x(I0×Rn)‖φ‖L∞t Ḣ1
x(I0×Rn)

+ 4

∫
I0

∫
Rn

∫
Rn

|{N , φ}m(t, y)||∇φ(t, x)||φ(t, x)|dxdydt.

Note that in the particular case N = |u|
4

n−2 u, after performing an integration

by parts in the momentum bracket term, the inequality becomes

(n− 1)(n− 3)

∫
I0

∫
Rn

∫
Rn

|u(t, y)|2|u(t, x)|2

|x− y|3
dxdydt

+
4(n− 1)

n

∫
I0

∫
Rn

∫
Rn

|u(t, y)|2|u(t, x)|
2n

n−2

|x− y|
dxdydt(5.8)

≤4‖u‖3
L∞t L2

x(I0×Rn)‖u‖L∞t Ḣ1
x(I0×Rn).

Assuming u has finite mass, this estimate is an expression of dispersion (as the

interaction between the masses of two particles is weak) and local smoothing (as

it implies |u|2 ∈ L2
t Ḣ

−n−3
2

x ). However, we have made no assumptions regarding

the finiteness of the L2
x-norm of the initial data u0 and thus (5.8) cannot be used

directly.

We turn now to the proof of Lemma 5.4. We write

(5.6) = 4

∫
Rn

∫
Rn

∂yk
Im(φ(y)φk(y))

xj − yj

|x− y|
Im(φ(x)φj(x))dxdy,
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where repeated indices are implicitly summed. We integrate by parts moving ∂yk

to the unit vector x−y
|x−y| . Using the identity

∂yk

(xj − yj

|x− y|

)
= − δkj

|x− y|
+

(xk − yk)(xj − yj)

|x− y|3

and the notation p(x) = 2Im(φ(x)∇φ(x)) for the momentum density, we rewrite

(5.6) as

−
∫

Rn

∫
Rn

[
p(y)p(x)−

(
p(y)

x− y

|x− y|

)(
p(x)

x− y

|x− y|

)] dxdy

|x− y|
.

In the quantity between the square brackets we recognize the inner product be-

tween the projections of the momentum densities p(x) and p(y) onto the orthog-

onal complement of (x− y). As

|π(x−y)⊥p(y)| =
∣∣∣p(y)− x− y

|x− y|

( x− y

|x− y|
p(y)

)∣∣∣ = 2|Im(φ(y)∇xφ(y))|

≤ 2|φ(y)||∇xφ(y))|

and the same estimate holds when we switch y and x, we get

(5.6) ≥ −4

∫
Rn

∫
Rn

|φ(y)||∇xφ(y))||φ(x)||∇yφ(x))| dxdy

|x− y|

≥ −2

∫
Rn

∫
Rn

|φ(y)|2|∇yφ(x)|2

|x− y|
dxdy − 2

∫
Rn

∫
Rn

|φ(x)|2|∇xφ(y)|2

|x− y|
dxdy

≥ −(5.4).

5.2 FLIM: the setup

We are now ready to start the proof of Proposition 5.1. As the statement is invari-

ant under scaling, we normalize N∗ = 1 and define uhi = P>1u and ulo = P≤1u.

As we assume 1 = N∗ < c(η2)Nmin, we have 1 < c(η2)N(t), ∀t ∈ I0. Choosing

c(η2) sufficiently small (smaller than η2c̃(η2) where c̃(η2) is the constant appearing
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in Corollary 4.4), the frequency localization result and Sobolev embedding yield

(5.9) ‖u<η−1
2
‖L∞t Ḣ1

x(I0×Rn) + ‖u<η−1
2
‖

L∞t L
2n

n−2
x (I0×Rn)

. η2.

In particular, this implies that ulo has small energy

‖ulo‖L∞t Ḣ1
x(I0×Rn) + ‖ulo‖

L∞t L
2n

n−2
x (I0×Rn)

. η2.(5.10)

Using (1.17) and (5.9), one also sees that uhi has small mass

‖uhi‖L∞t L2
x(I0×Rn) . η2.(5.11)

Our goal is to prove (5.1), which, in particular, implies∫
I0

∫
Rn

∫
Rn

|uhi(t, x)|2|uhi(t, y)|2

|x− y|3
dxdydt . η1.(5.12)

As in dimension n convolution with 1/|x|3 is basically the same as the fractional

integration operator |∇|−(n−3), the above estimate translates into

‖|uhi|2‖
L2

t Ḣ
−n−3

2
x (I0×Rn)

. η
1/2
1 .(5.13)

By a standard continuity argument, it suffices to prove (5.13) under the boot-

strap hypothesis

‖|uhi|2‖
L2

t Ḣ
−n−3

2
x (I0×Rn)

≤ (C0η1)
1
2 ,(5.14)

for a large constant C0 depending on energy but not on any of the η’s. In fact, we

need to prove that (5.14) implies (5.12) whenever I0 is replaced by a subinterval

of I0 in order to run the continuity argument correctly. However, it will become

clear to the reader that the argument below works not only for I0, but also for

any of its subintervals.

First, let us note that (5.14) implies

‖|∇|−
n−3

4 uhi‖L4
t,x(I0×Rn) . (C0η1)

1
4 ,(5.15)

as can be seen by taking f = uhi in the following
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Lemma 5.6.

‖|∇|−
n−3

4 f‖4 . ‖|∇|−
n−3

2 |f |2‖1/2
2 .(5.16)

Proof. As |∇|−n−3
4 and |∇|−n−3

2 correspond to convolutions with positive kernels,

it suffices to prove (5.16) for a positive Schwartz function f . For such an f , we

will show the pointwise inequality

S(|∇|−
n−3

4 f)(x) . [(|∇|−
n−3

2 |f |2)(x)]1/2,(5.17)

where S denotes the Littlewood-Paley square function Sf := (
∑

N |PNf |2)1/2.

Clearly (5.17) implies (5.16):

‖|∇|−
n−3

4 f‖4 . ‖S(|∇|−
n−3

4 f)‖4 . ‖(|∇|−
n−3

2 |f |2)1/2‖4 . ‖|∇|−
n−3

2 |f |2‖1/2
2 .

In order to prove (5.17) we will estimate each of the dyadic pieces,

PN(|∇|−
n−3

4 f)(x) =

∫
e2πixξf̂(ξ)|ξ|−

n−3
4 m(ξ/N)dξ,

where m(ξ) := φ(ξ) − φ(2ξ) in the notation introduced in Section 2. Since

|ξ|−n−3
4 m(ξ/N) ∼ N−n−3

4 m̃(ξ/N) for m̃ a multiplier with the same properties as

m, we have

PN(|∇|−
n−3

4 f)(x) ∼ f ∗
(
N−n−3

4 [m̃(ξ/N)]̌ (x)
)

= N
3(n+1)

4 f ∗ ˇ̃m(Nx)

= N
3(n+1)

4

∫
f(x− y) ˇ̃m(Ny)dy.
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An application of Cauchy-Schwartz yields

S(|∇|−
n−3

4 f)(x) =
(∑

N

|PN(|∇|−
n−3

4 f)(x)|2
)1/2

.
(∑

N

N
3(n+1)

2

∣∣∣∫ f(x− y) ˇ̃m(Ny)dy
∣∣∣2)1/2

.
(∑

N

N
3(n+1)

2

∫
| ˇ̃m(Ny)|dy

∫
|f(x− y)|2| ˇ̃m(Ny)|dy

)1/2

.
(∑

N

N
n+3

2

∫
|f(x− y)|2| ˇ̃m(Ny)|dy

)1/2

.

As ˇ̃m is rapidly decreasing,

∑
N

N
n+3

2 | ˇ̃m(Ny)| .
∑
N

N
n+3

2 min{1, |Ny|−100n} . |y|−
n+3

2 .

In this way we get

S(|∇|−
n−3

4 f)(x) .
(∫ |f(x− y)|2

|y|n+3
2

dy
)1/2

∼ [(|∇|−
n−3

2 |f |2)(x)]1/2,

and the claim follows.

We now use Proposition 5.5 to derive an interaction Morawetz estimate for

φ := uhi.

Proposition 5.7. With the notation and assumptions above we have∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|uhi(t, x)|2

|x− y|3
dxdydt

+

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|uhi(t, x)|
2n

n−2

|x− y|
dxdydt
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. η3
2(5.18)

+ η2

∫
I0

∫
Rn

|uhi(t, x)||Phi

(
|u|

4
n−2 u− |uhi|

4
n−2 uhi − |ulo|

4
n−2 ulo

)
(t, x)|dxdt(5.19)

+ η2

∫
I0

∫
Rn

|uhi(t, x)||Plo

(
|uhi|

4
n−2 uhi

)
(t, x)|dxdt(5.20)

+ η2

∫
I0

∫
Rn

|uhi(t, x)||Phi

(
|ulo|

4
n−2 ulo

)
(t, x)|dxdt(5.21)

+ η2
2

∫
I0

∫
Rn

|∇ulo(t, x)||ulo(t, x)|
4

n−2 |uhi(t, x)|dxdt(5.22)

+ η2
2

∫
I0

∫
Rn

|∇ulo(t, x)||uhi(t, x)|
n+2
n−2 dxdt(5.23)

+ η2
2

∫
I0

∫
Rn

|∇Plo

(
|u|

4
n−2 u

)
(t, x)||uhi(t, x)|dxdt(5.24)

+

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|ulo(t, x)|
n+2
n−2 |uhi(t, x)|

|x− y|
dxdydt(5.25)

+

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|ulo(t, x)||uhi(t, x)|
n+2
n−2

|x− y|
dxdydt(5.26)

+

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|Plo

(
|uhi|

4
n−2 uhi

)
(t, x)||uhi(t, x)|

|x− y|
dxdydt.(5.27)

Proof. Applying Proposition 5.5 with φ = uhi and N = Phi(|u|
4

n−2 u), we find

(n− 1)(n− 3)

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|uhi(t, x)|2

|x− y|3
dxdydt

+ 2

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2 x− y

|x− y|
{Phi(|u|

4
n−2 u), uhi}p(t, x)dxdydt

≤ 4‖uhi‖3
L∞t L2

x(I0×Rn)‖uhi‖L∞t Ḣ1
x(I0×Rn)

+ 4

∫
I0

∫
Rn

∫
Rn

|{Phi(|u|
4

n−2 u), uhi}m(t, y)||∇uhi(t, x)||uhi(t, x)|dxdydt.

Observe that (5.11) plus conservation of energy dictates

‖uhi‖3
L∞t L2

x(I0×Rn)‖uhi‖L∞t Ḣ1
x(I0×Rn) . η3

2,

which is the error term (5.18).
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We consider the mass bracket term first. Exploiting cancellation, we write

{Phi

(
|u|

4
n−2 u

)
, uhi}m = {Phi

(
|u|

4
n−2 u

)
− |uhi|

4
n−2 uhi, uhi}m

= {Phi

(
|u|

4
n−2 u− |uhi|

4
n−2 uhi − |ulo|

4
n−2 ulo

)
, uhi}m

− {Plo

(
|uhi|

4
n−2 uhi

)
, uhi}m + {Phi

(
|ulo|

4
n−2 ulo

)
, uhi}m.

Estimating∫
Rn

|uhi(t, x)||∇uhi(t, x)|dx . ‖uhi‖L∞t L2
x(I0×Rn)‖∇uhi‖L∞t L2

x(I0×Rn) . η2,

we see that we can bound the contribution of the mass bracket term by the sum

of (5.19), (5.20), and (5.21).

We turn now towards the momentum bracket term and write

{Phi

(
|u|

4
n−2 u

)
, uhi}p = {|u|

4
n−2 u, uhi}p − {Plo

(
|u|

4
n−2 u

)
, uhi}p

= {|u|
4

n−2 u, u}p − {|u|
4

n−2 u, ulo}p − {Plo

(
|u|

4
n−2 u

)
, uhi}p

= {|u|
4

n−2 u, u}p − {|ulo|
4

n−2 ulo, ulo}p − {Plo

(
|u|

4
n−2 u

)
, uhi}p

− {|u|
4

n−2 u− |ulo|
4

n−2 ulo, ulo}p

= − 2

n
∇(|u|

2n
n−2 − |ulo|

2n
n−2 )− {|u|

4
n−2 u− |ulo|

4
n−2 ulo, ulo}p

− {Plo

(
|u|

4
n−2 u

)
, uhi}p

= I + II + III.

To estimate the contribution coming from I, we integrate by parts in the

momentum bracket term; we obtain, up to a constant,∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2

|x− y|
(
|u(t, x)|

2n
n−2 − |ulo(t, x)|

2n
n−2

)
dxdydt

=

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|uhi(t, x)|
2n

n−2

|x− y|
dxdydt

+

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2
(
|u(t, x)|

2n
n−2 − |ulo(t, x)|

2n
n−2 − |uhi(t, x)|

2n
n−2

)
|x− y|

dxdydt.
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In the above expression we recognize the left-hand side term in Proposition 5.7

and an error that we estimate by the sum of (5.25) and (5.26).

In order to estimate the contribution of II, we write {f, g}p = ∇O(fg) +

O(f∇g) and hence,

{|u|
4

n−2 u− |ulo|
4

n−2 ulo, ulo}p

= ∇O
[(
|u|

4
n−2 u− |ulo|

4
n−2 ulo

)
ulo

]
(5.28)

+O
[(
|u|

4
n−2 u− |ulo|

4
n−2 ulo

)
∇ulo

]
.(5.29)

Integrating by parts, we estimate the error coming form (5.28) by a scalar

multiple of∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2
∣∣|u| 4

n−2 u− |ulo|
4

n−2 ulo

∣∣(t, x)|ulo(t, x)|
|x− y|

dxdydt

. (5.25) + (5.26),

where in order to obtain the last inequality we used (1.7).

We turn now to the contribution of (5.29). Let us first note that

‖u2
hi‖L∞t L1

x(I0×Rn) . ‖uhi‖2
L∞t L2

x(I0×Rn) . η2
2.(5.30)

Taking the absolute values inside the integrals and using (1.7) and (5.30), we

estimate the error coming from (5.29) by∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2
∣∣|u| 4

n−2 u− |ulo|
4

n−2 ulo

∣∣(t, x)|∇ulo(t, x)|dxdydt

. (5.22) + (5.23).

We consider next the contribution of III to the momentum bracket term.

When the derivative (from the definition of the momentum bracket) falls on

Plo(|u|
4

n−2 u), we take the absolute values inside the integrals and use (5.30) to
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estimate this contribution by∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|∇Plo

(
|u|

4
n−2 u

)
(t, x)||uhi(t, x)|dxdydt . (5.24).

When the derivative falls on uhi, we first integrate by parts and then take the

absolute values inside the integrals to obtain, as an error, a scalar multiple of∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|∇Plo

(
|u|

4
n−2 u

)
(t, x)||uhi(t, x)|dxdydt

+

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|Plo

(
|u|

4
n−2 u

)
(t, x)||uhi(t, x)|

|x− y|
dxdydt.

The first term on the right-hand side of the above inequality is controlled by

(5.24). The second term we estimate via (1.7) by∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|Plo

(
|uhi|

4
n−2 uhi

)
(t, x)||uhi(t, x)|

|x− y|
dxdydt

+

∫
I0

∫
Rn

∫
Rn

|uhi(t, y)|2|Plo

(
|u|

4
n−2 u− |uhi|

4
n−2 uhi

)
(t, x)||uhi(t, x)|

|x− y|
dxdydt

. (5.25) + (5.26) + (5.27).

5.3 Strichartz control on low and high frequencies in di-

mensions n ≥ 6

The purpose of this section is to obtain estimates on the low and high-frequency

parts of u, which we will use to bound the error terms in Proposition 5.7.

Throughout this section we take n ≥ 6. The proof in dimension n = 5 is different;

see Appendix C.

Proposition 5.8 (Strichartz control on low and high frequencies in n ≥ 6).

There exists a constant C1 possibly depending on the energy, but not on any of
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the η’s, such that we have the following estimates. The low frequencies satisfy

‖ulo‖Ṡ1(I0×Rn) ≤ C1η
4

(n−2)2

2 .(5.31)

The high frequencies of u can be split into a ‘good’ and a ‘bad’ part, uhi = g + b,

such that

‖g‖Ṡ0(I0×Rn) ≤ C1η
2

n−2

2 ,(5.32)

‖g‖Ṡ1(I0×Rn) ≤ C1,(5.33)

‖|∇|−
2

n−2 b‖
L2

t L

2n(n−2)

n2−3n−2
x (I0×Rn)

≤ C1η
1
4
1 .(5.34)

Proof. We define the two functions, g and b, to be the unique solutions to the

initial value problems
(i∂t + ∆)g = G + PhiF (ulo) + Phi

(
F (ulo + g)− F (g)− F (ulo)

)
g(t0) = uhi(t0)

(5.35)

and
(i∂t + ∆)b = B + Phi

(
bFz(ulo + g) + b̄Fz̄(ulo + g)

)
+ Phi

(
F (ulo + g + b)− F (ulo + g)− bFz(ulo + g)− b̄Fz̄(ulo + g)

)
b(t0) = 0,

where F : C → C is the function given by F (z) = |z|
4

n−2 z and G and B are such

that Phi

(
|g|

4
n−2 g

)
= G+B, as we will explain momentarily. Note that b ≡ uhi−g.

In Appendix B, we prove the existence and uniqueness of local solutions to (5.35),

which implies the existence and uniqueness of b.

In order to prove Proposition 5.8 we will use a bootstrap argument. Fix

t0 := inf I0 and let Ω1 be the set of all times T ∈ I0 such that (5.31) through

(5.34) hold on [t0, T ] with g and b defined above.

63



Define also Ω2 to be the set of all times T ∈ I0 such that (5.31) through

(5.34) hold on [t0, T ] with C1 replaced by 2C1 and g and b defined above. More

precisely, for T ∈ Ω2 we have

‖ulo‖Ṡ1([t0,T ]×Rn) ≤ 2C1η
4

(n−2)2

2(5.36)

and

‖g‖Ṡ0([t0,T ]×Rn) ≤ 2C1η
2

n−2

2 ,(5.37)

‖g‖Ṡ1([t0,T ]×Rn) ≤ 2C1,(5.38)

‖|∇|−
2

n−2 b‖
L2

t L

2n(n−2)

n2−3n−2
x ([t0,T ]×Rn)

≤ 2C1η
1
4
1 .(5.39)

In order to run a bootstrap argument successfully, we need to check four

things:

• First, we need to see that t0 ∈ Ω1; this follows immediately from the definition

of ulo, g, and b at the time t = t0, provided C1 is sufficiently large.

• Secondly, we need Ω1 to be closed; this follows from the definition of Ω1 and

Fatou’s lemma.

• Next, we need to prove that if T ∈ Ω1, then there exists a small neighborhood

of T contained in Ω2. This property follows for ulo from the dominated conver-

gence theorem and the fact that ulo is not only in Ṡ1([t0, T ] × Rn), but also in

C0
t Ḣ

1
x([t0, T ]×Rn) because of the smoothing effect of the free propagator. As far

as the high frequencies are concerned, it suffices to check it for g since b ≡ uhi−g

and thus the claim for b follows again from the dominated convergence theorem.

To prove this property for the function g basically amounts to proving existence of

g on a tiny interval, since the dominated convergence theorem and the smoothing

effect of the free propagator can be used, as before, to conclude our claim. The

existence of g is proved in the usual way: showing convergence of the iterates;

the proof is standard and we will defer it to Appendix B as to not disrupt the
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flow of the presentation.

• The last thing one needs to check in order to complete the bootstrap argument

is that Ω2 ⊂ Ω1 and this is what we will focus on for the rest of the proof of

Proposition 5.8. Fix therefore T ∈ Ω2. Throughout the rest of the proof all

spacetime norms will be on [t0, T ]× Rn.

Before we move on with our proof, let us make a few observations. First, note

that by (5.38) and the conservation of energy, we get

‖∇b‖∞,2 ≤ ‖∇uhi‖∞,2 + ‖∇g‖∞,2 ≤ 3C1,(5.40)

provided C1 is sufficiently large. Also, from (5.11) and (5.37) and by taking C1

sufficiently large, one easily sees that the mass of b is small:

‖b‖∞,2 ≤ ‖uhi‖∞,2 + ‖g‖∞,2 ≤ 3C1η
2

n−2

2 .(5.41)

Interpolating between (5.39) and (5.40), we obtain the following estimate which

we will repeatedly use in what follows:

‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

≤ C‖|∇|−
2

n−2 b‖
n−2

n

2,
2n(n−2)

n2−3n−2

‖∇b‖
2
n
∞,2 ≤ 3CC1η

n−2
4n

1 ,(5.42)

where C is a positive real constant. Also, by interpolation, (5.37), and (5.38), we

estimate

‖∇
1
4 g‖4, 2n

n−1
. ‖∇g‖

1
4

4, 2n
n−1

‖g‖
3
4

4, 2n
n−1

. ‖g‖
1
4

Ṡ1‖g‖
3
4

Ṡ0 ≤ η
1

n−2

2 .

Sobolev embedding dictates

‖|∇|−
n−3

4 g‖4,4 . ‖∇
1
4 g‖4, 2n

n−1
≤ η

1
2(n−2)

2(5.43)

and hence, by the triangle inequality, (5.15) and (5.43) yield

‖|∇|−
n−3

4 b‖4,4 . (C0η1)
1
4 .(5.44)
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We are now ready to resume the proof. We consider the low frequencies first.

Strichartz’s inequality yields the bound

‖ulo‖Ṡ1 . ‖ei(t−t0)∆ulo(t0)‖Ṡ1 + ‖∇PloF (u)‖2, 2n
n+2

.(5.45)

By Strichartz and (5.10),

‖ei(t−t0)∆ulo(t0)‖Ṡ1 . ‖∇ulo‖∞,2 . η2 ≤
C1

100
η

4
(n−2)2

2 .

To estimate the second term on the right-hand side of (5.45), we write

∇PloF (u) = ∇PloF (ulo) +∇Plo

(
F (u)− F (ulo)

)
.

By (5.10) and (5.36), we estimate

‖∇PloF (ulo)‖2, 2n
n+2

. ‖∇ulo‖2, 2n
n−2
‖ulo‖

4
n−2

∞, 2n
n−2

. η
4

n−2

2 ‖ulo‖Ṡ1 ≤
C1

100
η

4
(n−2)2

2 .

Using Bernstein to drop the derivative in front of Plo and then replacing the pro-

jection Plo by the operator with positive kernel P ′
lo having the same Lp

x-mapping

and Bernstein properties as Plo (see Section 1.2 for the definition), we estimate

‖∇Plo

(
F (u)− F (ulo)

)
‖2, 2n

n+2
. ‖P ′

lo

(
|ulo|

4
n−2 |uhi|

)
‖2, 2n

n+2
+ ‖P ′

lo

(
|uhi|

n+2
n−2

)
‖2, 2n

n+2
.

Decomposing uhi = g + b and exploiting the positivity of the operator P ′
lo, we get

‖∇Plo

(
F (u)− F (ulo)

)
‖2, 2n

n+2
. ‖P ′

lo

(
|ulo|

4
n−2 |g|

)
‖2, 2n

n+2
+ ‖P ′

lo

(
|ulo|

4
n−2 |b|

)
‖2, 2n

n+2

+ ‖P ′
lo

(
|g|

n+2
n−2

)
‖2, 2n

n+2
+ ‖P ′

lo

(
|b|

n+2
n−2

)
‖2, 2n

n+2
.

Using Bernstein to lower the spatial exponent when necessary, (5.10), as well as
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our assumptions (5.36) through (5.39), (5.41), and (5.42), we estimate

‖P ′
lo

(
|ulo|

4
n−2 |g|

)
‖2, 2n

n+2
. ‖ulo‖

4
n−2

∞, 2n
n−2

‖g‖2, 2n
n−2

. η
4

n−2

2 ‖g‖Ṡ0 ≤
C1

100
η

4
(n−2)2

2 ,

‖P ′
lo

(
|ulo|

4
n−2 |b|

)
‖2, 2n

n+2
. ‖P ′

lo

(
|ulo|

4
n−2 |b|

)
‖

2,
2n(n+2)

n2+5n−2

. ‖b‖ 2(n+2)
n−2

, 2n
n−1

‖ulo‖
4

n−2
2(n+2)

n−2
,
2(n+2)

n−2

. ‖b‖
n

n+2

2n
n−2

, 2n2

(n+1)(n−2)

‖b‖
2

n+2

∞,2‖ulo‖
4

n−2

Ṡ1 ≤ C1

100
η

4
(n−2)2

2 ,

‖P ′
lo

(
|g|

n+2
n−2

)
‖2, 2n

n+2
. ‖P ′

lo

(
|g|

n+2
n−2

)
‖

2,
2n(n−2)

n2+4

. ‖g‖
n+2
n−2
2(n+2)

n−2
,
2n(n+2)

n2+4

. ‖g‖
n+2
n−2

Ṡ0

≤ C1

100
η

4
(n−2)2

2 ,

‖P ′
lo

(
|b|

n+2
n−2

)
‖2, 2n

n+2
. ‖P ′

lo

(
|b|

n+2
n−2

)
‖

2,
2n(n−2)

(n+2)(n−1)

. ‖b‖
n+2
n−2
2(n+2)

n−2
, 2n
n−1

. ‖b‖
n

n−2

2n
n−2

, 2n2

(n+1)(n−2)

‖b‖
2

n−2

∞,2 ≤
C1

100
η

4
(n−2)2

2 .

Therefore, putting everything together we obtain control over the low frequencies,

‖ulo‖Ṡ1 ≤ C1η
4

(n−2)2

2 .

We turn now to the high frequencies. We will first clarify what G and B are.

The reason we need to split PhiF (g) into G + B is that PhiF (g) is neither ‘good

enough’ to be part of g (as one cannot close the bootstrap for the Ṡ1 bound on g)

nor ‘sufficiently bad’ to be part of b (as it’s not sufficiently fast decaying to belong

to the appropriate Lp
x spaces, unless 6 ≤ n ≤ 14). We thus use an interpolation

trick to split PhiF (g) into a part which is small and has high spatial integrability,

G, and a part which has low spatial integrability, B. Indeed, we have

Lemma 5.9. There exist two functions G and B such that PhiF (g) = G+B and
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moreover,

‖G‖ 2(n+2)
n+4

,
2(n+2)

n+4

≤ ηc
2η

2
n−2

2(5.46)

‖∇G‖ 2(n+2)
n+4

,
2(n+2)

n+4

� η100
1(5.47)

‖|∇|−
2

n−2 B‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

� η100
1 ,(5.48)

where c > 0 is a small constant depending on the dimension n.

Proof. Let us first note that for 6 ≤ n ≤ 14, we can choose G := 0 and B :=

PhiF (g), since by Bernstein and interpolation,

‖|∇|−
2

n−2 PhiF (g)‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

. ‖PhiF (g)‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

. ‖g‖
n+2
n−2

2(n+2)2

n2+3n−14
,

2(n+2)2

n2+3n−14

. ‖g‖
3n2−4n−20
2(n+2)(n−2)

2(n+2)2

n2+3n−14
,

2n(n+2)2

n3+2n2−2n+28

‖g‖
(n+2)(14−n)
2(n+2)(n−2)

2(n+2)2

n2+3n−14
,

2n(n+2)2

n3−10n+20

. ‖g‖
3n2−4n−20
2(n+2)(n−2)

Ṡ0 ‖g‖
(n+2)(14−n)
2(n+2)(n−2)

Ṡ1

. ηc
2 � η100

1 ,

where the last line follows from (5.37) and (5.38). Here, c is a small positive

constant1 depending only on the dimension n.

We consider next the case n > 14. To decompose PhiF (g) into a part with

high spatial integrability and a part with low spatial integrability, we first need

PhiF (g) to belong to an intermediate Lp
x space. We choose the space L

2(n−2)
n

t,x and

use (5.37) and (5.38) to estimate

‖F (g)‖ 2(n−2)
n

,
2(n−2)

n

. ‖g‖
n+2
n−2
2(n+2)

n
,
2(n+2)

n

. ‖g‖
n+2
n−2

Ṡ0 ≤ ηc
2‖g‖Ṡ0(5.49)

1Throughout the proof, the constant c may vary from line to line; however, it will always
remain positive and will depend only on the dimension.
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and, by the boundedness of the Riesz potentials on Lp
x, 1 < p < ∞,

‖|∇|F (g)‖ 2(n−2)
n

,
2(n−2)

n

. ‖∇F (g)‖ 2(n−2)
n

,
2(n−2)

n

. ‖∇g‖ 2(n+2)
n

,
2(n+2)

n

‖g‖
4

n−2
2(n+2)

n
,
2(n+2)

n

. ‖g‖Ṡ1‖g‖
4

n−2

Ṡ0 ≤ ηc
2.(5.50)

We now decompose

PhiF (g) = P1<·<η−100
2

F (g) + P≥η−100
2

F (g).(5.51)

Consider first the term in (5.51) involving very high frequencies. Writing

P≥η−100
2

F (g) = |∇|−1P≥η−100
2

(
|∇|F (g)

)
,

we define

Gvhi := |∇|−1P≥η−100
2

(
χ{||∇|F (g)|≤1}|∇|F (g)

)
and

Bvhi := |∇|−1P≥η−100
2

(
(1− χ{||∇|F (g)|≤1})|∇|F (g)

)
,

where χ{||∇|F (g)|≤1} is a smooth cutoff.

By Bernstein, Hölder, and (5.50), we estimate

‖Gvhi‖ 2(n+2)
n+4

,
2(n+2)

n+4

. η100
2 ‖P≥η−100

2

(
χ{||∇|F (g)|≤1}|∇|F (g)

)
‖ 2(n+2)

n+4
,
2(n+2)

n+4

. η100
2 ‖|∇|F (g)‖

(n−2)(n+4)
n(n+2)

2(n−2)
n

,
2(n−2)

n

≤ η100
2 .(5.52)

By the boundedness of the Riesz transforms on Lp
x with 1 < p < ∞ and (5.50),

we estimate

‖∇Gvhi‖ 2(n+2)
n+4

,
2(n+2)

n+4

. ‖P≥η−100
2

(
χ{||∇|F (g)|≤1}|∇|F (g)

)
‖ 2(n+2)

n+4
,
2(n+2)

n+4

. ‖|∇|F (g)‖
(n−2)(n+4)

n(n+2)

2(n−2)
n

,
2(n−2)

n

≤ ηc
2 � η100

1 .(5.53)
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By Bernstein, Hölder, and (5.50), we get

‖|∇|−
2

n−2 Bvhi‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

. η
200
n−2

2 ‖Bvhi‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

. η
100n
n−2

2 ‖|∇|F (g)‖
n2+3n−14

n(n+2)

2(n−2)
n

,
2(n−2)

n

≤ η100
2 .(5.54)

We consider next the medium frequency term in (5.51) and write

P1<·<η−100
2

F (g) ∼
∑

1<N<η−100
2

P̃NPNF (g),

where P̃N is an operator having the same properties as PN and double support

on the Fourier side. For dyadic N ’s between 1 and η−100
2 , we define

GN := χ{|PNF (g)|≤1/N}PNF (g),

BN := (1− χ{|PNF (g)|≤1/N})PNF (g),

where χ{|PNF (g)|≤1/N} are again smooth cutoffs. We define

G := Gmed + Gvhi and B := Bmed + Bvhi,

where

Gmed :=
∑

1<N<η−100
2

P̃NGN and Bmed :=
∑

1<N<η−100
2

P̃NBN .

Using Hölder and (5.49), we estimate

‖P̃NGN‖ 2(n+2)
n+4

,
2(n+2)

n+4

. ‖F (g)‖
(n−2)(n+4)

n(n+2)

2(n−2)
n

,
2(n−2)

n

N− 8
n(n+2) ≤ ‖g‖

(n+4)
n

Ṡ0 N− 8
n(n+2) ,(5.55)

which implies together with (5.37) that

‖Gmed‖ 2(n+2)
n+4

,
2(n+2)

n+4

.
∑

1<N<η−100
2

‖P̃NGN‖ 2(n+2)
n+4

,
2(n+2)

n+4

. ‖g‖
(n+4)

n

Ṡ0

∑
1<N<η−100

2

N− 8
n(n+2)

. ‖g‖
(n+4)

n

Ṡ0 ≤ ηc
2‖g‖Ṡ0 .(5.56)
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Now, by Bernstein, Hölder, and (5.50), we get

‖∇P̃NGN‖ 2(n+2)
n+4

,
2(n+2)

n+4

. N‖PNF (g)‖
(n−2)(n+4)

n(n+2)

2(n−2)
n

,
2(n−2)

n

N− 8
n(n+2)

. NN− (n−2)(n+4)
n(n+2) ‖PN∇F (g)‖

(n−2)(n+4)
n(n+2)

2(n−2)
n

,
2(n−2)

n

N− 8
n(n+2)

. ηc
2.(5.57)

As there are about log(η−1
2 ) dyadic numbers N between 1 and η−100

2 , by (5.50)

and (5.57), we get

‖∇Gmed‖ 2(n+2)
n+4

,
2(n+2)

n+4

.
∑

1<N<η−100
2

‖∇P̃NGN‖ 2(n+2)
n+4

,
2(n+2)

n+4

. log(η−1
2 )ηc

2 � η100
1 .(5.58)

By Hölder, Bernstein, and (5.50), we estimate

‖|∇|−
2

n−2 P̃NBN‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

. N− 2
n−2‖PNF (g)‖

n2+3n−14
n(n+2)

2(n−2)
n

,
2(n−2)

n

N
n−14

n(n+2)

. N− 2
n−2 N−n2+3n−14

n(n+2) ‖PN∇F (g)‖
n2+3n−14

n(n+2)

2(n−2)
n

,
2(n−2)

n

N
n−14

n(n+2)

. N− n
n−2 ηc

2.(5.59)

Hence,

‖|∇|−
2

n−2 Bmed‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

.
∑

1<N<η−100
2

‖|∇|−
2

n−2 P̃NBN‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

. ηc
2

∑
1<N<η−100

2

N− n
n−2 . ηc

2.(5.60)

Thus, by (5.52) and (5.56) we get (5.46), by (5.53) and (5.58) we get (5.47),

and by (5.54) and (5.60) we get (5.48).
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We are now ready to resume the bootstrap for g and b. Consider first the

‘good’ part, g. By Strichartz, Bernstein, (1.8), (5.10), (5.11), (5.36), (5.37), and

(5.46), we estimate

‖g‖Ṡ0 . ‖uhi‖∞,2 + ‖G‖ 2(n+2)
n+4

,
2(n+2)

n+4

+ ‖PhiF (ulo)‖2, 2n
n+2

+ ‖Phi

(
F (ulo + g)− F (ulo)− F (g)

)
‖2, 2n

n+2

. η2 + ηc
2η

2
n−2

2 + ‖∇PhiF (ulo)‖2, 2n
n+2

+ ‖g|ulo|
4

n−2 χ{|g|≤|ulo|}‖2, 2n
n+2

+ ‖ulo|g|
4

n−2 χ{|ulo|<|g|}‖2, 2n
n+2

. ηc
2η

2
n−2

2 + ‖ulo‖Ṡ1‖ulo‖
4

n−2

∞, 2n
n−2

+ ‖g|ulo|
4

n−2‖2, 2n
n+2

. ηc
2η

2
n−2

2 + ‖g‖Ṡ0‖ulo‖
4

n−2

∞, 2n
n−2

≤ C1η
2

n−2

2 .

Similarly, by Strichartz, (1.9), (5.36), (5.38), and (5.47), we estimate

‖g‖Ṡ1 . ‖∇uhi‖∞,2 + ‖∇G‖ 2(n+2)
n+4

,
2(n+2)

n+4

+ ‖∇PhiF (ulo)‖2, 2n
n+2

+ ‖∇Phi

(
F (ulo + g)− F (ulo)− F (g)

)
‖2, 2n

n+2

. 1 + η100
1 + ‖ulo‖Ṡ1‖ulo‖

4
n−2

∞, 2n
n−2

+ ‖∇g|ulo|
4

n−2‖2, 2n
n+2

+ ‖∇ulo|g|
4

n−2‖2, 2n
n+2

. 1 + ‖ulo‖
4

n−2

∞, 2n
n−2

‖g‖Ṡ1 + ‖ulo‖Ṡ1‖g‖
4

n−2

Ṡ1

≤ C1,

provided C1 is sufficiently large.

We turn now to b. Using the triangle inequality and the inhomogeneous
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Strichartz estimates (2.6) and (2.7), we estimate

‖|∇|−
2

n−2 b‖
2,

2n(n−2)

n2−3n−2

. ‖|∇|−
2

n−2 B‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

+ ‖|∇|−
2

n−2 Phi

(
bFz(ulo + g) + b̄Fz̄(ulo + g)

)
‖

2,
2n(n−2)

n2+n−10

+ ‖|∇|−
2

n−2 Phi

(
F (ulo + g + b)− F (ulo + g)

− bFz(ulo + g)− b̄Fz̄(ulo + g)
)
‖

2,
2n(n−2)

n2+n−10

.

By (5.48),

‖|∇|−
2

n−2 B‖ 2(n−2)(n+2)

n2+3n−14
,
2(n−2)(n+2)

n2+3n−14

� η100
1 ≤ C1

100
η

1
4
1 .

By the Fundamental Theorem of Calculus, we have

F (z + w)− F (z)− wFz(z)− w̄Fz̄(z) = w

∫ 1

0

[Fz(z + tw)− Fz(z)]dt

+ w̄

∫ 1

0

[Fz̄(z + tw)− Fz̄(z)]dt.

As z → Fz(z) and z → Fz̄(z) are Hölder continuous of order 4
n−2

, we see that

|F (z + w)− F (z)− wFz(z)− w̄Fz̄(z)| . |w|
∫ 1

0

|tw|
4

n−2 dt . |w|
n+2
n−2 .

Therefore, by Sobolev embedding and the above considerations (with z = ulo + g

and w = b), we get

‖|∇|−
2

n−2 Phi

(
F (ulo + g + b)− F (ulo + g)− bFz(ulo + g)− b̄Fz̄(ulo + g)

)
‖

2,
2n(n−2)

n2+n−10

. ‖|b|
n+2
n−2‖2, 2n

n+3
. ‖b‖

n+2
n−2
2(n+2)

n−2
,

2n(n+2)
(n−2)(n+3)

.

Interpolating between (5.39), (5.40), and (5.44), we obtain

‖b‖
n+2
n−2
2(n+2)

n−2
,

2n(n+2)
(n−2)(n+3)

. ‖|∇|−
n−3

4 b‖
8

n2−3n−2

4,4 ‖|∇|−
2

n−2 b‖
n2−3n−6

n2−3n−2

2,
2n(n−2)

n2−3n−2

‖∇b‖
4n(n−4)

(n−2)(n2−3n−2)

∞,2

. η
1
4
+

1 .(5.61)
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Hence,

‖|∇|−
2

n−2 Phi

(
F (ulo + g + b)− F (ulo + g)− bFz(ulo + g)−b̄Fz̄(ulo + g)

)
‖

2,
2n(n−2)

n2+n−10

≤ C1

100
η

1
4
1 .

We turn now towards the remaining two terms,

‖|∇|−
2

n−2 Phi

(
b|ulo + g|

4
n−2

)
‖

2,
2n(n−2)

n2+n−10

and

‖|∇|−
2

n−2 Phi

(
b̄|ulo + g|

4
n−2

(ulo + g)2

|ulo + g|2
)
‖

2,
2n(n−2)

n2+n−10

.

As the method of treating them is the same, in particular it appeals to the fact

that the maps z 7→ |z|
4

n−2 and z 7→ |z|
4

n−2 z2

|z|2 are Hölder continuous of order 4
n−2

,

let us pick, for the sake of the exposition, the first one. By the triangle inequality,

we estimate

‖|∇|−
2

n−2 Phi

(
b|ulo + g|

4
n−2

)
‖

2,
2n(n−2)

n2+n−10

. ‖|∇|−
2

n−2 Phi

(
b|ulo|

4
n−2

)
‖

2,
2n(n−2)

n2+n−10

+ ‖|∇|−
2

n−2 Phi

(
b|ulo + g|

4
n−2 − b|ulo|

4
n−2

)
‖

2,
2n(n−2)

n2+n−10

.

Using the Hölder continuity and Sobolev embedding, we bound

‖|∇|−
2

n−2 Phi

(
b|ulo + g|

4
n−2 − b|ulo|

4
n−2

)
‖

2,
2n(n−2)

n2+n−10

. ‖b|g|
4

n−2‖2, 2n
n+3

.

Now, by interpolation and our assumptions,

‖b|g|
4

n−2‖2, 2n
n+3

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖g‖
4

n−2

4n
n−2

, 4n2

(2n+1)(n−2)

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖g‖
3
n

4n
n−2

, 2n2

n2−n+2

‖g‖
n+6

n(n−2)

4n
n−2

, 2n2

n2−3n+2

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖g‖
3
n

Ṡ0‖g‖
n+6

n(n−2)

Ṡ1

≤ C1

100
η

1
4
1 .
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In order to estimate

‖|∇|−
2

n−2 Phi

(
b|ulo|

4
n−2

)
‖

2,
2n(n−2)

n2+n−10

,

we drop the projection onto the high frequencies, Phi, but we split |ulo|
4

n−2 into

high and low frequencies. By the triangle inequality, we get

‖|∇|−
2

n−2 (b|ulo|
4

n−2 )‖
2,

2n(n−2)

n2+n−10

. ‖|∇|−
2

n−2 (bP≤1/4|ulo|
4

n−2 )‖
2,

2n(n−2)

n2+n−10

+ ‖|∇|−
2

n−2 (bP>1/4|ulo|
4

n−2 )‖
2,

2n(n−2)

n2+n−10

.

As b is high frequency, we see that

‖|∇|−
2

n−2 (bP≤1/4|ulo|
4

n−2 )‖
2,

2n(n−2)

n2+n−10

. ‖(|∇|−
2

n−2 b)P≤1/4|ulo|
4

n−2‖
2,

2n(n−2)

n2+n−10

. ‖|∇|−
2

n−2 b‖
2,

2n(n−2)

n2−3n−2

‖P≤1/4|ulo|
4

n−2‖∞, n
2

. 2C1η
1
4
1 ‖ulo‖

4
n−2

∞, 2n
n−2

≤ C1

100
η

1
4
1 .

As far as the term

‖|∇|−
2

n−2 (bP>1/4|ulo|
4

n−2 )‖
2,

2n(n−2)

n2+n−10

is concerned, let us note that

‖|∇|−
2

n−2 (bP>1/4|ulo|
4

n−2 )‖
2,

2n(n−2)

n2+n−10

. ‖|∇|−
2

n−2 b‖
2,

2n(n−2)

n2−3n−2

‖|∇|
2

n−2 P>1/4|ulo|
4

n−2‖∞,
n(n−2)
2(n−1)

. 2C1η
1
4
1 ‖|∇|

2
n−2 P>1/4|ulo|

4
n−2‖∞,

n(n−2)
2(n−1)

,

as can easily be seen by taking j = |∇|−
2

n−2 b and k = |∇|
2

n−2 P>1/4|ulo|
4

n−2 in the

following

Lemma 5.10.

‖|∇|−
2

n−2{(|∇|
2

n−2 j)(|∇|−
2

n−2 k)}‖
L

2n(n−2)

n2+n−10
x

. ‖j‖
L

2n(n−2)

n2−3n−2
x

‖k‖
L

n(n−2)
2(n−1)
x

.(5.62)
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Proof. In order to prove Lemma 5.10, we decompose the left-hand side into πh,h,

πl,h, and πh,l which represent the projections onto high-high, low-high, and high-

low frequency interactions.

The high-high and low-high frequency interactions are going to be treated in

the same manner. Let’s consider for example the first one. A simple application

of Sobolev embedding yields

‖|∇|−
2

n−2 πh,h{(|∇|
2

n−2 j)(|∇|−
2

n−2 k)}‖
L

2n(n−2)

n2+n−10
x

. ‖πh,h{(|∇|
2

n−2 j)(|∇|−
2

n−2 k)}‖
L

2n
n+3
x

.

Now we only have to notice that the multiplier associated to the operator T (j, k) =

πh,h{(|∇|
2

n−2 j)(|∇|−
2

n−2 k)}, i.e.∑
N∼M

|ξ1|
2

n−2 P̂Nj(ξ1)|ξ2|−
2

n−2 P̂Mk(ξ2),

is a symbol of order one with ξ = (ξ1, ξ2), since then a theorem of R. R. Coifman

and Y. Meyer ([10], [11]) yields the claim.

To deal with the πh,l term, we first notice that the multiplier associated to

the operator T (j, k̃) = |∇|−
2

n−2 πh,l{(|∇|
2

n−2 j)k̃}, i.e.∑
N&M

|ξ1 + ξ2|−
2

n−2 |ξ1|
2

n−2 P̂Nj(ξ1)P̂M k̃(ξ2),

is an order one symbol. The result cited above yields

‖|∇|−
2

n−2 πh,l{(|∇|
2

n−2 j)(|∇|−
2

n−2 k)}‖
L

2n(n−2)

n2+n−10
x

. ‖j‖
L

2n(n−2)

n2−3n−2
x

‖|∇|−
2

n−2 k‖
L

n
2
x

.

Finally, Sobolev embedding dictates the estimate ‖|∇|−
2

n−2 k‖
L

n
2
x

. ‖k‖
L

n(n−2)
2(n−1)
x

.

Thus, we are left with the task of estimating

‖|∇|
2

n−2 P>1/4|ulo|
4

n−2‖∞,
n(n−2)
2(n−1)

.
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Note that P>1/4|ulo|
4

n−2 ∈ Λ̇
n(n−2)
2(n−1)
4

n−2

, that is, P>1/4|ulo|
4

n−2 is homogeneous Hölder

continuous of order 4
n−2

in L
n(n−2)
2(n−1)
x . Indeed, as ∇ulo ∈ L∞

t L
2n

n−1
x (by Bernstein),

we have

‖u(h)
lo (t)− ulo(t)‖

L
2n

n−1
x

. |h|‖∇ulo‖∞, 2n
n−1

. η2|h|,

where u(h) denotes the translation u(h)(x) := u(x− h). As the map z 7→ |z|
4

n−2 is

Hölder continuous of order 4
n−2

, we see that∥∥(|ulo|
4

n−2

)(h)
(t)− |ulo|

4
n−2 (t)

∥∥
L

n(n−2)
2(n−1)
x

. η
4

n−2

2 |h|
4

n−2 ,

which implies P>1/4|ulo|
4

n−2 ∈ Λ̇
n(n−2)
2(n−1)
4

n−2

. Furthermore, as P>1/4|ulo|
4

n−2 is restricted

to high frequencies, the Besov characterization of the homogeneous Hölder con-

tinuous functions (see Chapter VI in [32]) yields

|∇|
2

n−2 P>1/4|ulo|
4

n−2 ∈ L∞
t L

n(n−2)
2(n−1)
x .

Indeed, for F0 := P>1/4|ulo|
4

n−2 , we have F0 ∈ Λ̇
n(n−2)
2(n−1)
4

n−2

iff for all dyadic N ’s we

have

N
4

n−2‖PNF0‖
L

n(n−2)
2(n−1)
x

. η
4

n−2

2 .

Hence,

‖|∇|
2

n−2 F0‖
L

n(n−2)
2(n−1)
x

.
∑

N>1/4

N
2

n−2‖PNF0‖
L

n(n−2)
2(n−1)
x

. η
4

n−2

2

∑
N>1/4

N
2

n−2 N− 4
n−2

. η
4

n−2

2 .

Thus,

‖|∇|−
2

n−2 (bP>1/4|ulo|
4

n−2 )‖
2,

2n(n−2)

n2+n−10

. 2C1η
1
4
1 η

4
n−2

2 ≤ C1

100
η

1
4
1 .

Putting everything together, we find that

‖|∇|−
2

n−2 b‖
2,

2n(n−2)

n2−3n−2

≤ C1η
1
4
1 .

Therefore T ∈ Ω1. This concludes the proof of Proposition 5.8.

77



5.4 FLIM: the error terms in dimensions n ≥ 6

In this section we use the control on ulo and uhi that Proposition 5.8 won us to

bound the terms appearing on the right-hand side of Proposition 5.7. For the

rest of this section n ≥ 6 and all spacetime norms are taken on I0 × Rn.

Consider (5.19). Using (1.8) and Hölder, we estimate

(5.19) . η2

{
‖|uhi|2|ulo|

4
n−2 χ{|uhi|�|ulo|}‖L1

t,x
+ ‖|uhi|

n+2
n−2 uloχ{|ulo|�|uhi|}‖L1

t,x

}
. η2‖|uhi|2|ulo|

4
n−2‖L1

t,x
. η2

{
‖|g|2|ulo|

4
n−2‖L1

t,x
+ ‖|b|2|ulo|

4
n−2‖L1

t,x

}
. η2

{
‖g‖2

2, 2n
n−2
‖ulo‖

4
n−2

∞, 2n
n−2

+ ‖b‖2
2n

n−2
, 2n2

(n+1)(n−2)

‖ulo‖
4

n−2

2n
n−2

, 4n2

(n+2)(n−2)

}
.

For n ≥ 6, an application of Bernstein yields

‖ulo‖ 2n
n−2

, 4n2

(n+2)(n−2)

. ‖ulo‖ 2n
n−2

, 2n2

(n−2)2
. ‖ulo‖Ṡ1

and hence, by Proposition 5.8 and (5.10),

(5.19) . η2

{
‖g‖2

Ṡ0‖ulo‖
4

n−2

∞, 2n
n−2

+ ‖b‖2
2n

n−2
, 2n2

(n+1)(n−2)

‖ulo‖
4

n−2

Ṡ1

}
� η1.

Consider next the error term (5.20). Replacing the projection Plo by the

positive-kernel operator P ′
lo having the same Lp

x-mapping and Bernstein proper-

ties as Plo and splitting uhi = g + b, we estimate

(5.20) . η2

{
‖gP ′

lo(|g|
n+2
n−2 )‖L1

t,x
+ ‖gP ′

lo(|b|
n+2
n−2 )‖L1

t,x
+ ‖bP ′

lo(|g|
n+2
n−2 )‖L1

t,x

+ ‖bP ′
lo(|b|

n+2
n−2 )‖L1

t,x

}
.
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By Proposition 5.8 and Bernstein, we estimate

‖gP ′
lo(|g|

n+2
n−2 )‖L1

t,x
. ‖g‖2

2, 2n
n−2
‖g‖

4
n−2

∞, 2n
n−2

. C
2n

n−2

1 η
4

n−2

2 ,

‖gP ′
lo(|b|

n+2
n−2 )‖L1

t,x
. ‖g‖2, 2n

n−2
‖P ′

lo(|b|
n+2
n−2 )‖2, 2n

n+2
. ‖g‖Ṡ0‖P ′

lo(|b|
n+2
n−2 )‖2, 2n

n+3

. ‖g‖Ṡ0‖b‖
n+2
n−2
2(n+2)

n−2
,

2n(n+2)
(n−2)(n+3)

. C
2n

n−2

1 η
2

n−2

2 η
1
4
1 ,

‖bP ′
lo(|g|

n+2
n−2 )‖L1

t,x
. ‖b‖ 2n

n−2
, 2n2

(n+1)(n−2)

‖P ′
lo(|g|

n+2
n−2 )‖ 2n

n+2
, 2n2

n2+n+2

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖P ′
lo(|g|

n+2
n−2 )‖ 2n

n+2
,

2n2(n−2)

(n2−2n+4)(n+2)

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖g‖
n+2
n−2

2n
n−2

, 2n2

n2−2n+4

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖g‖
n+2
n−2

Ṡ0 . C
2n

n−2

1 η
n−2
4n

1 η
2(n+2)

(n−2)2

2 ,

‖bP ′
lo(|b|

n+2
n−2 )‖L1

t,x
. ‖b‖ 2n

n−2
, 2n2

(n+1)(n−2)

‖P ′
lo(|b|

n+2
n−2 )‖ 2n

n+2
, 2n2

n2+n+2

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖P ′
lo(|b|

n+2
n−2 )‖ 2n

n+2
, 2n2

(n+1)(n+2)

. ‖b‖
2n

n−2

2n
n−2

, 2n2

(n+1)(n−2)

. C
2n

n−2

1 η
1
2
1 .

Hence,

(5.20) . η2C
2n

n−2

1

{
η

4
n−2

2 + η
2

n−2

2 η
1
4
1 + η

n−2
4n

1 η
2(n+2)

(n−2)2

2 + η
1
2
1

}
� η1.

We turn next to the error term (5.21). Decomposing again uhi = g + b, we

estimate

(5.21) . η2

{
‖gPhi

(
|ulo|

4
n−2 ulo

)
‖L1

t,x
+ ‖bPhi

(
|ulo|

4
n−2 ulo

)
‖L1

t,x

}
.

By Hölder, Bernstein, and Proposition 5.8, we estimate

‖gPhi

(
|ulo|

4
n−2 ulo

)
‖L1

t,x
. ‖g‖2, 2n

n−2
‖∇ulo‖2, 2n

n−2
‖ulo‖

4
n−2

∞, 2n
n−2

. ‖g‖Ṡ0‖ulo‖Ṡ1‖ulo‖
4

n−2

∞, 2n
n−2

. C2
1η

2
n−2

2 η
4

(n−2)2

2 η
4

n−2

2 ,

‖bPhi

(
|ulo|

4
n−2 ulo

)
‖L1

t,x
. ‖b‖ 2n

n−2
, 2n2

(n+1)(n−2)

‖∇ulo‖ 2n
n−2

, 2n2

n2−2n+4

‖ulo‖
4

n−2

2n
n−2

, 8n2

(3n−2)(n−2)

.
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For n ≥ 6, Bernstein dictates

‖ulo‖ 2n
n−2

, 8n2

(3n−2)(n−2)

. ‖ulo‖ 2n
n−2

, 2n2

(n−2)2
. ‖ulo‖Ṡ1(5.63)

and hence

‖bPhi

(
|ulo|

4
n−2 ulo

)
‖L1

t,x
. ‖b‖ 2n

n−2
, 2n2

(n+1)(n−2)

‖ulo‖
n+2
n−2

Ṡ1 . C
2n

n−2

1 η
n−2
4n

1 η
4

(n−2)2
·n+2
n−2

2 .

Thus (5.21) � η1.

Consider now (5.22). Decomposing uhi = g + b and applying Hölder, we

estimate

(5.22) . η2
2‖∇ulo‖2, 2n

n−2

{
‖g|ulo|

4
n−2‖2, 2n

n+2
+ ‖b|ulo|

4
n−2‖2, 2n

n+2

}
.

Using again Proposition 5.8, we estimate

‖g|ulo|
4

n−2‖2, 2n
n+2

. ‖g‖2, 2n
n−2
‖ulo‖

4
n−2

∞, 2n
n−2

. ‖g‖Ṡ0‖ulo‖
4

n−2

∞, 2n
n−2

. C1η
6

n−2

2 ,

and

‖b|ulo|
4

n−2‖2, 2n
n+2

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖ulo‖
4

n−2

4n
n−2

, 8n2

(3n+2)(n−2)

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖ulo‖
4

n−2

Ṡ1 . C
n+2
n−2

1 η
n−2
4n

1 η
16

(n−2)3

2 ,(5.64)

where we also used the fact that for n ≥ 6, an application of Bernstein yields

‖ulo‖ 4n
n−2

, 8n2

(3n+2)(n−2)

. ‖ulo‖ 4n
n−2

, 2n2

n2−3n+2

. ‖ulo‖Ṡ1 ,(5.65)

Thus

(5.22) . η2
2η

4
(n−2)2

2

{
C2

1η
6

n−2

2 + C
2n

n−2

1 η
n−2
4n

1 η
16

(n−2)3

2

}
� η1.

We turn now towards the error term (5.23), which we estimate by

(5.23) . η2
2

{
‖∇ulo|g|

n+2
n−2‖L1

t,x
+ ‖∇ulo|b|

n+2
n−2‖L1

t,x

}
.
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By Hölder and Proposition 5.8,

‖∇ulo|g|
n+2
n−2‖L1

t,x
. ‖∇ulo‖2, 2n

n−2
‖g‖2, 2n

n−2
‖g‖

4
n−2

∞, 2n
n−2

. ‖ulo‖Ṡ1‖g‖Ṡ0‖g‖
4

n−2

Ṡ1

. C
2n

n−2

1 η
4

(n−2)2

2 η
2

n−2

2 ,

‖∇ulo|b|
n+2
n−2‖L1

t,x
. ‖∇ulo‖ 2n

n−2
, 2n2

n2−3n−2

‖b‖
n+2
n−2

2n
n−2

, 2n2

(n+1)(n−2)

. C
2n

n−2

1 η
4

(n−2)2

2 η
n−2
4n

·n+2
n−2

1 ,

where we applied Bernstein to estimate

‖∇ulo‖ 2n
n−2

, 2n2

n2−3n−2

. ‖∇ulo‖ 2n
n−2

, 2n2

n2−2n+4

. ‖ulo‖Ṡ1 .

Hence,

(5.23) . η2
2C

2n
n−2

1

{
η

4
(n−2)2

2 η
2

n−2

2 + η
4

(n−2)2

2 η
n+2
4n

1

}
� η1.

Consider now the error term (5.24). We estimate

‖∇Plo

(
|u|

4
n−2 u

)
uhi‖1,1 . ‖∇Plo

(
|uhi|

4
n−2 uhi

)
uhi‖1,1 + ‖∇Plo

(
|ulo|

4
n−2 ulo

)
uhi‖1,1

+ ‖∇Plo

(
|u|

4
n−2 u− |ulo|

4
n−2 ulo − |uhi|

4
n−2 uhi

)
uhi‖1,1.(5.66)

Using Bernstein to drop the derivative in front of the projection Plo, we recognize

in the first term on the right-hand side of (5.66) the error term (5.20). Hence,

by the previous computations, we have

η2
2‖∇Plo

(
|uhi|

4
n−2 uhi

)
uhi‖L1

t,x
≤ η2(5.20) � η1.(5.67)

To estimate the second term on the right-hand side of (5.66), we decompose

uhi = g+b and use (5.10), (5.63), and Proposition 5.8 to control the two resulting
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terms as follows:

‖∇Plo

(
|ulo|

4
n−2 ulo

)
g‖L1

t,x
. ‖∇ulo‖2, 2n

n−2
‖ulo‖

4
n−2

∞, 2n
n−2

‖g‖2, 2n
n−2

. η
4

n−2

2 ‖ulo‖Ṡ1‖g‖Ṡ0

. C2
1η

6
n−2

2 η
4

(n−2)2

2 ,

‖∇Plo

(
|ulo|

4
n−2 ulo

)
b‖L1

t,x
. ‖∇ulo‖ 2n

n−2
, 2n2

n2−2n+4

‖ulo‖
4

n−2

2n
n−2

, 8n2

(3n−2)(n−2)

‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

. ‖ulo‖
n+2
n−2

Ṡ1 ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

. C
2n

n−2

1 η
n−2
4n

1 η
4(n+2)

(n−2)3

2 .

Thus,

η2
2‖∇Plo

(
|ulo|

4
n−2 ulo

)
uhi‖L1

t,x
� η1.(5.68)

To estimate the third term on the right-hand side of (5.66), we first use Bernstein

to drop the derivative in front of Plo and then replace the projection Plo by the

positive-kernel operator P ′
lo (see Section 1.2 for the definition and properties of

P ′
lo); using (1.8), we obtain the bound

‖P ′
lo

(
|ulo|

4
n−2 |uhi|χ{|uhi|≤|ulo|}

)
uhi‖L1

t,x
+ ‖P ′

lo

(
|uhi|

4
n−2 |ulo|χ{|ulo|<|uhi|}

)
uhi‖L1

t,x

. ‖P ′
lo

(
|ulo|

4
n−2 |uhi|

)
uhi‖L1

t,x
.

Decomposing uhi = g + b and using (5.10), (5.64), (5.65), and Proposition 5.8,

we further estimate the third term on the right-hand side of (5.66) by the sum
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of the following four terms:

‖P ′
lo

(
|ulo|

4
n−2 |g|

)
g‖L1

t,x
. ‖g‖2

2, 2n
n−2
‖ulo‖

4
n−2

∞, 2n
n−2

. η
4

n−2

2 ‖g‖2
Ṡ0 . C2

1η
8

n−2

2

‖P ′
lo

(
|ulo|

4
n−2 |b|

)
g‖L1

t,x
. ‖g‖2, 2n

n−2
‖b|ulo|

4
n−2‖2, 2n

n+2
. C

2n
n−2

1 η
2

n−2

2 η
n−2
4n

1 η
16

(n−2)3

2

‖P ′
lo

(
|ulo|

4
n−2 |g|

)
b‖L1

t,x
. ‖b‖ 2n

n−2
, 2n2

(n+1)(n−2)

‖g‖2, 2n
n−2
‖ulo‖

4
n−2

4n
n−2

, 8n2

(3n+2)(n−2)

. ‖b‖ 2n
n−2

, 2n2

(n+1)(n−2)

‖g‖Ṡ0‖ulo‖
4

n−2

Ṡ1

. C
2n

n−2

1 η
n−2
4n

1 η
2

n−2

2 η
16

(n−2)3

2

‖P ′
lo

(
|ulo|

4
n−2 |b|

)
b‖L1

t,x
. ‖P ′

lo

(
|ulo|

4
n−2 |b|

)
b‖

1, n2

n2+n−6

. ‖b‖2
2n

n−2
, 2n2

(n+1)(n−2)

‖ulo‖
4

n−2

2n
n−2

, 2n2

(n−2)2

. C
2n

n−2

1 η
n−2
2n

1 η
16

(n−2)3

2 .

Hence,

η2
2‖∇Plo

(
|u|

4
n−2 u− |ulo|

4
n−2 ulo − |uhi|

4
n−2 uhi

)
uhi‖L1

t,x
� η1.(5.69)

Collecting (5.66) through (5.69), we obtain

(5.24) � η1.

We turn now to the error terms (5.25) through (5.27). We notice they are of

the form 〈|uhi|2 ∗ 1
|x| , f〉 where

f =


|ulo|

n+2
n−2 |uhi| in (5.25),

|ulo||uhi|
n+2
n−2 in (5.26),

|Plo

(
|uhi|

4
n−2 uhi

)
uhi| in (5.27).

Let us first note that uhi ∈ L3
t L

6n
3n−4
x . Indeed, by Strichartz,

‖g‖3, 6n
3n−4

. ‖g‖Ṡ0 . C1η
2

n−2

2 ,(5.70)
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while

‖b‖3, 6n
3n−4

. ‖b‖
2n

3(n−2)

2n
n−2

, 2n2

(n+1)(n−2)

‖b‖
n−6

3(n−2)

∞, 2n
n−2

. C1η
1
6
1 .(5.71)

Thus,

‖uhi‖3, 6n
3n−4

. C1η
1
6
1 .(5.72)

As uhi ∈ L3
t L

6n
3n−4
x and uhi ∈ L∞

t L2
x, we get |uhi|2 ∈ L3

t L
3n

3n−2
x . Therefore, by

Hardy-Littlewood-Sobolev, |uhi|2 ∗ 1
|x| ∈ L3

t L
3n
x . Moreover,

〈
|uhi|2 ∗

1

|x|
, f
〉

.
∥∥|uhi|2 ∗ |x|−1

∥∥
3,3n
‖f‖ 3

2
, 3n
3n−1

. ‖uhi‖3, 6n
3n−4

‖uhi‖∞,2‖f‖ 3
2
, 3n
3n−1

. C1η
1
6
1 η2‖f‖ 3

2
, 3n
3n−1

.(5.73)

Consider the case of (5.25), that is, f = |ulo|
n+2
n−2 |uhi|. By Hölder, (5.31), and

(5.72), we estimate

‖|ulo|
n+2
n−2 uhi‖ 3

2
, 3n
3n−1

. ‖uhi‖3, 6n
3n−4

‖ulo‖
4

n−2

∞, 2n
n−2

‖ulo‖3, 6n
3n−10

. C1η
1
6
1 η

4
n−2

2 ‖ulo‖Ṡ1 . C2
1η

1
6
1 η

4
n−2

2 η
4

(n−2)2

2 .

Thus, by (5.73) and the above computation, (5.25) � η1.

Consider next the error term (5.26), that is, f = |ulo||uhi|
n+2
n−2 . By (5.31),

(5.72), and the conservation of energy, we estimate

‖ulo|uhi|
n+2
n−2‖ 3

2
, 3n
3n−1

. ‖uhi‖3, 6n
3n−4

‖uhi‖
4

n−2

∞, 2n
n−2

‖ulo‖3, 6n
3n−10

. C1η
1
6
1 ‖ulo‖Ṡ1

. C2
1η

1
6
1 η

4
(n−2)2

2 .

Hence, by (5.73) and the above computation, (5.26) � η1.

The last error term left to consider is (5.27); in this case we use Bernstein,
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(5.72), and the conservation of energy to estimate

‖Plo

(
|uhi|

4
n−2 uhi

)
uhi‖ 3

2
, 3n
3n−1

. ‖uhi‖3, 6n
3n−4

‖Plo

(
|uhi|

4
n−2 uhi

)
‖3, 6n

3n+2

. C1η
1
6
1 ‖Plo

(
|uhi|

4
n−2 uhi

)
‖3, 6n

3n+8

. C1η
1
6
1 ‖uhi‖3, 6n

3n−4
‖uhi‖

4
n−2

∞, 2n
n−2

. C2
1η

1
3
1 .

Thus, considering (5.73), we obtain (5.27) � η1.

Hence all the error terms (5.19) through (5.27) are bounded by η1. Upon

rescaling, this concludes the proof of Proposition 5.1.

As a consequence of Proposition 5.8 and scaling, we obtain the following:

Corollary 5.11. Let n ≥ 6, u a minimal energy blowup solution to (1.1), and

N∗ < c(η2)Nmin. Then, we can decompose P≥N∗u = g + b such that

‖g‖Ṡ0(I0×Rn) . η
2

n−2

2 N−1
∗ ,(5.74)

‖g‖Ṡ1(I0×Rn) . 1,(5.75)

‖|∇|−
2

n−2 b‖
L2

t L

2n(n−2)

n2−3n−2
x (I0×Rn)

. η
1
4
1 N

− 3
2

∗ .(5.76)

Moreover, under scaling, (5.42), (5.61), and (5.72) become the following

‖b‖
L

2n
n−2
t L

2n2

(n+1)(n−2)
x (I0×Rn)

.
(
η

1
4
1 N

− 3
2

∗
)n−2

n ,(5.77)

‖b‖
L

2(n+2)
n−2

t L

2n(n+2)
(n−2)(n+3)
x (I0×Rn)

.
(
η

1
4
1 N

− 3
2

∗
)n−2

n+2 ,(5.78)

‖P≥N∗u‖
L3

t L
6n

3n−4
x (I0×Rn)

. η
1
6
1 N−1

∗ .(5.79)

Remark 5.12. In dimension n = 5, the analogue of (5.79) is

‖P≥N∗u‖
L3

t L
30
11
x (I0×R5)

. η
1
3
1 N−1

∗ .(5.80)

For details see Appendix C.
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CHAPTER 6

Preventing Energy Evacuation

The purpose of this chapter is to prove

Proposition 6.1 (Energy cannot evacuate to high frequencies). Suppose that u

is a minimal energy blowup solution to (1.1). Then for all t ∈ I0,

N(t) ≤ C(η4)Nmin.(6.1)

6.1 The setup

We normalize so that Nmin = 1. As N(t) ∈ 2Z, there exists tmin ∈ I0 such that

N(tmin) = Nmin = 1.

At time t = tmin, we have a considerable amount of mass at medium frequen-

cies:

‖Pc(η0)<·<C(η0)u(tmin)‖L2
x

& c(η0)‖Pc(η0)<·<C(η0)u(tmin)‖Ḣ1
x
∼ c(η0).(6.2)

However, by Bernstein, there is not much mass at frequencies higher than C(η0):

‖P>C(η0)u(tmin)‖L2
x

. c(η0).

Let’s assume in order to reach a contradiction that there exists tevac ∈ I0 such

that N(tevac) � C(η4). By time reversal symmetry we may assume tevac > tmin.

As for every η4 ≤ η ≤ η0 and all t ∈ I0, ‖P<c(η)N(t)u(t)‖Ḣ1
x
≤ η, we see that by
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choosing C(η4) sufficiently large, at time t = tevac there is very little energy at

low and medium frequencies:

‖P<η−1
4

u(tevac)‖Ḣ1
x
≤ η4.(6.3)

We define ulo = P<η10n
3

u and uhi = P≥η10n
3

u. Then by (6.2),

‖uhi(tmin)‖L2
x
≥ η1.(6.4)

Suppose we could show that a big portion of the mass sticks around until time

t = tevac, i.e.,

‖uhi(tevac)‖L2
x
≥ 1

2
η1.(6.5)

Then, since by Bernstein

‖P>C(η1)uhi(tevac)‖L2
x
≤ c(η1),

the triangle inequality would imply

‖P≤C(η1)uhi(tevac)‖L2
x
≥ 1

4
η1.

Another application of Bernstein would give

‖P≤C(η1)u(tevac)‖Ḣ1
x

& c(η1, η3),

which would contradict (6.3) if η4 were chosen sufficiently small.

It therefore remains to show (6.5). In order to prove it we assume that there

exists a time t∗ such that tmin ≤ t∗ ≤ tevac and

inf
tmin≤t≤t∗

‖uhi(t)‖L2
x
≥ 1

2
η1.(6.6)

We will show that this can be bootstrapped to

inf
tmin≤t≤t∗

‖uhi(t)‖L2
x
≥ 3

4
η1.(6.7)
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Hence, {t∗ ∈ [tmin, tevac] : (6.6) holds} is both open and closed in [tmin, tevac] and

(6.5) holds.

In order to show that (6.6) implies (6.7), we treat the L2
x-norm of uhi as an

almost conserved quantity. Define

L(t) =

∫
Rn

|uhi(t, x)|2dx.

By (6.4) we have L(tmin) ≥ η2
1. Hence, by the Fundamental Theorem of Calculus

it suffices to show that ∫ t∗

tmin

|∂tL(t)|dt ≤ 1

100
η2

1.

As

∂tL(t) = 2

∫
Rn

{Phi(|u|
4

n−2 u), uhi}mdx

= 2

∫
Rn

{Phi(|u|
4

n−2 u)− |uhi|
4

n−2 uhi, uhi}mdx,

we need to show∫ t∗

tmin

∣∣∣∫
Rn

{Phi(|u|
4

n−2 u)− |uhi|
4

n−2 uhi, uhi}mdx
∣∣∣dt ≤ 1

100
η2

1.(6.8)

In order to prove (6.8) we need to control the various interactions between

low, medium, and high frequencies. In the next section we will develop the tools

that will make this goal possible.

6.2 Spacetime estimates on low, medium, and high fre-

quencies

Remember that the frequency-localized interaction Morawetz inequality implies

that for N < c(η2)Nmin,∫ tevac

tmin

∫
Rn

∫
Rn

|P≥Nu(t, y)|2|P≥Nu(t, x)|2

|x− y|3
dxdydt . η1N

−3.(6.9)
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This estimate is useful for medium and high frequencies; however it is ex-

tremely bad for low frequencies since N−3 gets increasingly larger as N → 0. We

therefore need to develop better estimates in this case. As u≤η3 has extremely

small energy at t = tevac (see (6.3)), we expect it to have small energy at all

times in [tmin, tevac]. Of course, there is energy leaking from the high frequencies

to the low frequencies, but the interaction Morawetz estimate limits this leakage.

Indeed, we have

Proposition 6.2. Under the assumptions above,

‖P≤Nu‖Ṡ1([tmin,tevac]×Rn) . η4 + max{η−
3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}(6.10)

for all N ≤ η3.

Remark 6.3. One should think of the η4 term on the right-hand side of (6.10)

as the energy coming from the low modes of u(tevac), and the second term as the

energy coming from the high frequencies of u(t) for tmin ≤ t ≤ tevac. The two

possible bounds, η
− 3

2
3 N

3
2 and η

−n+2
n−2

3 N
n+2
n−2 , are a consequence of the scaling that g

and b obey. Note that for n ≥ 10, η
−n+2

n−2

3 N
n+2
n−2 is the larger term.

Proof. Consider the set Ω of times t ∈ [tmin, tevac) such that

‖P≤Nu‖Ṡ1([t,tevac]×Rn) ≤ C0η4 + η0 max{η−
3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2},

for all N ≤ η3. Here C0 is a large constant to be chosen later it will not depend

on any of the η’s.

Our goal is to show that tmin ∈ Ω. First, we will show that t ∈ Ω for t close

to tevac. Indeed, from Strichartz we get

‖P≤Nu‖Ṡ1([t,tevac]×Rn) .‖∇P≤Nu‖L∞t L2
x([t,tevac]×Rn) + ‖∇P≤Nu‖

L2
t L

2n
n−2
x ([t,tevac]×Rn)

.‖∇P≤Nu(tevac)‖L2
x

+ C|tevac − t|‖∇∂tP≤Nu‖L∞t L2
x(I0×Rn)

+ |tevac − t|
1
2‖∇P≤Nu‖

L∞t L
2n

n−2
x (I0×Rn)

.
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The last two norms are finite and proportional to N (as can easily be seen from

Bernstein and the conservation of energy), so (6.3) implies

‖P≤Nu‖Ṡ1([t,tevac]×Rn) . η4 + N2|tevac − t|+ N |tevac − t|
1
2 .

Thus t ∈ Ω provided |tevac − t| is sufficiently small and C0 is chosen sufficiently

large.

Now fix t ∈ Ω; then for all N ≤ η3 we have

‖P≤Nu‖Ṡ1([t,tevac]×Rn) ≤ C0η4 + η0 max{η−
3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}.(6.11)

We will show that in fact,

‖P≤Nu‖Ṡ1([t,tevac]×Rn) ≤
1

2
C0η4 +

1

2
η0 max{η−

3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}(6.12)

holds for all N ≤ η3. Thus, Ω is both open and closed in [tmin, tevac] and we get

tmin ∈ Ω, as desired.

Throughout the rest of the proof all spacetime norms will be on the slab

[t, tevac]× Rn. Fix N ≤ η3; by Strichartz,

‖P≤Nu‖Ṡ1 . ‖P≤Nu(tevac)‖Ḣ1
x

+ ‖∇P≤N

(
|u|

4
n−2 u

)
‖2, 2n

n+2
.

By (6.3), we have

‖P≤Nu(tevac)‖Ḣ1
x

. η4,

which is acceptable if C0 is chosen sufficiently large.

To handle the nonlinearity, we use the triangle inequality to estimate

‖∇P≤N

(
|u|

4
n−2 u

)
‖2, 2n

n+2
≤ ‖∇P≤N

(
|u<η4|

4
n−2 u<η4

)
‖2, 2n

n+2

+ ‖∇P≤N

(
|u|

4
n−2 u− |u<η4 |

4
n−2 u<η4

)
‖2, 2n

n+2
.(6.13)
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Using our bootstrap hypothesis, i.e., (6.11), and dropping the projection P≤N ,

we estimate the first term on the right-hand side of (6.15) as follows:

‖∇P≤N

(
|u<η4 |

4
n−2 u<η4

)
‖2, 2n

n+2
. ‖∇u<η4‖2, 2n

n−2
‖u<η4‖

4
n−2

∞, 2n
n−2

. ‖u<η4‖
n+2
n−2

Ṡ1

.
(
C0η4 + η0 max{η−

3
2

3 η
3
2
4 , η

−n+2
n−2

3 η
n+2
n−2

4 }
)n+2

n−2

. η4,(6.14)

which again is acceptable provided C0 is sufficiently large.

We turn now to the second term on the right-hand side of (6.13). By Bern-

stein,

‖∇P≤N

(
|u|

4
n−2 u− |u<η4 |

4
n−2 u<η4

)
‖2, 2n

n+2

. N‖P≤N

(
|u|

4
n−2 u− |u<η4|

4
n−2 u<η4

)
‖2, 2n

n+2
.

Replacing the projection P≤N by the positive-kernel operator P ′
≤N sharing the

same Lp
x-mapping and Bernstein properties as P≤N and using (1.7), we further

estimate

‖∇P≤N

(
|u|

4
n−2 u− |u<η4|

4
n−2 u<η4

)
‖2, 2n

n+2
. N‖P ′

≤N

(
|u<η4|

4
n−2 |u≥η4|

)
‖2, 2n

n+2

+ N‖P ′
≤N

(
|u≥η4 |

n+2
n−2

)
‖2, 2n

n+2
.(6.15)

Decomposing u≥η4 = uη4≤·≤η3 + u>η3 , we estimate

N‖P ′
≤N

(
|u≥η4|

n+2
n−2

)
‖2, 2n

n+2
. N‖P ′

≤N

(
|uη4≤·≤η3|

n+2
n−2

)
‖2, 2n

n+2

+ N‖P ′
≤N

(
|u>η3|

n+2
n−2

)
‖2, 2n

n+2
(6.16)

and

N‖P ′
≤N

(
|u<η4|

4
n−2 |u≥η4|

)
‖2, 2n

n+2
. N‖P ′

≤N

(
|u<η4|

4
n−2 |uη4≤·≤η3|

)
‖2, 2n

n+2

+ N‖P ′
≤N

(
|u<η4|

4
n−2 |u>η3|

)
‖2, 2n

n+2
.(6.17)
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Consider the first term on the right-hand side of (6.16). By Bernstein,

N‖P ′
≤N

(
|uη4≤·≤η3 |

n+2
n−2

)
‖2, 2n

n+2
. N

n+2
n−2‖P ′

≤N

(
|uη4≤·≤η3 |

n+2
n−2

)
‖

2,
2n(n−2)

n2+4

. N
n+2
n−2‖uη4≤·≤η3‖

n+2
n−2
2(n+2)

n−2
,
2n(n+2)

n2+4

.

Using (6.11), we get

‖uη4≤·≤η3‖ 2(n+2)
n−2

,
2n(n+2)

n2+4

.
∑

η4≤M≤η3

‖PMu‖ 2(n+2)
n−2

,
2n(n+2)

n2+4

.
∑

η4≤M≤η3

M−1‖∇PMu‖ 2(n+2)
n−2

,
2n(n+2)

n2+4

.
∑

η4≤M≤η3

M−1‖PMu‖Ṡ1

.
∑

η4≤M≤η3

M−1(C0η4 + η0 max{η−
3
2

3 M
3
2 , η

−n+2
n−2

3 M
n+2
n−2}

)
. η0η

−1
3(6.18)

and hence,

N‖P ′
≤N

(
|uη4≤·≤η3|

n+2
n−2

)
‖2, 2n

n+2
. η

n+2
n−2

0 η
−n+2

n−2

3 N
n+2
n−2

. η
n+2
n−2

0 max{η−
3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}.(6.19)

To estimate the second term on the right-hand side of (6.16), we further decom-

pose1 u>η3 = g + b according to Corollary 5.11. Using again the positivity of the

operator P ′
≤N , we estimate

N‖P ′
≤N

(
|u>η3 |

n+2
n−2

)
‖2, 2n

n+2
. N‖P ′

≤N

(
|g|

n+2
n−2

)
‖2, 2n

n+2
+ N‖P ′

≤N

(
|b|

n+2
n−2

)
‖2, 2n

n+2
.

By Bernstein and Corollary 5.11, we get

N‖P ′
≤N

(
|g|

n+2
n−2

)
‖2, 2n

n+2
. N

n+2
n−2‖P ′

≤N

(
|g|

n+2
n−2

)
‖

2,
2n(n−2)

n2+4

. N
n+2
n−2‖g‖

n+2
n−2
2(n+2)

n−2
,
2n(n+2)

n2+4

. N
n+2
n−2

(
η

2
n−2

2 η−1
3

)n+2
n−2

1Of course, the decomposition holds in dimensions n ≥ 6. To cover the case n = 5, we make
use of Remark 5.12 and treat u>η3 in the same manner as b is treated below.
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and

N‖P ′
≤N

(
|b|

n+2
n−2

)
‖2, 2n

n+2
. N

3
2‖P ′

≤N

(
|b|

n+2
n−2

)
‖2, 2n

n+3
. N

3
2‖b‖

n+2
n−2
2(n+2)

n−2
,

2n(n+2)
(n−2)(n+3)

. N
3
2 η

1
4
1 η

− 3
2

3 .

Thus,

N‖P ′
≤N

(
|u>η3|

n+2
n−2

)
‖2, 2n

n+2
. η

1
4
1 max{η−

3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}

. η
n+2
n−2

0 max{η−
3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}.(6.20)

By (6.19) and (6.20), we get

N‖P ′
≤N

(
|u≥η4|

n+2
n−2

)
‖2, 2n

n+2
. η

n+2
n−2

0 max{η−
3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}.(6.21)

We turn now to the first term on the right-hand side of (6.17). By (6.11) and

(6.18),

N‖P ′
≤N

(
|u<η4|

4
n−2 |uη4≤·≤η3|

)
‖2, 2n

n+2

. N‖uη4≤·≤η3‖ 2(n+2)
n−2

,
2n(n+2)

n2+4

‖u<η4‖
4

n−2
2(n+2)

n−2
,
2(n+2)

n−2

. η0η
−1
3 N‖u<η4‖

4
n−2

Ṡ1

. η0η
−1
3 N

(
C0η4 + η0 max{η−

3
2

3 η
3
2
4 , η

−n+2
n−2

3 η
n+2
n−2

4 }
) 4

n−2

. η0η
4

n−2

4 η−1
3 N.

Treating the cases N < η4 and η4 ≤ N ≤ η3 separately, one easily sees that

η0η
4

n−2

4 η−1
3 N . η0

(
η4 + η0 max{η−

3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}

)
.(6.22)

Hence,

N‖P ′
≤N

(
|u<η4|

4
n−2 |uη4≤·≤η3|

)
‖2, 2n

n+2

. η0

(
η4 + η0 max{η−

3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}

)
.(6.23)
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To estimate the second term on the right-hand side of (6.17), in dimensions n ≥ 6

we decompose u>η3 = g + b according to Corollary 5.11 and use the triangle

inequality and the positivity of P ′
≥N to bound

N‖P ′
≤N

(
|u<η4|

4
n−2 |u>η3|

)
‖2, 2n

n+2
. N‖P ′

≤N

(
|u<η4|

4
n−2 |g|

)
‖2, 2n

n+2

+ N‖P ′
≤N

(
|u<η4|

4
n−2 |b|

)
‖2, 2n

n+2
.

By Bernstein, Corollary 5.11, and (6.11), we get

N‖P ′
≤N

(
|u<η4|

4
n−2 |g|

)
‖2, 2n

n+2
. N‖g‖ 2(n+2)

n−2
,
2n(n+2)

n2+4

‖u<η4‖
4

n−2
2(n+2)

n−2
,
2(n+2)

n−2

. N‖g‖Ṡ0‖u<η4‖
4

n−2

Ṡ1 . Nη
2

n−2

2 η−1
3 η

4
n−2

4

and

N‖P ′
≤N

(
|u<η4|

4
n−2 |b|

)
‖2, 2n

n+2
. NN

n−6
2(n+2)‖P ′

≤N

(
|u<η4|

4
n−2 |b|

)
‖

2,
2n(n+2)

n2+5n−2

. N
3n−2

2(n+2)‖u<η4‖
4

n−2
2(n+2)

n−2
,
2(n+2)

n−2

‖b‖ 2(n+2)
n−2

, 2n
n−1

. η
4

n−2

4 N
3n−2

2(n+2)‖b‖
n

n+2

2n
n−2

, 2n2

(n+1)(n−2)

‖b‖
2

n+2

∞,2

. η
4

n−2

4 N
3n−2

2(n+2) (η
1
4
1 η

− 3
2

3 )
n−2
n+2 (η

2
n−2

2 η−1
3 )

2
n+2

. η1η
4

n−2

4 N
3n−2

2(n+2) η
− 3n−2

2(n+2)

3 .

Thus, by treating the cases N < η4 and η4 ≤ N ≤ η3 separately, one sees that in

dimensions n ≥ 6,

N‖P ′
≤N

(
|u<η4|

4
n−2 |u>η3|

)
‖2, 2n

n+2
. η1

(
η4 + η0 max{η−

3
2

3 η
3
2
4 , η

−n+2
n−2

3 η
n+2
n−2

4 }
)
.

In dimension n = 5, by Remark 5.12 and (6.11) we have

N‖P ′
≤N

(
|u<η4|

4
n−2 |u>η3|

)
‖2, 2n

n+2
= N‖P ′

≤N

(
|u<η4|

4
3 |u>η3|

)
‖2, 10

7

. N‖u>η3‖3, 30
11
‖u<η4‖

4
3
8,4

. Nη
1
3
1 η−1

3 ‖u<η4‖
4
3

Ṡ1

. η
1
3
1 η

4
3
4 Nη−1

3 . η1η4.
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Hence, for all n ≥ 5,

N‖P ′
≤N

(
|u<η4|

4
n−2 |u>η3|

)
‖2, 2n

n+2
. η1

(
η4 + η0 max{η−

3
2

3 η
3
2
4 , η

−n+2
n−2

3 η
n+2
n−2

4 }
)
.(6.24)

By (6.23) and (6.24), we obtain

N‖P ′
≤N

(
|u<η4|

4
n−2 |u≥η4|

)
‖2, 2n

n+2
. η0

(
η4 + η0 max{η−

3
2

3 η
3
2
4 , η

−n+2
n−2

3 η
n+2
n−2

4 }
)
.(6.25)

By (6.15), (6.21), and (6.25), we get

‖∇P≤N

(
|u|

4
n−2 u− |u<η4|

4
n−2 u<η4

)
‖2, 2n

n+2
. η4 + η1+

0 max{η−
3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}.

(6.26)

By (6.13), (6.14), and (6.26),

‖∇P≤N

(
|u|

4
n−2 u

)
‖2, 2n

n+2
. η4 + η1+

0 max{η−
3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}.

Hence, (6.12) holds for C1 sufficiently large and the proof of Lemma 6.2 is com-

plete.

6.3 Controlling the localized mass increment.

We now have good enough control over low, medium, and high frequencies to

prove (6.8). Writing

Phi(|u|
4

n−2 u)− |uhi|
4

n−2 uhi = Phi(|u|
4

n−2 u− |uhi|
4

n−2 uhi − |ulo|
4

n−2 ulo)

− Plo(|uhi|
4

n−2 uhi) + Phi(|ulo|
4

n−2 ulo),
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we see that we only have to consider the following terms∫ t∗

tmin

∣∣∣∫
Rn

uhiPhi(|u|
4

n−2 u− |uhi|
4

n−2 uhi − |ulo|
4

n−2 ulo)dx
∣∣∣dt,(6.27) ∫ t∗

tmin

∣∣∣∫
Rn

uhiPlo(|uhi|
4

n−2 uhi)dx
∣∣∣dt,(6.28) ∫ t∗

tmin

∣∣∣∫
Rn

uhiPhi(|ulo|
4

n−2 ulo)dx
∣∣∣dt.(6.29)

For the remaining of this section all spacetime norms will be on the slab

[tmin, t∗]× Rn. Consider (6.27). By (1.8), we estimate

(6.27) . ‖|uhi|2|ulo|
4

n−2 χ{|uhi|�|ulo|}‖1,1 + ‖|uhi|
n+2
n−2 uloχ{|ulo|�|uhi|}‖1,1

. ‖|uhi|2|ulo|
4

n−2‖1,1 . ‖|u>η3|2|ulo|
4

n−2‖1,1 + ‖|uη10n
3 ≤·≤η3

|2|ulo|
4

n−2‖1,1.

Taking N∗ = η3 in Corollary 5.11, we decompose u>η3 = g + b and estimate

‖|u>η3|2|ulo|
4

n−2‖1,1 . ‖|g|2|ulo|
4

n−2‖1,1 + ‖|b|2|ulo|
4

n−2‖1,1.

Using Hölder, Bernstein, Corollary 5.11, and Proposition 6.2, we get

‖|g|2|ulo|
4

n−2‖1,1 . ‖g‖2
2, 2n

n−2
‖ulo‖

4
n−2

∞, 2n
n−2

.
(
η

2
n−2

2 η−1
3

)2(
η4 + max{η−

3
2

3 η
10n 3

2
3 , η

−n+2
n−2

3 η
10n n+2

n−2

3 }
) 4

n−2

� η2
1,

‖|b|2|ulo|
4

n−2‖1,1 . ‖b‖2
2n

n−2
, 2n2

(n+1)(n−2)

‖ulo‖
4

n−2

2n
n−2

, 4n2

(n+2)(n−2)

.
(
η

1
4
1 η

− 3
2

3

) 2(n−2)
n η

10(n−6)
3 ‖ulo‖

4
n−2

Ṡ1

.
(
η

1
2
1 η−3

3

)n−2
n η

10(n−6)
3

(
η4 + max{η−

3
2

3 η
10n 3

2
3 , η

−n+2
n−2

3 η
10n n+2

n−2

3 }
) 4

n−2

� η2
1,

where in the last sequence of inequalities we used the fact that for n ≥ 6, Bernstein

dictates

‖ulo‖
4

n−2

2n
n−2

, 4n2

(n+2)(n−2)

. η
10(n−6)
3 ‖ulo‖

4
n−2

2n
n−2

, 2n2

(n−2)2

. η
10(n−6)
3 ‖ulo‖Ṡ1 .
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To cover the case n = 5, we estimate

‖|u>η3|2|ulo|
4

n−2‖1,1 = ‖|u>η3|2|ulo|
4
3‖1,1 . ‖u>η3‖2

3, 30
11
‖ulo‖

4
3
4,5.

In dimension n = 5, one easily checks that the pair (4, 5
2
) is Schrödinger admissible

and hence, by Sobolev embedding,

‖ulo‖4,5 . ‖∇ulo‖4, 5
2

. ‖ulo‖Ṡ1 .(6.30)

Thus, by (6.30), Remark 5.12 (with N∗ = η3), and Proposition 6.2 (with n = 5),

we get

‖|u>η3|2|ulo|
4
3‖1,1 . η

2
3
1 η−2

3

(
η4 + η

− 3
2

3 η75
3

) 4
3 � η2

1.

Hence, in all dimensions n ≥ 5 we have

‖|u>η3|2|ulo|
4

n−2‖1,1 � η2
1.

Next, by Hölder,

‖|uη10n
3 ≤·≤η3

|2|ulo|
4

n−2‖1,1 . ‖uη10n
3 ≤·≤η3

‖2
2, 2n

n−2
‖ulo‖

4
n−2

∞, 2n
n−2

.

Using Proposition 6.2, we estimate

‖uη10n
3 ≤·≤η3

‖2, 2n
n−2

.
∑

η10n
3 ≤N≤η3

‖uN‖2, 2n
n−2

.
∑

η10n
3 ≤N≤η3

N−1‖uN‖Ṡ1

.
∑

η10n
3 ≤N≤η3

N−1
(
η4 + max{η−

3
2

3 N
3
2 , η

−n+2
n−2

3 N
n+2
n−2}

)
. η−1

3(6.31)

and hence,

‖|uη10n
3 ≤·≤η3

|2|ulo|
4

n−2‖1,1 . η−2
3

(
η4 + max{η−

3
2

3 η
10n 3

2
3 , η

−n+2
n−2

3 η
10n n+2

n−2

3 }
) 4

n−2 � η2
1.

Therefore,

(6.27) � η2
1.
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To estimate (6.28), we write

(6.28) =

∫ t∗

tmin

∣∣∣∫ Plo(uhi)|uhi|
4

n−2 uhidx
∣∣∣dt.

As Plo(uhi) = Phi(ulo) satisfies all the estimates that ulo and uhi satisfy, we see

by the previous analysis that

(6.28) . ‖|uhi|2|ulo|
4

n−2‖1,1 � η2
1.

We consider next (6.29). We estimate

(6.29) . ‖uhiPhi

(
|ulo|

4
n−2 ulo

)
‖1,1

. ‖u>η3Phi

(
|ulo|

4
n−2 ulo

)
‖1,1 + ‖uη10n

3 ≤·≤η3
Phi

(
|ulo|

4
n−2 ulo

)
‖1,1.

Using Bernstein to place a derivative in front of Phi, we get

‖uη10n
3 ≤·≤η3

Phi

(
|ulo|

4
n−2 ulo

)
‖1,1 . η−10n

3 ‖uη10n
3 ≤·≤η3

‖2, 2n
n−2
‖∇ulo‖2, 2n

n−2
‖ulo‖

4
n−2

∞, 2n
n−2

.

By (6.31) and Proposition 6.2, we obtain

‖uη10n
3 ≤·≤η3

Phi

(
|ulo|

4
n−2 ulo

)
‖1,1

. η−10n
3 η−1

3

(
η4 + max{η−

3
2

3 η
10n 3

2
3 , η

−n+2
n−2

3 η
10n n+2

n−2

3 }
)n+2

n−2

� η2
1.

On the other hand, decomposing u>η3 = g + b in dimensions n ≥ 6 according to

Corollary 5.11, we estimate

‖u>η3Phi

(
|ulo|

4
n−2 ulo

)
‖1,1 . ‖gPhi

(
|ulo|

4
n−2 ulo

)
‖1,1 + ‖bPhi

(
|ulo|

4
n−2 ulo

)
‖1,1.

By Bernstein, (5.63), Corollary 5.11, and Proposition 6.2, we have

‖gPhi

(
|ulo|

4
n−2 ulo

)
‖1,1 . η−10n

3 ‖g‖2, 2n
n−2
‖∇ulo‖2, 2n

n−2
‖ulo‖

4
n−2

∞, 2n
n−2

. η−10n
3 ‖g‖Ṡ0‖ulo‖

n+2
n−2

Ṡ1

. η−10n
3 η

2
n−2

2 η−1
3

(
η4 + max{η−

3
2

3 η
10n 3

2
3 , η

−n+2
n−2

3 η
10n n+2

n−2

3 }
)n+2

n−2

� η2
1
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and

‖bPhi

(
|ulo|

4
n−2 ulo

)
‖1,1

. η−10n
3 ‖b‖ 2n

n−2
, 2n2

(n+1)(n−2)

‖∇ulo‖ 2n
n−2

, 2n2

n2−2n+4

‖ulo‖
4

n−2

2n
n−2

, 8n2

(3n−2)(n−2)

. η
−5(n+6)
3

(
η

1
4
1 η

− 3
2

3

)n−2
n ‖ulo‖

n+2
n−2

Ṡ1

. η
−5(n+6)
3

(
η

1
4
1 η

− 3
2

3

)n−2
n
(
η4 + max{η−

3
2

3 η
10n 3

2
3 , η

−n+2
n−2

3 η
10n n+2

n−2

3 }
)n+2

n−2

� η2
1.

To cover the case n = 5, we use Bernstein (to add a derivative in front of Phi),

Remark 5.12, (6.30), and Proposition 6.2 (with n = 5) to estimate instead

‖u>η3Phi

(
|ulo|

4
3 ulo

)
‖1,1 . ‖u>η3‖3, 15

11
‖∇ulo‖3, 15

11
‖ulo‖

4
3
4,5

. η
1
3
1 η−1

3 ‖ulo‖
7
3

Ṡ1

. η
1
3
1 η−1

3

(
η4 + η

− 3
2

3 η75
3

) 7
3 � η2

1.

Thus,

‖u>η3Phi

(
|ulo|

4
n−2 ulo

)
‖1,1 � η2

1

for all n ≥ 5 and hence

(6.29) � η2
1.

Therefore (6.8) holds and this concludes the proof of Proposition 6.1.
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CHAPTER 7

The contradiction argument

We now have all the information we need about a minimal energy blowup solution

to conclude the contradiction argument. Corollary 4.4 shows that it is localized

in frequency and Proposition 4.7 that it concentrates in space. The interaction

Morawetz inequality provides good control over the high-frequency part of u in

L3
t L

6n
3n−4
x (see Corollary 5.11 and Remark 5.12). By the arguments in the previous

chapter we have also excluded the last enemy by showing that the solution can’t

shift its energy from low modes to high modes causing the L
2(n+2)

n−2

t,x -norm to blow

up while the L3
t L

6n
3n−4
x -norm remains bounded. Hence, N(t) must remain within a

bounded set [Nmin, Nmax], where Nmax ≤ C(η4)Nmin and Nmin > 0. Combining

all these (and relying again on the interaction Morawetz inequality), we will derive

the desired contradiction. We begin with

Lemma 7.1. For any minimal energy blowup solution to (1.1), we have

(7.1)

∫
I0

N(t)−1dt . C(η1, η2)N
−3
min.

In particular, as N(t) ≤ C(η4)Nmin for all t ∈ I0, we have

(7.2) |I0| . C(η1, η2, η4)N
−2
min.

Proof. By (5.79) and (5.80), in all dimensions n ≥ 5 we have∫
I0

(∫
Rn

|P≥N∗u|
6n

3n−4 dx
) 3n−4

2n
dt . η

1
2
1 N−3

∗
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for all N∗ < c(η2)Nmin. Let N∗ = c(η2)Nmin and rewrite the above estimate as

(7.3)

∫
I0

(∫
Rn

|P≥N∗u|
6n

3n−4 dx
) 3n−4

2n
dt . C(η1, η2)N

−3
min.

On the other hand, by Bernstein and the conservation of energy,

∫
|x−x(t)|≤C(η1)/N(t)

|P<N∗u(t)|
6n

3n−4 dx

. C(η1)N(t)−n‖P<N∗u(t)‖
6n

3n−4

L∞x

. C(η1)N(t)−nN(t)
3n(n−2)

3n−4 c(η2)‖P<N∗u(t)‖
6n

3n−4

L
2n

n−2
x

. c(η2)N(t)−
2n

3n−4 .

(7.4)

By (4.32), we also have∫
|x−x(t)|≤C(η1)/N(t)

|u(t)|
6n

3n−4 dx & c(η1)N(t)−
2n

3n−4 .

Combining this estimate with (7.4) and using the triangle inequality, we find

c(η1)N(t)−
2n

3n−4 .
∫
|x−x(t)|≤C(η1)/N(t)

|P≥N∗u(t, x)|
6n

3n−4 dx.

Integrating over I0 and comparing with (7.3) proves (7.1).

We can now (finally!) conclude the contradiction argument. It remains to

prove that ‖u‖
L

2(n+2)
n−2

t,x (I0×Rn)

. C(η0, η1, η2, η3, η4), which contradicts (1.10) for

η5 sufficiently small and which we expect since the bound (7.2) shows that the

interval I0 is not long enough to allow the L
2(n+2)

n−2

t,x -norm of u to grow too large.

Indeed, we have

Proposition 7.2.

‖u‖
L

2(n+2)
n−2

t,x (I0×Rn)

. C(η0, η1, η2, η4).
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Proof. We normalize Nmin = 1. Let δ = δ(η0, Nmax) > 0 be a small number to

be chosen momentarily. Partition I0 into O(|I0|/δ) subintervals I1, . . . , IJ with

|Ij| ≤ δ. Let tj ∈ Ij. As N(tj) ≤ Nmax, Corollary 4.4 yields

‖P≥C(η0)Nmaxu(tj)‖Ḣ1
x
≤ η0.

Let ũ(t) = ei(t−tj)∆P<C(η0)Nmaxu(tj) be the free evolution of the low and medium

frequencies of u(tj). The above bound becomes

‖u(tj)− ũ(tj)‖Ḣ1
x
≤ η0.(7.5)

Moreover, by Remark 3.2, (7.5) implies(∑
N

‖ei(t−tj)∆PN∇(u(tj)− ũ(tj))‖2

L
2(n+2)

n−2
t L

2n(n+2)

n2+4
x (Ij×Rn)

) 1
2

. η0.(7.6)

By Bernstein, Sobolev embedding, and conservation of energy, we get

‖ũ(t)‖
L

2(n+2)
n−2

x

. C(η0, Nmax)‖ũ(tj)‖
L

2n
n−2
x

. C(η0, Nmax)‖ũ(tj)‖Ḣ1
x

. C(η0, Nmax)

for all t ∈ Ij, so

‖ũ‖
L

2(n+2)
n−2

t,x (Ij×Rn)

. C(η0, Nmax)δ
n−2

2(n+2) .(7.7)

Similarly, we have

‖∇(|ũ(t)|
4

n−2 ũ(t))‖
L

2n
n+2
x

. ‖∇ũ(t)‖
L

2n
n−2
x

‖ũ(t)‖
4

n−2

L
2n

n−2
x

. C(η0, Nmax)‖∇ũ(t)‖L2
x
‖ũ(t)‖

4
n−2

Ḣ1
x

. C(η0, Nmax)‖ũ(t)‖
n+2
n−2

Ḣ1
x

. C(η0, Nmax),
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which shows that

‖∇(|ũ|
4

n−2 ũ)‖
L2

t L
2n

n+2
x (Ij×Rn)

. C(η0, Nmax)δ
1/2.(7.8)

By (7.5) through (7.8), conservation of energy, and Lemma 3.1 with e = −|ũ|
4

n−2 ũ,

we see that

‖u‖
L

2(n+2)
n−2

t,x (Ij×Rn)

. 1,

provided δ and η0 are chosen small enough. Summing these bounds in j and

using (7.2), we get

‖u‖
L

2(n+2)
n−2

t,x (I0×Rn)

. C(η0, Nmax)|I0| . C(η0, η1, η2, η4).

103



APPENDIX A

Fractional derivatives of fractional powers

In this appendix we show how a characterization of Sobolev spaces due to

Strichartz, [33], can be used to prove results of chain-rule type. This extends [8]

from C1 functions to merely Hölder continuous functions.

The results in this appendix were worked out in collaboration with Rowan

Killip.

Strichartz proved that for all Schwartz functions f , 1 < p < ∞, and 0 < s < 1,

(A.1)
∥∥|∇|sf∥∥

Lp
x
≈
∥∥Ds(f)

∥∥
Lp

x
,

where

(A.2) Ds(f)(x) =

(∫ ∞

0

∣∣∣∣∫
|y|<1

∣∣f(x + ry)− f(x)
∣∣ dy

∣∣∣∣2 dr

r1+2s

)1/2

.

This extended earlier work of Stein; see the discussion in [31, Ch. V, §6.13].

Proposition A.1. Let F be a Hölder continuous function of order 0 < α < 1.

Then, for every 0 < σ < α, 1 < p < ∞, and σ
α

< s < 1 we have

∥∥|∇|σF (u)
∥∥

p
.
∥∥|u|α−σ

s

∥∥
p1

∥∥|∇|su∥∥σ
s
σ
s
p2

,(A.3)

provided 1
p

= 1
p1

+ 1
p2

and (1− σ
αs

)p1 > 1.

Proof. The result will follow from the pointwise inequality

(A.4) Dσ(F (u))(x) .
[
M(|u|α)(x)

]1− σ
αs
[
Ds(u)(x)

]σ
s ,
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where M denotes the Hardy–Littlewood maximal function.

As F is α-Hölder continuous,

|F (u(x + ry))− F (u(x))| . |u(x + ry)− u(x)|α . |u(x + ry)|α + |u(x)|α.

We use both estimates; the first one for small values of r, the second for large

values of r. The meaning of ‘small’ and ‘large’ will be x-dependent.

For r small, we apply Hölder’s inequality:∫ A(x)

0

∣∣∣∣∫
|y|<1

∣∣F (u(x + ry))− F (u(x))
∣∣ dy

∣∣∣∣2 dr

r1+2σ

.
∫ A(x)

0

∣∣∣∣∫
|y|<1

∣∣u(x + ry)− u(x)
∣∣α dy

∣∣∣∣2 dr

r1+2σ

.
∫ A(x)

0

∣∣∣∣∫
|y|<1

∣∣u(x + ry)− u(x)
∣∣ dy

∣∣∣∣2α
dr

r1+2σ

.
[
A(x)

]2(sα−σ)

(∫ A(x)

0

∣∣∣∣∫
|y|<1

∣∣u(x + ry)− u(x)
∣∣ dy

∣∣∣∣2 dr

r1+2s

)α

.
[
A(x)

]2(sα−σ)[Ds(u)(x)
]2α

.

Note that the penultimate step requires sα− σ > 0.

For large r, we first note that∫
|y|<1

∣∣u(x + ry)
∣∣α dy . M

(
|u|α

)
(x)

because the left-hand side is essentially the average of |u|α over the r-ball centered

at x. Consequently,∫ ∞

A(x)

∣∣∣∣∫
|y|<1

∣∣F (u(x + ry))− F (u(x))
∣∣ dy

∣∣∣∣2 dr

r1+2σ

.
∫ ∞

A(x)

∣∣∣∣∫
|y|<1

∣∣u(x + ry)|α + |u(x)
∣∣α dy

∣∣∣∣2 dr

r1+2σ

.
∫ ∞

A(x)

dr

r1+2σ

[
M
(
|u|α

)
(x)
]2

.
[
A(x)

]−2σ[
M
(
|u|α

)
(x)
]2

.
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Choosing A(x) = [M(|u|α)(x)]
1

sα [Ds(u)(x)]−
1
s leads immediately to (A.4).

The proposition follows from Hölder’s inequality and the boundedness of the

maximal operator; the latter requires (1− σ
αs

)p1 > 1.
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APPENDIX B

Details of the ‘good’/‘bad’ splitting

In this appendix we prove the existence and uniqueness of local Ṡ0
⋂

Ṡ1 so-

lutions to the initial value problem
(i∂t + ∆)g = G + PhiF (ulo) + Phi

(
F (ulo + g)− F (g)− F (ulo)

)
g(t0) = uhi(t0),

(B.1)

where the function F represents the energy-critical nonlinearity, uhi = P>1u and

ulo = P≤1u are as in Section 5.2, and G = Gmed + Gvhi with

Gmed =
∑

1<N<η−100
2

P̃N

(
χ{|PNF (g)|≤1/N}PNF (g)

)
,

Gvhi = |∇|−1P≥η−100
2

(
χ{||∇|F (g)|≤1}|∇|F (g)

)
,

and, in each case, χ represents a smooth cutoff to the set indicated.

In other words, we need to prove that the integral equation

g(t) = ei(t−t0)∆uhi(t0) +

∫ t

t0

ei(t−s)∆G(s)ds

+

∫ t

t0

ei(t−s)∆Phi

(
F (ulo + g)− F (g)

)
(s)ds,

admits an Ṡ0
⋂

Ṡ1 solution on a small interval I := [t0, T ] ⊂ I0, task which we

accomplish by proving convergence (in the appropriate spaces) of the iterates

g(1)(t) := ei(t−t0)∆uhi(t0)
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and, for m ≥ 1,

g(m+1)(t) := ei(t−t0)∆uhi(t0) +

∫ t

t0

ei(t−s)∆G(m)(s)ds

+

∫ t

t0

ei(t−s)∆Phi

(
F (ulo + g(m))− F (g(m))

)
(s)ds,(B.2)

where

G(m) = G
(m)
med + G

(m)
vhi

=
∑

1<N<η−100
2

P̃N

(
χ{|PNF (g(m))|≤1/N}PNF (g(m))

)
+ |∇|−1P≥η−100

2

(
χ{||∇|F (g(m))|≤1}|∇|F (g(m))

)
.

By Lemma 5.9 (specifically (5.49), (5.50), (5.52), (5.53), (5.56), and (5.58)),

we have

‖G(m)
med‖

L
2(n+2)

n+4
t,x (I×Rn)

. ‖g(m)‖
n+4

n

Ṡ0(I×Rn)
(B.3)

‖∇G
(m)
med‖

L
2(n+2)

n+4
t,x (I×Rn)

. log( 1
η2

)
(
‖g(m)‖Ṡ1(I×Rn)‖g

(m)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2)(B.4)

‖G(m)
vhi ‖

L
2(n+2)

n+4
t,x (I×Rn)

. η100
2

(
‖g(m)‖Ṡ1(I×Rn)‖g

(m)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2)(B.5)

‖∇G
(m)
vhi ‖

L
2(n+2)

n+4
t,x (I×Rn)

.
(
‖g(m)‖Ṡ1(I×Rn)‖g

(m)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2) .(B.6)

To simplify notation, we introduce the norm ‖ · ‖W defined on the slab I×Rn

as

‖f‖W = ‖f‖W (I×Rn) := ‖∇f‖
L

2(n+2)
n−2

t L

2n(n+2)

n2+4
x (I×Rn)

.

Note that

‖f‖W . ‖f‖Ṡ1(I×Rn).

The first step is to take I sufficiently small such that

‖uhi‖W . ηε
2(B.7)
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for some 0 < ε � 1; the dominated convergence theorem shows that this is indeed

possible.

Throughout the rest of the proof all spacetime norms will be on I × Rn.

Using Bernstein, (1.8), (1.9), and our hypotheses on ulo (more precisely, (5.10)

and (5.36)), we estimate

‖PhiF (ulo)‖2, 2n
n+2

. ‖∇PhiF (ulo)‖2, 2n
n+2

. ‖∇ulo‖2, 2n
n−2
‖ulo‖

4
n−2

∞, 2n
n−2

. η
4(n−1)

(n−2)2

2(B.8)

and

‖Phi

(
F (ulo + g(m))− F (ulo)− F (g(m))

)
‖2, 2n

n+2

. ‖ulo|g(m)|
4

n−2 χ{|ulo|≤|g(m)|}‖2, 2n
n+2

+ ‖g(m)|ulo|
4

n−2 χ{|g(m)|<|ulo|}‖2, 2n
n+2

. ‖g(m)|ulo|
4

n−2‖2, 2n
n+2

. ‖g(m)‖2, 2n
n−2
‖ulo‖

4
n−2

∞, 2n
n−2

. η
4

n−2

2 ‖g(m)‖Ṡ0 ,(B.9)

‖∇Phi

(
F (ulo + g(m))− F (ulo)− F (g(m))

)
‖2, 2n

n+2

. ‖∇ulo|g(m)|
4

n−2‖2, 2n
n+2

+ ‖∇g(m)|ulo|
4

n−2‖2, 2n
n+2

. ‖∇ulo‖2, 2n
n−2
‖g(m)‖

4
n−2

∞, 2n
n−2

+ ‖∇g(m)‖2, 2n
n−2
‖ulo‖

4
n−2

∞, 2n
n−2

. η
4

(n−2)2

2 ‖g(m)‖
4

n−2

Ṡ1 + η
4

n−2

2 ‖g(m)‖Ṡ1 .(B.10)

Using the recurrence relation (B.2), Strichartz, and (B.3) through (B.10), we

estimate

‖g(m+1)‖Ṡ0 . ‖uhi(t0)‖2 + ‖G(m)‖ 2(n+2)
n+4

,
2(n+2)

n+4

+ ‖PhiF (ulo)‖2, 2n
n+2

+ ‖Phi

(
F (ulo + g(m))− F (ulo)− F (g(m))

)
‖2, 2n

n+2

. η2 + ‖g(m)‖
n+4

n

Ṡ0(I×Rn)
+ η100

2

(
‖g(m)‖Ṡ1(I×Rn)‖g

(m)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2)

+ η
4(n−1)

(n−2)2

2 + η
4

n−2

2 ‖g(m)‖Ṡ0 ,
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‖g(m+1)‖Ṡ1 . ‖∇uhi(t0)‖2 + ‖∇G(m)‖ 2(n+2)
n+4

,
2(n+2)

n+4

+ ‖∇PhiF (ulo)‖2, 2n
n+2

+ ‖∇Phi

(
F (ulo + g(m))− F (ulo)− F (g(m))

)
‖2, 2n

n+2

. 1 + log( 1
η2

)
(
‖g(m)‖Ṡ1(I×Rn)‖g

(m)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2)

+
(
‖g(m)‖Ṡ1(I×Rn)‖g

(m)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2) + η

4(n−1)

(n−2)2

2

+ η
4

(n−2)2

2 ‖g(m)‖
4

n−2

Ṡ1 + η
4

n−2

2 ‖g(m)‖Ṡ1 ,

and

‖g(m+1)‖W . ‖uhi‖W + ‖∇G(m)‖ 2(n+2)
n+4

,
2(n+2)

n+4

+ ‖∇PhiF (ulo)‖2, 2n
n+2

+ ‖∇Phi

(
F (ulo + g(m))− F (ulo)− F (g(m))

)
‖2, 2n

n+2

. ηε
2 + log( 1

η2
)
(
‖g(m)‖Ṡ1(I×Rn)‖g

(m)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2)

+
(
‖g(m)‖Ṡ1(I×Rn)‖g

(m)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2) + η

4(n−1)

(n−2)2

2

+ η
4

(n−2)2

2 ‖g(m)‖
4

n−2

Ṡ1 + η
4

n−2

2 ‖g(m)‖Ṡ1 .

A simple inductive argument yields

‖g(m)‖Ṡ0 . η
2

n−2

2 ,(B.11)

‖g(m)‖Ṡ1 . 1,(B.12)

‖g(m)‖W . ηε
2,(B.13)

for all m ≥ 1 and provided ε is sufficiently small.

To prove that the initial value problem (B.1) admits a local solution in

Ṡ0
⋂

Ṡ1, it suffices to prove that the sequence {g(m)}m converges strongly in

Ṡ0 to some function g. This function is guaranteed to lie in Ṡ1 for the following

reasons: As the sequence {g(m)}m stays bounded in Ṡ1 (see (B.12)), it follows

that g(m) converges weakly to g in Ṡ1. As weak limits are unique, we conclude

that g lies in both Ṡ0 and Ṡ1. Moreover, by Fatou, (B.11), and (B.12), g obeys
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the bounds

‖g‖Ṡ0 . η
2

n−2

2 and ‖g‖Ṡ1 . 1.

In what follows, we prove that the sequence {g(m)}m is Cauchy in Ṡ0, which

completes the proof of local existence for the reasons just given. We start by

considering differences of the form g(m+1) − g(m). Using the recurrence relation

(B.2) and Strichartz, for m > 1 we bound

‖g(m+1) − g(m)‖Ṡ0 . ‖G(m) −G(m−1)‖
L

2(n+2)
n+4

t,x

+ ‖F (g(m))− F (g(m−1))‖
L

2(n+2)
n+4

t,x

+ ‖F (ulo + g(m))− F (ulo + g(m−1))‖
L

2(n+2)
n+4

t,x

.(B.14)

By (1.7), Sobolev embedding, (5.36), and (B.13), we get

‖F (g(m))− F (g(m−1))‖
L

2(n+2)
n+4

t,x

. ‖g(m) − g(m−1)‖
L

2(n+2)
n

t,x

(
‖g(m)‖

4
n−2

L
2(n+2)

n−2
t,x

+ ‖g(m−1)‖
4

n−2

L
2(n+2)

n−2
t,x

)
. ‖g(m) − g(m−1)‖Ṡ0

(
‖g(m)‖

4
n−2

W + ‖g(m−1)‖
4

n−2

W

)
. η

4ε
n−2

2 ‖g(m) − g(m−1)‖Ṡ0(B.15)

and

‖F (ulo + g(m))− F (ulo + g(m−1))‖
L

2(n+2)
n+4

t,x

.
(
‖g(m)‖

L
2(n+2)

n−2
t,x

+ ‖g(m−1)‖
4

n−2

L
2(n+2)

n−2
t,x

+ ‖ulo‖
4

n−2

L
2(n+2)

n−2
t,x

)
× ‖g(m) − g(m−1)‖ 2(n+2)

n
,
2(n+2)

n

. ‖g(m) − g(m−1)‖Ṡ0

(
‖g(m)‖

4
n−2

W + ‖g(m−1)‖
4

n−2

W + ‖ulo‖
4

n−2

Ṡ1

)
. η

4ε
n−2

2 ‖g(m) − g(m−1)‖Ṡ0 ,(B.16)

again, assuming ε is sufficiently small, which amounts to taking I sufficiently

small.
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We are left with the task of estimating

‖G(m) −G(m−1)‖
L

2(n+2)
n+4

t,x

≤ ‖G(m)
med −G

(m−1)
med ‖

L
2(n+2)

n+4
t,x

+ ‖G(m)
vhi −G

(m−1)
vhi ‖

L
2(n+2)

n+4
t,x

.

We consider first differences coming from medium frequencies. For 1 < N <

η−100
2 , denote

fN := χ{|PNF |≤1/N}PNF.

Then,

‖G(m)
med −G

(m−1)
med ‖

L
2(n+2)

n+4
t,x

.
∑

1<N<η−100
2

‖P̃N

(
fN(g(m))− fN(g(m−1))

)
‖

L
2(n+2)

n+4
t,x

.
∑

1<N<η−100
2

‖fN(g(m))− fN(g(m−1))‖
L

2(n+2)
n+4

t,x

.

By the Fundamental Theorem of Calculus, we write

fN(g(m))− fN(g(m−1)) = (g(m) − g(m−1))

∫ 1

0

(fN
z + fN

z̄ )(g
(m)
θ )dθ,

where for θ ∈ [0, 1] we define g
(m)
θ := g(m) + θ(g(m) − g(m−1)). As

fN
z = χ{|PNF |≤1/N}PNFz + χ̃{|PNF |∼1/N}NPNF

and

fN
z̄ = χ{|PNF |≤1/N}PNFz̄ + χ̃{|PNF |∼1/N}NPNF

for some smooth cutoff χ̃ to the set indicated, Minkowski’s inequality and Sobolev
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embedding yield

‖fN(g(m))− fN(g(m−1))‖
L

2(n+2)
n+4

t,x

. sup
θ∈[0,1]

(
‖g(m)

θ ‖
4

n−2

L
2(n+2)

n−2
t,x

+ ‖χ̃{|PNF (g
(m)
θ )|∼1/N}NPNF (g

(m)
θ )‖

L
n+2

2
t,x

)
× ‖g(m) − g(m−1)‖

L
2(n+2)

n
t,x

.
(
‖g(m)‖

4
n−2

W + ‖g(m−1)‖
4

n−2

W

)
‖g(m) − g(m−1)‖Ṡ0

+ sup
θ∈[0,1]

‖χ̃{|PNF (g
(m)
θ )|∼1/N}NPNF (g

(m)
θ )‖

L
n+2

2
t,x

‖g(m) − g(m−1)‖Ṡ0

. η
4ε

n−2

2 ‖g(m) − g(m−1)‖Ṡ0

+ sup
θ∈[0,1]

‖χ̃{|PNF (g
(m)
θ )|∼1/N}NPNF (g

(m)
θ )‖

L
n+2

2
t,x

‖g(m) − g(m−1)‖Ṡ0 .

For θ ∈ [0, 1], by Bernstein and (5.50) we estimate

‖χ̃{|PNF (g
(m)
θ )|∼1/N}NPNF (g

(m)
θ )‖

L
n+2

2
t,x

∼
∥∥χ̃{|PNF (g

(m)
θ )|∼1/N}

[
NPNF (g

(m)
θ )

] 4(n−2)
n(n+2)

∥∥
L

n+2
2

t,x

. ‖NPNF (g
(m)
θ )‖

4(n−2)
n(n+2)

L
2(n−2)

n
t,x

. ‖∇F (g
(m)
θ )‖

4(n−2)
n(n+2)

L
2(n−2)

n
t,x

.
(
‖g(m)

θ ‖Ṡ1‖g(m)
θ ‖

4
n−2

Ṡ0

) 4(n−2)
n(n+2) .

Thus, by (B.11), (B.12), and taking ε sufficiently small, we get

‖fN(g(m))− fN(g(m−1))‖
L

2(n+2)
n+4

t,x

. η
4ε

n−2

2 ‖g(m) − g(m−1)‖Ṡ0 ,

which yields

‖G(m)
med −G

(m−1)
med ‖

L
2(n+2)

n+4
t,x

.
∑

1<N<η−100
2

η
4ε

n−2

2 ‖g(m) − g(m−1)‖Ṡ0

. log( 1
η2

)η
4ε

n−2

2 ‖g(m) − g(m−1)‖Ṡ0

. η
3ε

n−2

2 ‖g(m) − g(m−1)‖Ṡ0 .(B.17)
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We consider last the difference coming from very high frequencies. More

precisely, denoting

f vhi := |∇|−1P≥η−100
2

(
χ{||∇|F |≤1}|∇|F

)
,

we have to estimate

‖G(m)
vhi −G

(m−1)
vhi ‖

L
2(n+2)

n+4
t,x

= ‖f vhi(g(m))− f vhi(g(m−1))‖
L

2(n+2)
n+4

t,x

.

By the Fundamental Theorem of Calculus, we write

f vhi(g(m))− f vhi(g(m−1)) = (g(m) − g(m−1))

∫ 1

0

∇f vhi(g
(m)
θ )dθ,

with the convention that for θ ∈ [0, 1], g
(m)
θ := g(m) + θ(g(m) − g(m−1)). By

Minkowski’s inequality, the boundedness of the Riesz potentials on Lp
x for 1 <

p < ∞, and (5.50), we estimate

‖f vhi(g(m))− f vhi(g(m−1))‖
L

2(n+2)
n+4

t,x

. ‖g(m) − g(m−1)‖
L

2(n+2)
n

t,x

sup
θ∈[0,1]

‖χ{||∇|F (g
(m)
θ )|≤1}|∇|F (g

(m)
θ )‖

L
n+2

2
t,x

. ‖g(m) − g(m−1)‖Ṡ0

∥∥χ{||∇|F (g
(m)
θ )|≤1}

[
|∇|F (g

(m)
θ )

] 4(n−2)
n(n+2)

∥∥
L

n+2
2

t,x

. ‖g(m) − g(m−1)‖Ṡ0‖|∇|F (g
(m)
θ )‖

4(n−2)
n(n+2)

L
2(n−2)

n
t,x

. ‖g(m) − g(m−1)‖Ṡ0

(
‖g(m)

θ ‖Ṡ1‖g(m)
θ ‖

4
n−2

Ṡ0

) 4(n−2)
n(n+2) .

Thus, by (B.11), (B.12), and taking ε sufficiently small, we get

‖G(m)
vhi −G

(m−1)
vhi ‖

L
2(n+2)

n+4
t,x

. η
4ε

n−2

2 ‖g(m) − g(m−1)‖Ṡ0 .(B.18)

Collecting (B.14), (B.15), (B.16), (B.17), and (B.18), we obtain

‖g(m+1) − g(m)‖Ṡ0 . η
3ε

n−2

2 ‖g(m) − g(m−1)‖Ṡ0
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for all m > 1. Also, as by (B.2), (B.3), (B.8), and (B.9), we have

‖g(2) − g(1)‖Ṡ0 . ‖G(1)‖ 2(n+2)
n+4

,
2(n+2)

n+4

+ ‖PhiF (ulo)‖2, 2n
n+2

+ ‖Phi

(
F (ulo + g(1))− F (ulo)− F (g(1))

)
‖2, 2n

n+2

. ‖g(1)‖
n+4

n

Ṡ0(I×Rn)
+ η100

2

(
‖g(1)‖Ṡ1(I×Rn)‖g

(1)‖
4

n−2

Ṡ0(I×Rn)

) (n−2)(n+4)
n(n+2)

+ η
4(n−1)

(n−2)2

2 + η
4

n−2

2 ‖g(1)‖Ṡ0

. η
n+4

n
2 + η100

2 η
4(n+4)
n(n+2)

2 + η
4(n−1)

(n−2)2

2 + η
n+2
n−2

2 ,

we immediately obtain that the sequence {g(m)}m∈N is Cauchy in Ṡ0 and thus

convergent to some function g ∈ Ṡ0.

The uniqueness of Ṡ0 ∩ Ṡ1 solutions to (B.1) is standard and based on the

estimates above. We skip the details.
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APPENDIX C

The frequency-localized interaction Morawetz

estimate in dimension n = 5

In this appendix we prove the frequency-localized interaction Morawetz es-

timate in dimension n = 5, which amounts to controlling the error terms in

Proposition 5.7. The setup is as in Section 5.2. In particular, N∗ = 1, the low

frequencies have small energy (see (5.10)), and the high frequencies have small

mass (see (5.11)). Moreover, we assume (5.15) for a large constant C0 depending

on the energy, but not on any of the η’s.

The first step is to obtain estimates on the low and high-frequency parts of u.

C.1 Strichartz control on low and high frequencies in di-

mension n = 5

Proposition C.1 (Strichartz control on low and high frequecies in n = 5). There

exists a constant C1 possibly depending on the energy, but not on any of the η’s,

such that

‖ulo‖Ṡ1(I0×R5) ≤ C1(C0η1)
1
2(C.1)

‖|∇|−
1
2 uhi‖

L2
t L

10
3

x (I0×R5)
≤ C1(C0η1)

1
2 .(C.2)

Proof. To prove Proposition C.1, we will use a bootstrap argument. Fix t0 :=

inf I0 and let Ω1 be the set of all times T ∈ I0 such that (C.1) and (C.2) hold on
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[t0, T ].

Define also Ω2 to be the set of all times T ∈ I0 such that (C.1) and (C.2) hold

on [t0, T ] with C1 replaced by 2C1. More precisely, for T ∈ Ω2 we have

‖ulo‖Ṡ1([t0,T ]×R5) ≤ 2C1(C0η1)
1
2(C.3)

‖|∇|−
1
2 uhi‖

L2
t L

10
3

x ([t0,T ]×R5)
≤ 2C1(C0η1)

1
2 .(C.4)

In order to run a bootstrap argument successfully, we need to check four

things:

• First, we need to see that t0 ∈ Ω1; this follows immediately from the definition

of ulo and uhi at the time t = t0, provided C1 is sufficiently large.

• Secondly, we need Ω1 to be closed; this follows from the definition of Ω1 and

Fatou’s lemma.

• Next, we need to prove that if T ∈ Ω1, then there exists a small neighbor-

hood of T contained in Ω2. This property follows from the dominated conver-

gence theorem and the fact that ulo is not only in Ṡ1([t0, T ] × R5), but also in

C0
t Ḣ

1
x([t0, T ]× R5)

• The last thing we need to check in order to complete the bootstrap argument

is that Ω2 ⊂ Ω1 and this is what we will focus on for the rest of the proof of

Proposition C.1. Fix therefore T ∈ Ω2. Throughout the rest of the proof all

spacetime norms will be on [t0, T ]× R5.

We consider the low frequencies first. By Strichartz and (5.10), we estimate

‖ulo‖Ṡ1 . ‖∇ulo(t0)‖L2
x

+ ‖∇Plo(|u|
4
3 u)‖2, 10

7

. η2 + ‖∇Plo(|u|
4
3 u)‖2, 10

7
.(C.5)

Replacing Plo by the positive-kernel operator P ′
lo (see Section 1.2 for its definition

and properties) and estimating

|u|
7
3 . |ulo|

7
3 + |uhi|

7
3 ,

117



we obtain

‖∇P ′
lo(|u|

4
3 u)‖2, 10

7
. ‖∇P ′

lo(|ulo|
7
3 )‖2, 10

7
+ ‖∇P ′

lo(|uhi|
7
3 )‖2, 10

7
.

By Hölder, (5.10), and (C.3), we estimate

‖∇P ′
lo(|ulo|

7
3 )‖2, 10

7
. ‖∇ulo‖2, 10

3
‖ulo‖

4
3

∞, 10
3

. 2C1(C0η1)
1
2 η

4
3
2 ≤

C1

100
(C0η1)

1
2 ,(C.6)

while, by Bernstein, Hölder, interpolation, and (5.11), we get

‖∇P ′
lo(|uhi|

7
3 )‖2, 10

7
. ‖P ′

lo(|uhi|
7
3 )‖2, 30

29
. ‖uhi‖

7
3
14
3

, 70
29

. ‖uhi‖
3
2

3, 30
11

‖uhi‖
5
6
∞,2

. ‖uhi‖
3
2

3, 30
11

η
5
6
2 .

By interpolation and (C.4), we estimate

‖uhi‖3, 30
11

. ‖|∇|−
1
2 uhi‖

2
3

2, 10
3

‖∇uhi‖
1
3
∞,2 . [2C1(C0η1)

1
2 ]

2
3(C.7)

and hence

‖∇P ′
lo(|uhi|

7
3 )‖2, 10

7
. 2C1η

1
2
1 η

5
6
2 ≤

C1

100
(C0η1)

1
2 .(C.8)

Putting together (C.5), (C.6), and (C.8), we obtain (C.1).

We turn now toward the high frequencies of u. By Strichartz,

‖|∇|−
1
2 uhi‖2, 10

3
. ‖|∇|−

1
2 uhi(t0)‖L2

x
+ ‖|∇|−

1
2 Phi(|u|

4
3 u)‖2, 10

7
.(C.9)

Using Bernstein and (5.11), we estimate

‖|∇|−
1
2 uhi(t0)‖L2

x
. ‖uhi‖∞,2 . η2.(C.10)

By the triangle inequality,

‖|∇|−
1
2 Phi(|u|

4
3 u)‖2, 10

7

. ‖|∇|−
1
2 Phi(|ulo|

4
3 ulo)‖2, 10

7

+ ‖|∇|−
1
2 Phi(uhiFz(|ulo|))‖2, 10

7
+ ‖|∇|−

1
2 Phi(uhiFz̄(|ulo|))‖2, 10

7

+
∥∥|∇|− 1

2 Phi

(
|u|

4
3 u− |ulo|

4
3 ulo − uhiFz(|ulo|)− uhiFz̄(|ulo|)

)∥∥
2, 10

7

.(C.11)
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Here, the function F denotes the nonlinearity, i.e., F (z) = |z| 43 z.

Using Bernstein, (5.10), and (C.3), we estimate the first term on the right-

hand side of (C.11) as follows:

‖|∇|−
1
2 Phi(|ulo|

4
3 ulo)‖2, 10

7
. ‖∇Phi(|ulo|

4
3 ulo)‖2, 10

7
. ‖∇ulo‖2, 10

3
‖ulo‖

4
3

∞, 10
3

. 2C1(C0η1)
1
2 η

4
3
2 ≤

C1

100
(C0η1)

1
2 .(C.12)

To estimate the last term on the right-hand side of (C.11), we note that

F (z + w)− F (z)− wFz(z)− w̄Fz̄(z) = w

∫ 1

0

[Fz(z + tw)− Fz(z)]dt

+ w̄

∫ 1

0

[Fz̄(z + tw)− Fz̄(z)]dt,

and hence

|F (z + w)− F (z)− wFz(z)− w̄Fz̄(z)| . |w|
7
3 + |w|2|z|

1
3 .

Thus, by Sobolev embedding, Bernstein, (5.10), and (C.7) we estimate

∥∥|∇|− 1
2 Phi

(
|u|

4
3 u−|ulo|

4
3 ulo − uhiFz(|ulo|)− uhiFz̄(|ulo|)

)∥∥
2, 10

7

. ‖|uhi|
7
3‖2, 5

4
+ ‖|uhi|2|ulo|

1
3‖2, 5

4

. ‖uhi‖
7
3
14
3

, 35
12

+ ‖uhi‖3, 30
11
‖uhi‖6, 30

13
‖ulo‖

1
3∞,∞

. ‖uhi‖
7
3
14
3

, 35
12

+ ‖uhi‖
3
2

3, 30
11

‖uhi‖
1
2
∞,2η

1
3
2

. ‖uhi‖
7
3
14
3

, 35
12

+ 2C1(C0η1)
1
2 η

1
2
2 η

1
3
2 .

As by interpolation, (5.15), and (C.7),

‖uhi‖ 14
3

, 35
12

. ‖|∇|−
1
2 uhi‖

10
21
4,4‖∇uhi‖

5
21
∞,2‖uhi‖

2
7

3, 31
11

. (C0η1)
5
42 [2C1(C0η1)

1
2 ]

4
21

. (2C1)
4
21 (C0η1)

3
14 ,

119



we estimate the last term on the right-hand side of (C.11) by∥∥|∇|− 1
2 Phi

(
|u|

4
3 u−|ulo|

4
3 ulo − uhiFz(|ulo|)− uhiFz̄(|ulo|)

)∥∥
2, 10

7

. (2C1)
4
9 (C0η1)

1
2 + 2C1(C0η1)

1
2 η

1
2
2 η

1
3
2

≤ C1

100
(C0η1)

1
2 ,(C.13)

where the last inequality follows provided C1 is sufficiently large.

We are left to estimate

‖|∇|−
1
2 Phi(uhiFz(|ulo|))‖2, 10

7
+ ‖|∇|−

1
2 Phi(uhiFz̄(|ulo|))‖2, 10

7
.

As the method of treating the two terms is the same, we only consider the first

one. In the same spirit as Lemma 5.10 we have

‖|∇|−
1
2 Phi(uhiFz(|ulo|))‖2, 10

7
. ‖|∇|−

1
2 uhi‖2, 10

3
‖|∇|

1
2 Fz(|ulo|))‖∞,2,

which we estimate via Bernstein, Sobloev embedding, (5.10), and (C.4) by

2C1(C0η1)
1
2‖∇|ulo|

4
3‖∞, 5

3
. 2C1(C0η1)

1
2‖∇ulo‖∞,2‖ulo‖

1
3

∞, 10
3

. 2C1(C0η1)
1
2 η

4
3
2

Thus,

‖|∇|−
1
2 Phi(uhiFz(|ulo|))‖2, 10

7
+ ‖|∇|−

1
2 Phi(uhiFz̄(|ulo|))‖2, 10

7
≤ C1

100
(C0η1)

1
2 .

(C.14)

Collecting (C.9) through (C.14), we derive (C.2).

Remark C.2. Interpolating between (5.10) and (C.1), for any Schrödinger ad-

missible pair (q, r) we obtain

‖∇ulo‖Lq
t Lr

x(I0×R5) . (C0η1)
1
q η

1− 2
q

2 . (C0η1)
1
q .(C.15)

Similarly, interpolating between (5.11) and (C.2), for any Schrödinger admissible

pair (q, r) with q ≥ 3 we get

‖uhi‖Lq
t Lr

x(I0×R5) . (C0η1)
1
q η

1− 2
q

2 . (C0η1)
1
q .
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C.2 FLIM: the error terms in dimension n = 5

In this section we use the control on ulo and uhi that Proposition C.1 won us

to bound the error terms on the right-hand side of Proposition 5.7 in dimension

n = 5. Throughout the rest of the section all spacetime norms will be on I0×R5.

Consider (5.19). By (1.8), Hölder, Sobolev embedding, Proposition C.1, and

Remark C.2 we estimate

(5.19) . η2‖|uhi|
7
3 ulo‖1,1 + ‖|uhi|2|ulo|

4
3‖1,1

. η2

(
‖uhi‖3, 30

11
‖uhi‖6, 30

13
‖uhi‖

1
3

∞, 10
3

‖ulo‖2,10 + ‖uhi‖2
6, 30

13
‖ulo‖

4
3
2,10

)
. η2

[
(C0η1)

1
3 (C0η1)

1
6 (C0η1)

1
2 + (C0η1)

1
3 (C0η1)

2
3

]
. η2C0η1.(C.16)

We move on to (5.20). Using Bernstein, Proposition C.1, and Remark C.2 we

get

(5.20) . η2‖uhiPlo(|uhi|
4
3 uhi)‖1,1

. η2‖uhi‖3, 30
11
‖Plo(|uhi|

4
3 uhi)‖ 3

2
, 30
19

. η2(C0η1)
1
3‖Plo(|uhi|

4
3 uhi)‖ 3

2
, 30
25

. η2(C0η1)
1
3‖uhi‖2

3, 30
11
‖uhi‖

1
3

∞, 10
3

. η2C0η1.(C.17)

We examine next (5.21). By Bernstein, Sobolev embedding, Proposition C.1,
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and Remark C.2, we estimate

(5.21) . η2‖uhiPhi(|ulo|
4
3 ulo)‖1,1

. η2‖uhi‖3, 30
11
‖∇Phi(|ulo|

4
3 ulo)‖ 3

2
, 30
19

. η2(C0η1)
1
3‖∇ulo‖2, 10

3
‖ulo‖6, 30

7
‖ulo‖

1
3

∞, 10
3

. η2(C0η1)
1
3 (C0η1)

1
2 (C0η1)

1
6 η

1
3
2

. η2C0η1.(C.18)

We turn now toward (5.22) and use Hölder, Sobolev embedding, Proposi-

tion C.1, and Remark C.2 to estimate

(5.22) . η2
2‖uhi|ulo|

4
3∇ulo‖1,1

. η2
2‖uhi‖3, 30

11
‖∇ulo‖2, 10

3
‖ulo‖6, 30

7
‖ulo‖

1
3

∞, 10
3

. η2
2(C0η1)

1
3 (C0η1)

1
2 (C0η1)

1
6 η

1
3
2

. η2
2C0η1.(C.19)

To estimate (5.23), we use again Bernstein, Proposition C.1, and Remark C.2:

(5.23) . η2
2‖|uhi|

7
3∇ulo‖1,1

. η2
2‖uhi‖3, 30

11
‖uhi‖6, 30

13
‖uhi‖

1
3

∞, 10
3

‖∇ulo‖2,10

. η2
2(C0η1)

1
3 (C0η1)

1
6 (C0η1)

1
2

. η2
2C0η1.(C.20)

Now we turn toward (5.24). By the triangle inequality we estimate

(5.24) . η2
2‖uhi∇Plo(|u|

4
3 u− |uhi|

4
3 uhi − |ulo|

4
3 ulo)‖1,1

+ η2
2‖uhi∇Plo(|uhi|

4
3 uhi)‖1,1 + η2

2‖uhi∇Plo(|ulo|
4
3 ulo)‖1,1.(C.21)
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Using Bernstein to drop the derivative in front of Plo, we note that the first and

second terms on the right-hand side of (C.21) are of the same form as (5.19),

respectively (5.20). Hence,

η2
2‖uhi∇Plo(|u|

4
3 u− |uhi|

4
3 uhi − |ulo|

4
3 ulo)‖1,1 . η2

2C0η1.

and

η2
2‖uhi∇Plo(|uhi|

4
3 uhi)‖1,1 . η2

2C0η1.

On the other hand, using Proposition C.1 and Remark C.2 we bound the third

term on the right-hand side of (C.21) as follows:

η2
2‖uhi∇Plo(|ulo|

4
3 ulo)‖1,1 . η2

2‖uhi‖3, 30
11
‖∇ulo‖2, 10

3
‖ulo‖6, 30

7
‖ulo‖

1
3

∞, 10
3

. η2
2(C0η1)

1
3 (C0η1)

1
2 (C0η1)

1
6 η

1
3
2

. η2
2C0η1.

Therefore,

(5.24) . η2
2C0η1.(C.22)

We turn now to the error terms (5.25) through (5.27). We notice that they

are of the form 〈|uhi|2 ∗ 1
|x| , f〉 where

f =


|ulo|

7
3 |uhi| in (5.25),

|ulo||uhi|
7
3 in (5.26),

|uhiPlo

(
|uhi|

4
3 uhi

)
| in (5.27).

Let us first note that as uhi ∈ L3
t L

30
11
x and uhi ∈ L∞

t L2
x, we also have |uhi|2 ∈

L3
t L

15
13
x . Therefore, by Hardy-Littlewood-Sobolev, |uhi|2 ∗ 1

|x| ∈ L3
t L

15
x . Moreover,〈

|uhi|2 ∗
1

|x|
, f
〉

.
∥∥|uhi|2 ∗ |x|−1

∥∥
3,15
‖f‖ 3

2
, 15
14

. ‖uhi‖3, 30
11
‖uhi‖∞,2‖f‖ 3

2
, 15
14

. (C0η1)
1
3 η2‖f‖ 3

2
, 15
14

.(C.23)
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Consider the case of (5.25), that is, f = |ulo|
7
3 |uhi|. By Hölder, Proposi-

tion C.1, and Remark C.2, we estimate

‖|ulo|
7
3 uhi‖ 3

2
, 15
14

. ‖ulo‖
4
3

∞, 10
3

‖ulo‖3,6‖uhi‖3, 30
11

. η
4
3
2 (C0η1)

1
3 (C0η1)

1
3

Thus, by (C.23) and the above computation,

(5.25) . η
7
3
2 C0η1.(C.24)

Consider next the error term (5.26), that is, f = |ulo||uhi|
7
3 . By Proposi-

tion C.1, Remark C.2, and the conservation of energy, we estimate

‖ulo|uhi|
7
3‖ 3

2
, 15
14

. ‖ulo‖3,6‖uhi‖3, 30
11
‖uhi‖

4
3

∞, 10
3

. (C0η1)
1
3 (C0η1)

1
3 .

Hence, by (C.23) and the above computation,

(5.26) . η2C0η1.(C.25)

The last error term left to consider is (5.27); in this case we use Bernstein,

Proposition C.1, Remark C.2, and the conservation of energy to estimate

‖uhiPlo

(
|uhi|

4
3 uhi

)
‖ 3

2
, 15
14

. ‖uhi‖3, 30
11
‖Plo

(
|uhi|

4
3 uhi

)
‖3, 30

17

. (C0η1)
1
3‖Plo

(
|uhi|

4
n−2 uhi

)
‖3, 30

23

. (C0η1)
1
3‖uhi‖3, 30

11
‖uhi‖

4
3

∞, 10
3

. (C0η1)
2
3 .

Thus, considering (C.23), we obtain

(5.27) . η2C0η1.(C.26)

Collecting (C.16) through (C.26), we obtain that all the error terms on the

right-hand side of Proposition 5.7 are controlled by η1. Upon rescaling, this

concludes the proof of Proposition 5.7 in dimension n = 5.
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