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Many properties of a projective algebraic variety can be encoded by convex
cones, such as the ample cone and the cone of curves. This is especially useful
when these cones have only finitely many edges, as happens for Fano varieties.
For a broader class of varieties which includes Calabi-Yau varieties and many ra-
tionally connected varieties, the Kawamata-Morrison cone conjecture predicts the
structure of these cones. I like to think of this conjecture as what comes after the
abundance conjecture. Roughly speaking, the cone theorem of Mori-Kawamata-
Shokurov-Kollár-Reid describes the structure of the curves on a projective variety
X on which the canonical bundle KX has negative degree; the abundance conjec-
ture would give strong information about the curves on which KX has degree zero;
and the cone conjecture fully describes the structure of the curves on which KX has
degree zero.

We give a gentle summary of the proof of the cone conjecture for algebraic sur-
faces, with plenty of examples [43]. For algebraic surfaces, these cones are naturally
described using hyperbolic geometry, and the proof can also be formulated in those
terms.

Example 6.3 shows that the automorphism group of a K3 surface need not be
commensurable with an arithmetic group. This answers a question by Barry Mazur
[28, section 7].

Thanks to John Christian Ottem, Artie Prendergast-Smith, and Marcus Zibrow-
ius for their comments.

1 The main trichotomy

Let X be a smooth complex projective variety. There are three main types of
varieties. (Not every variety is of one of these three types, but minimal model
theory relates every variety to one of these extreme types.)

Fano. This means that −KX is ample. (We recall the definition of ampleness
in section 2.)

Calabi-Yau. We define this to mean that KX is numerically trivial.
ample canonical bundle. This means that KX is ample; it implies that X is of

“general type.”
Here, for X of complex dimension n, the canonical bundle KX is the line bundle

Ωn
X of n-forms. We write −KX for the dual line bundle K∗

X , the determinant of the
tangent bundle.

Example 1.1. Let X be a curve, meaning that X has complex dimension 1. Then
X is Fano if it has genus zero, or equivalently if X is isomorphic to the complex
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projective line P1; as a topological space, this is the 2-sphere. Next, X is Calabi-
Yau if X is an elliptic curve, meaning that X has genus 1. Finally, X has ample
canonical bundle if it has genus at least 2.

Example 1.2. Let X be a smooth surface in P3. Then X is Fano if it has degree
at most 3. Next, X is Calabi-Yau if it has degree 4; this is one class of K3 surfaces.
Finally, X has ample canonical bundle if it has degree at least 5.

Belonging to one of these three classes of varieties is equivalent to the existence
of a Kähler metric with Ricci curvature of a given sign, by Yau [46]. Precisely, a
smooth projective variety is Fano if and only if it has a Kähler metric with positive
Ricci curvature; it is Calabi-Yau if and only if it has a Ricci-flat Kähler metric; and
it has ample canonical bundle if and only if it has a Kähler metric with negative
Ricci curvature.

We think of Fano varieties as the most special class of varieties, with projec-
tive space as a basic example. Strong support for this idea is provided by Kollár-
Miyaoka-Mori’s theorem that smooth Fano varieties of dimension n form a bounded
family [23]. In particular, there are only finitely many diffeomorphism types of
smooth Fano varieties of a given dimension.

Example 1.3. Every smooth Fano surface is isomorphic to P1×P1 or to a blow-up
of P2 at at most 8 points. The classification of smooth Fano 3-folds is also known,
by Iskovskikh, Mori, and Mukai; there are 104 deformation classes [21].

By contrast, varieties with ample canonical bundle form a vast and uncontrol-
lable class. Even in dimension 1, there are infinitely many topological types of
varieties with ample canonical bundle (curves of genus at least 2). Calabi-Yau va-
rieties are on the border in terms of complexity. It is a notorious open question
whether there are only finitely many topological types of smooth Calabi-Yau vari-
eties of a given dimension. This is true in dimension at most 2. In particular, a
smooth Calabi-Yau surface is either an abelian surface, a K3 surface, or a quotient
of one of these surfaces by a free action of a finite group (and only finitely many
finite groups occur this way).

2 Ample line bundles and the cone theorem

After a quick review of ample line bundles, this section states the cone theorem
and its application to Fano varieties. Lazarsfeld’s book is an excellent reference on
ample line bundles [26].

Definition 2.1. A line bundle L on a projective variety X is ample if some positive
multiple nL (meaning the line bundle L⊗n) has enough global sections to give a
projective embedding

X ↪→ PN .

(Here N = dimCH0(X, nL)− 1.)

One reason to investigate which line bundles are ample is in order to classify
algebraic varieties. For classification, it is essential to know how to describe a
variety with given properties as a subvariety of a certain projective space defined
by equations of certain degrees.
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Example 2.2. For X a curve, L is ample on X if and only if it has positive degree.
We write L ·X = deg(L|X) ∈ Z.

An R-divisor on a smooth projective variety X is a finite sum

D =
∑

aiDi

with ai ∈ R and each Di an irreducible divisor (codimension-one subvariety) in
X. Write N1(X) for the “Néron-Severi” real vector space of R-divisors modulo
numerical equivalence: D1 ≡ D2 if D1 · C = D2 · C for all curves C in X. (For me,
a curve is irreducible.)

We can also define N1(X) as the subspace of the cohomology H2(X,R) spanned
by divisors. In particular, it is a finite-dimensional real vector space. The dual vector
space N1(X) is the space of 1-cycles

∑
aiCi modulo numerical equivalence, where

Ci are curves on X. We can identify N1(X) with the subspace of the homology
H2(X,R) spanned by algebraic curves.

Definition 2.3. The closed cone of curves Curv(X) is the closed convex cone in
N1(X) spanned by curves on X.

Definition 2.4. An R-divisor D is nef if D ·C ≥ 0 for all curves C in X. Likewise,
a line bundle L on X is nef if the class [L] of L (also called the first Chern class
c1(L)) in N1(X) is nef. That is, L has nonnegative degree on all curves in X.

Thus Nef(X) ⊂ N1(X) is a closed convex cone, the dual cone to Curv(X) ⊂
N1(X).

Theorem 2.5. (Kleiman) A line bundle L is ample if and only if [L] is in the
interior of the nef cone in N1(X).

This is a numerical characterization of ampleness. It shows that we know the
ample cone Amp(X) ⊂ N1(X) if we know the cone of curves Curv(X) ⊂ N1(X).
The following theorem gives a good understanding of the “K-negative” half of the
cone of curves [24, Theorem 3.7]. A rational curve means a curve that is birational
to P1.

Theorem 2.6. (Cone theorem; Mori, Shokurov, Kawamata, Reid, Kollár). Let X
be a smooth projective variety. Write K<0

X = {u ∈ N1(X) : KX · u < 0}. Then
every extremal ray of Curv(X) ∩K<0

X is isolated, spanned by a rational curve, and
can be contracted.

In particular, every extremal ray of Curv(X)∩K<0
X is rational (meaning that it

is spanned by a Q-linear combination of curves, not just an R-linear combination),
since it is spanned by a single curve. A contraction of a normal projective variety
X means a surjection from X onto a normal projective variety Y with connected
fibers. A contraction is determined by a face of the cone of curves Curv(X), the set
of elements of Curv(X) whose image under the pushforward map N1(X) → N1(Y )
is zero. The last statement in the cone theorem means that every extremal ray in
the K-negative half-space corresponds to a contraction of X.

Corollary 2.7. For a Fano variety X, the cone of curves Curv(X) (and therefore
the dual cone Nef(X)) is rational polyhedral.
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A rational polyhedral cone means the closed convex cone spanned by finitely
many rational points.

Proof. Since −KX is ample, KX is negative on all of Curv(X) − {0}. So the cone
theorem applies to all the extremal rays of Curv(X). Since they are isolated and
live in a compact space (the unit sphere), Curv(X) has only finitely many extremal
rays. The cone theorem also gives that these rays are rational. QED

It follows, in particular, that a Fano variety has only finitely many different
contractions. A simple example is the blow-up X of P2 at one point, which is Fano.
In this case, Curv(X) is a closed strongly convex cone in the two-dimensional real
vector space N1(X), and so it has exactly two 1-dimensional faces. We can write
down two contractions of X, X → P2 (contracting a (−1)-curve) and X → P1

(expressing X as a P1-bundle over P1). Each of these morphisms must contract
one of the two 1-dimensional faces of Curv(X). Because the cone has no other
nontrivial faces, these are the only nontrivial contractions of X.

3 Beyond Fano varieties

“Just beyond” Fano varieties, the cone of curves and the nef cone need not be
rational polyhedral. Lazarsfeld’s book [26] gives many examples of this type, as do
other books on minimal model theory [12, 24].

3.1 Example

Let X be the blow-up of P2 at n very general points. For n ≤ 8, X is Fano, and
so Curv(X) is rational polyhedral. In more detail, for 2 ≤ n ≤ 8, Curv(X) is
the convex cone spanned by the finitely many (−1)-curves in X. (A (−1)-curve
on a surface X means a curve C isomorphic to P1 with self-intersection number
C2 = −1.) For example, when n = 6, X can be identified with a cubic surface, and
the (−1)-curves are the famous 27 lines on X.

But for n ≥ 9, X is not Fano, since (−KX)2 = 9 − n (whereas a projective
variety has positive degree with respect to any ample line bundle). For p1, . . . , pn

very general points in P2, X contains infinitely many (−1)-curves; see Hartshorne
[18, Exercise V.4.15]. Every curve C with C2 < 0 on a surface spans an isolated
extremal ray of Curv(X), and so Curv(X) is not rational polyhedral.

Notice that a (−1)-curve C has KX · C = −1, and so these infinitely many
isolated extremal rays are on the “good” (K-negative) side of the cone of curves, in
the sense of the cone theorem. The K-positive side is a mystery. It is conjectured
(Harbourne-Hirschowitz) that the closed cone of curves of a very general blow-up of
P2 at n ≥ 10 points is the closed convex cone spanned by the (−1)-curves and the
“round” positive cone {x ∈ N1(X) : x2 ≥ 0 and H ·x ≥ 0}, where H is a fixed ample
line bundle. This includes the famous Nagata conjecture [26, Remark 5.1.14] as a
special case. By de Fernex, even if the Harbourne-Hirschowitz conjecture is correct,
the intersection of Curv(X) with the K-positive half-space, for X a very general
blow-up of P2 at n ≥ 11 points, is bigger than the intersection of the positive cone
with the K-positive half-space, because the (−1)-curves stick out a lot from the
positive cone [11].
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3.2 Example

Calabi-Yau varieties (varieties with KX ≡ 0) are also “just beyond” Fano varieties
(−KX ample). Again, the cone of curves of a Calabi-Yau variety need not be
rational polyhedral.

For example, let X be an abelian surface, so X ∼= C2/Λ for some lattice Λ ∼= Z4

such that X is projective. Then Curv(X) = Nef(X) is a round cone, the positive
cone

{x ∈ N1(X) : x2 ≥ 0 and H · x ≥ 0},

where H is a fixed ample line bundle. (Divisors and 1-cycles are the same thing
on a surface, and so the cones Curv(X) and Nef(X) lie in the same vector space
N1(X).) Thus the nef cone is not rational polyhedral if X has Picard number
ρ(X) := dimRN1(X) at least 3 (and sometimes when ρ = 2).

For a K3 surface, the closed cone of curves may be round, or may be the closed
cone spanned by the (−2)-curves in X. (One of those two properties must hold, by
Kovács [25].) There may be finitely or infinitely many (−2)-curves. See section 4.1
for an example.

4 The cone conjecture

But there is a good substitute for the cone theorem for Calabi-Yau varieties, the
Morrison-Kawamata cone conjecture. In dimension 2, this is a theorem, by Sterk-
Looijenga-Namikawa [39, 31, 22]. We call this Sterk’s theorem for convenience:

Theorem 4.1. Let X be a smooth complex projective Calabi-Yau surface (meaning
that KX is numerically trivial). Then the action of the automorphism group Aut(X)
on the nef cone Nef(X) ⊂ N1(X) has a rational polyhedral fundamental domain.

Remark 4.2. For any variety X, if Nef(X) is rational polyhedral, then the group
Aut∗(X) := im(Aut(X) → GL(N1(X))) is finite. This is easy: the group Aut∗(X)
must permute the set consisting of the smallest integral point on each extremal
ray of Nef(X). Sterk’s theorem implies the remarkable statement that the converse
is also true for Calabi-Yau surfaces. That is, if the cone Nef(X) is not rational
polyhedral, then Aut∗(X) must be infinite. Note that Aut∗(X) coincides with
the discrete part of the automorphism group of X up to finite groups, because
ker(Aut(X) → GL(N1(X))) is an algebraic group and hence has only finitely many
connected components.

Sterk’s theorem should generalize to Calabi-Yau varieties of any dimension (the
Morrison-Kawamata cone conjecture). But in dimension 2, we can visualize it bet-
ter, using hyperbolic geometry.

Indeed, let X be any smooth projective surface. The intersection form on N1(X)
always has signature (1, n) for some n (the Hodge index theorem). So {x ∈ N1(X) :
x2 > 0} has two connected components, and the positive cone {x ∈ N1(X) : x2 >
0 and H · x > 0} is the standard round cone. As a result, we can identify the
quotient of the positive cone by R>0 with hyperbolic n-space. One way to see this
is that the negative of the Lorentzian metric on N1(X) = R1,n restricted to the
quadric {x2 = 1} is a Riemannian metric with curvature −1.
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For any projective surface X, Aut(X) preserves the intersection form on N1(X).
So Aut∗(X) is always a group of isometries of hyperbolic n-space, where n = ρ(X)−
1.

By definition, two groups G1 and G2 are commensurable, written G1
.= G2, if

some finite-index subgroup of G1 is isomorphic to a finite-index subgroup of G2.
A group virtually has a given property if some subgroup of finite index has the
property. Since the groups we consider are all virtually torsion-free, we are free to
replace a group G by G/N for a finite normal subgroup N (that is, G and G/N are
commensurable).

4.1 Examples

For an abelian surface X with Picard number at least 3, the cone Nef(X) is round,
and so Aut∗(X) must be infinite by Sterk’s theorem. (For abelian surfaces, the
possible automorphism groups were known long before [30, section 21].)

For example, let X = E×E with E an elliptic curve
(not having complex multiplication). Then ρ(X) = 3,
with N1(X) spanned by the curves E × 0, 0 × E, and
the diagonal ∆E in E×E. So Aut∗(X) must be infinite.
In fact,

Aut∗(X) ∼= PGL(2,Z).

Here GL(2,Z) acts on E × E as on the direct sum of
any abelian group with itself. This agrees with Sterk’s
theorem, which says that Aut∗(X) acts on the hyperbolic plane with a rational
polyhedral fundamental domain; a fundamental domain for PGL(2,Z) acting on
the hyperbolic plane (not preserving orientation) is given by any of the triangles in
the figure.

For a K3 surface, the cone Nef(X) may or may not be the whole positive cone.
For any projective surface, the nef cone modulo scalars is a convex subset of hy-
perbolic space. A finite polytope in hyperbolic space (even if some vertices are at
infinity) has finite volume. So Sterk’s theorem implies that, for a Calabi-Yau sur-
face, Aut∗(X) acts with finite covolume on the convex set Nef(X)/R>0 in hyperbolic
space.

For example, let X be a K3 surface such that Pic(X)

P

is isomorphic to Z3 with intersection form0 1 1
1 −2 0
1 0 −2

 .

Such a surface exists, since Nikulin showed that every even lattice of rank at most
10 with signature (1, ∗) is the Picard lattice of some complex projective K3 surface
[32, section 1, part 12]. Using the ideas of section 5, one computes that the nef
cone of X modulo scalars is the convex subset of the hyperbolic plane shown in the
figure. The surface X has a unique elliptic fibration X → P1, given by a nef line
bundle P with 〈P, P 〉 = 0. The line bundle P appears in the figure as the point
where Nef(X)/R>0 meets the circle at infinity. And X contains infinitely many
(−2)-curves, whose orthogonal complements are the codimension-1 faces of the nef
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cone. Sterk’s theorem says that Aut(X) must act on the nef cone with rational
polyhedral fundamental domain. In this example, one computes that Aut(X) is
commensurable with the Mordell-Weil group of the elliptic fibration (Pic0 of the
generic fiber of X → P1), which is isomorphic to Z. One also finds that all the
(−2)-curves in X are sections of the elliptic fibration. The Mordell-Weil group
moves one section to any other section, and so it divides the nef cone into rational
polyhedral cones as in the figure.

5 Outline of the proof of Sterk’s theorem

We discuss the proof of Sterk’s theorem for K3 surfaces. The proof for abelian
surfaces is the same, but simpler (since an abelian surface contains no (−2)-curves),
and these cases imply the case of quotients of K3 surfaces or abelian surfaces by a
finite group. For details, see Kawamata [22], based on the earlier papers [39, 31].

The proof of Sterk’s theorem for K3 surfaces relies on the Torelli theorem of
Piatetski-Shapiro and Shafarevich. That is, any isomorphism of Hodge structures
between two K3s is realized by an isomorphism of K3s if it maps the nef cone into
the nef cone. In particular, this lets us construct automorphisms of a K3 surface X:
up to finite index, every element of the integral orthogonal group O(Pic(X)) that
preserves the cone Nef(X) is realized by an automorphism of X. (Here Pic(X) ∼= Zρ,
and the intersection form has signature (1, ρ(X)− 1) on Pic(X).)

Moreover, Nef(X)/R>0 is a very special convex set in hyperbolic space Hρ−1: it
is the closure of a Weyl chamber for a discrete reflection group W acting on Hρ−1.
We can define W as the group generated by all reflections in vectors x ∈ Pic(X) with
x2 = −2, or (what turns out to be the same) the group generated by reflections in all
(−2)-curves in X. By the first description, W is a normal subgroup of O(Pic(X)).
In fact, up to finite groups, O(Pic(X)) is the semidirect product group

O(Pic(X)) .= Aut(X) n W.

By general results on arithmetic groups going back to Minkowski, O(Pic(X))
acts on the positive cone in N1(X) with a rational polyhedral fundamental domain
D. (This fundamental domain is not at all unique.) And the reflection group W
acts on the positive cone with fundamental domain the nef cone of X. Therefore,
after we arrange for D to be contained in the nef cone, Aut(X) must act on the nef
cone with the same rational polyhedral fundamental domain D, up to finite index.
Sterk’s theorem is proved.

6 Non-arithmetic automorphism groups

In this section, we show for the first time that the discrete part of the automorphism
group of a smooth projective variety need not be commensurable with an arithmetic
group. (Section 4 defines commensurability.) This answers a question raised by
Mazur [28, section 7]. Corollary 6.2 applies to a large class of K3 surfaces.

An arithmetic group is a subgroup of the group of Q-points of some Q-algebraic
group HQ which is commensurable with H(Z) for some integral structure on HQ;
this condition is independent of the integral structure [37]. We view arithmetic
groups as abstract groups, not as subgroups of a fixed Lie group.
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Borcherds gave an example of a K3 surface whose automorphism group is not
isomorphic to an arithmetic group [5, Example 5.8]. But, as he says, the auto-
morphism group in his example has a nonabelian free subgroup of finite index, and
so it is commensurable with the arithmetic group SL(2,Z). Examples of K3 sur-
faces with explicit generators of the automorphism group have been given by Keum,
Kondo, Vinberg, and others; see Dolgachev [14, section 5] for a survey.

Although they need not be commensurable with arithmetic groups, the auto-
morphism groups G of K3 surfaces are very well-behaved in terms of geometric
group theory. More generally this is true for the discrete part G of the automor-
phism group of a surface X which can be given the structure of a klt Calabi-Yau
pair, as defined in section 7. Namely, G acts cocompactly on a CAT(0) space (a
precise notion of a metric space with nonpositive curvature). Indeed, the nef cone
modulo scalars is a closed convex subset of hyperbolic space, and thus a CAT(−1)
space [8, Example II.1.15]. Removing a G-invariant set of disjoint open horoballs
gives a CAT(0) space on which G acts properly and cocompactly, by the proof of
[8, Theorem II.11.27]. This implies all the finiteness properties one could want,
even though G need not be arithmetic. In particular: G is finitely presented, a
finite-index subgroup of G has a finite CW complex as classifying space, and G has
only finitely many conjugacy classes of finite subgroups [8, Theorem III.Γ.1.1].

For smooth projective varieties in general, very little is known. For example,
is the discrete part G of the automorphism group always finitely generated? The
question is open even for smooth projective rational surfaces. About the only thing
one can say for an arbitrary smooth projective variety X is that G modulo a finite
group injects into GL(ρ(X),Z), by the comments in section 4.

In Theorem 6.1, a lattice means a finitely generated free abelian group with a
symmetric bilinear form that is nondegenerate ⊗Q.

Theorem 6.1. Let M be a lattice of signature (1, n) for n ≥ 3. Let G be a subgroup
of infinite index in O(M). Suppose that G contains Zn−1 as a subgroup of infinite
index. Then G is not commensurable with an arithmetic group.

Corollary 6.2. Let X be a K3 surface over any field, with Picard number at least 4.
Suppose that X has an elliptic fibration with no reducible fibers and a second elliptic
fibration with Mordell-Weil rank positive. (For example, the latter property holds
if the second fibration also has no reducible fibers.) Suppose also that X contains
a (−2)-curve. Then the automorphism group of X is a discrete group that is not
commensurable with an arithmetic group.

Example 6.3. Let X be the double cover of P1 × P1 = {([x, y], [u, v])} ramified
along the following curve of degree (4, 4):

0 = 16x4u4+xy3u4+y4u3v−40x4u2v2−x3yu2v2−x2y2uv3+33x4v4−10x2y2v4+y4v4.

Then X is a K3 surface whose automorphism group (over Q, or over Q) is not
commensurable with an arithmetic group.

Proof of Theorem 6.1. We can view O(M) as a discrete group of isometries of hy-
perbolic n-space. Every solvable subgroup of O(M) is virtually abelian [8, Corol-
lary II.11.28 and Theorem III.Γ.1.1]. By the classification of isometries of hyper-
bolic space as elliptic, parabolic, or hyperbolic [1], the centralizer of any subgroup
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Z ⊂ O(M) is either commensurable with Z (if a generator g of Z is hyperbolic)
or commensurable with Za for some a ≤ n − 1 (if g is parabolic). These proper-
ties pass to the subgroup G of O(M). Also, G is not virtually abelian, because
it contains Zn−1 as a subgroup of infinite index, and Zn−1 is the largest abelian
subgroup of O(M) up to finite index. Finally, G acts properly and not cocompactly
on hyperbolic n-space, and so G has virtual cohomological dimension at most n− 1
[9, Proposition VIII.8.1].

Suppose that G is commensurable with some arithmetic group Γ. Thus Γ is
a subgroup of the group of Q-points of some Q-algebraic group HQ, and Γ is
commensurable with H(Z) for some integral structure on HQ. We freely change Γ
by finite groups in what follows. So we can assume that HQ is connected. After
replacing HQ by the kernel of some homomorphism to a product of copies of the
multiplicative group Gm over Q, we can assume that Γ is a lattice in the real
group H(R) (meaning that vol(H(R)/Γ) < ∞), by Borel and Harish-Chandra [6,
Theorem 9.4].

Every connected Q-algebraic group HQ is a semidirect product RQ n UQ where
RQ is reductive and UQ is unipotent [7, Theorem 5.1]. By the independence of
the choice of integral structure, we can assume that Γ = R(Z) n U(Z) for some
arithmetic subgroups R(Z) of RQ and U(Z) of UQ. Since every solvable subgroup
of G is virtually abelian, UQ is abelian, and U(Z) ∼= Za for some a. The conjugation
action of RQ on UQ must be trivial; otherwise Γ would contain a solvable group
of the form Z n Za which is not virtually abelian. Thus Γ = R(Z) × Za. But the
properties of centralizers in G imply that any product group of the form W × Z
contained in G must be virtually abelian. Therefore, a = 0 and HQ is reductive.

Modulo finite groups, the reductive group HQ is a product of Q-simple groups
and tori, and Γ is a corresponding product modulo finite groups. Since any prod-
uct group of the form W × Z contained in G is virtually abelian, HQ must be
Q-simple. Since the lattice Γ in H(R) is isomorphic to the discrete subgroup G
of O(M) ⊂ O(n, 1) (after passing to finite-index subgroups), Prasad showed that
dim(H(R)/KH) ≤ dim(O(n, 1)/O(n)) = n, where KH is a maximal compact sub-
group of H(R). Moreover, since G has infinite index in O(M) and hence infinite
covolume in O(n, 1), Prasad showed that either dim(H(R)/KH) ≤ n − 1 or else
dim(H(R)/KH) = n and there is a homomorphism from H(R) onto PSL(2,R)
[35, Theorem B].

Suppose that dim(H(R)/KH) ≤ n − 1. We know that Γ acts properly on
H(R)/KH and that Γ contains Zn−1. The quotient Zn−1\H(R)/KH is a manifold
of dimension n− 1 with the homotopy type of the (n− 1)-torus (in particular, with
nonzero cohomology in dimension n− 1), and so it must be compact. So Zn−1 has
finite index in Γ, contradicting our assumption.

So dim(H(R)/KH) = n and H(R) maps onto PSL(2,R). We can assume that
HQ is simply connected. Since H is Q-simple, H is equal to the restriction of
scalars RK/QL for some number field K and some absolutely simple and simply
connected group L over K [42, section 3.1]. Since H(R) maps onto PSL(2,R),
L must be a form of SL(2). We showed that G ∼= Γ has virtual cohomological
dimension at most n − 1, and so Γ must be a non-cocompact subgroup of H(R).
Equivalently, H has Q-rank greater than zero [6, Lemma 11.4, Theorem 11.6], and
so rankK(L) = rankQ(H) is greater than zero. Therefore, L is isomorphic to SL(2)
over K.
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It follows that Γ is commensurable with SL(2, oK), where oK is the ring of
integers of K. So we can assume that Γ contains the semidirect product

o∗K n oK =
{ (

a b
0 1/a

) }
⊂ SL(2, oK).

If the group of units o∗K has positive rank, then o∗K noK is a solvable group which is
not virtually abelian. So the group of units is finite, which means that K is either
Q or an imaginary quadratic field, by Dirichlet. If K is imaginary quadratic, then
HQ = RK/QSL(2) and H(R) = SL(2,C), which does not map onto PSL(2,R).
Therefore K = Q and HQ = SL(2). It follows that Γ is commensurable with
SL(2,Z). So Γ is commensurable with a free group. This contradicts that G ∼= Γ
contains Zn−1 with n ≥ 3. QED

Proof of Corollary 6.2. Let M be the Picard lattice of X, that is, M = Pic(X) with
the intersection form. Then M has signature (1, n) by the Hodge index theorem,
where n ≥ 3 since X has Picard number at least 4.

For an elliptic fibration X → P1 with no reducible fibers, the Mordell-Weil
group of the fibration has rank ρ(X) − 2 = n − 1 by the Shioda-Tate formula [38,
Cor. 1.5], which is easy to check in this case. So the first elliptic fibration of X
gives an inclusion of Zn−1 into G = Aut∗(X). The second elliptic fibration gives an
inclusion of Za into G for some a > 0. In the action of G on hyperbolic n-space, the
Mordell-Weil group of each elliptic fibration is a group of parabolic transformations
fixing the point at infinity that corresponds to the class e ∈ M of a fiber (which has
〈e, e〉 = 0). Since a parabolic transformation fixes only one point of the sphere at
infinity, the subgroups Zn−1 and Za in G intersect only in the identity. It follows
that the subgroup Zn−1 has infinite index in G.

We are given that X contains a (−2)-curve C. I claim that C has infinitely
many translates under the Mordell-Weil group Zn−1. Indeed, any curve with finitely
many orbits under Zn−1 must be contained in a fiber of X → P1. Since all fibers are
irreducible, the fibers have self-intersection 0, not −2. Thus X contains infinitely
many (−2)-curves. Therefore the group W ⊂ O(M) generated by reflections in
(−2)-vectors is infinite. Here W acts simply transitively on the Weyl chambers
of the positive cone (separated by hyperplanes v⊥ with v a (−2)-vector), whereas
G = Aut∗(X) preserves one Weyl chamber, the ample cone of X. So G and W
intersect only in the identity. Since W is infinite, G has infinite index in O(M). By
Theorem 6.1, G is not commensurable with an arithmetic group. QED

Proof of Example 6.3. The given curve C in the linear system |O(4, 4)| = | − 2KP1×P1 |
is smooth. One can check this with Macaulay 2, for example. Therefore the double
cover X of P1 ×P1 ramified along C is a smooth K3 surface. The two projections
from X to P1 are elliptic fibrations. Typically, such a double cover π : X → P1×P1

would have Picard number 2, but the curve C has been chosen to be tangent at 4
points to each of two curves of degree (1, 1), D1 = {xv = yu} and D2 = {xv =
−yu}. (These points are [x, y] = [u, v] equal to [1, 1], [1, 2], [1,−1], [1,−2] on D1

and [x, y] = [u,−v] equal to [1, 1], [1, 2], [1,−1], [1,−2] on D2.) It follows that the
double covering is trivial over D1 and D2, outside the ramification curve C: the
inverse image in X of each curve Di is a union of two curves, π−1(Di) = Ei ∪ Fi,
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meeting transversely at 4 points. The smooth rational curves E1, F1, E2, F2 on X
are (−2)-curves, since X is a K3 surface.

The curves D1 and D2 meet transversely at the two points [x, y] = [u, v] equal
to [1, 0] or [0, 1]. Let us compute that the double covering π : X → P1 × P1 is
trivial over the union of D1 and D2 (outside the ramification curve C). Indeed, if
we write X as w2 = f(x, y, z, w) where f is the given polynomial of degree (4, 4),
then a section of π over D1∪D2 is given by w = 4x2u2−5x2v2+y2v2. We can name
the curves Ei, Fi so that the image of this section is E1 ∪ E2 and the image of the
section w = −(4x2u2 − 5x2v2 + y2v2) is F1 ∪ F2. Then E1 and F2 are disjoint. So
the intersection form among the divisors π∗O(1, 0), π∗O(0, 1), E1, F2 on X is given
by 

0 2 1 1
2 0 1 1
1 1 −2 0
1 1 0 −2


Since this matrix has determinant −32, not zero, X has Picard number at least 4.

Finally, we compute that the two projections from C ⊂ P1 ×P1 to P1 are each
ramified over 24 distinct points in P1. It follows that all fibers of our two elliptic
fibrations X → P1 are irreducible. By Corollary 6.2, the automorphism group
of X (over C, or equivalently over Q) is not commensurable with an arithmetic
group. Our calculations have all worked over Q, and so Corollary 6.2 also gives
that Aut(XQ) is not commensurable with an arithmetic group. QED

7 Klt pairs

We will see that the previous results can be generalized from Calabi-Yau varieties
to a broader class of varieties using the language of pairs. For the rest of the paper,
we work over the complex numbers.

A normal variety X is Q-factorial if for every point p and every codimension-one
subvariety S through p, there is a regular function on some neighborhood of p that
vanishes exactly on S (to some positive order).

Definition 7.1. A pair (X, ∆) is a Q-factorial projective variety X with an effective
R-divisor ∆ on X.

Notice that ∆ is an actual R-divisor ∆ =
∑

ai∆i, not a numerical equivalence
class of divisors. We think of KX + ∆ as the canonical bundle of the pair (X, ∆).
The following definition picks out an important class of “mildly singular” pairs.

Definition 7.2. A pair (X, ∆) is klt (Kawamata log terminal) if the following
holds. Let π : X̃ → X be a resolution of singularities. Suppose that the union
of the exceptional set of π (the subset of X̃ where π is not an isomorphism) with
π−1(∆) is a divisor with simple normal crossings. Define a divisor ∆̃ on X̃ by

K eX + ∆̃ = π∗(KX + ∆).

We say that (X, ∆) is klt if all coefficients of ∆̃ are less than 1. This property is
independent of the choice of resolution.
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Example 7.3. A surface X = (X, 0) is klt if and only if X has only quotient
singularities [24, Proposition 4.18].

Example 7.4. For a smooth variety X and ∆ a divisor with simple normal crossings
(and some coefficients), the pair (X, ∆) is klt if and only if ∆ has coefficients less
than 1.

All the main results of minimal model theory, such as the cone theorem, gen-
eralize from smooth varieties to klt pairs. For example, the Fano case of the cone
theorem becomes [24, Theorem 3.7]:

Theorem 7.5. Let (X, ∆) be a klt Fano pair, meaning that −(KX + ∆) is ample.
Then Curv(X) (and hence the dual cone Nef(X)) is rational polyhedral.

Notice that the conclusion does not involve the divisor ∆. This shows the power
of the language of pairs. A variety X may not be Fano, but if we can find an R-
divisor ∆ that makes (X, ∆) a klt Fano pair, then we get the same conclusion (that
the cone of curves and the nef cone are rational polyhedral) as if X were Fano.

Example 7.6. Let X be the blow-up of P2 at any number of points on a smooth
conic. As an exercise, the reader can write down an R-divisor ∆ such that (X, ∆)
is a klt Fano pair. This proves that the nef cone of X is rational polyhedral,
as Galindo-Monserrat [16, Corollary 3.3], Mukai [29], and Castravet-Tevelev [10]
proved by other methods. These surfaces are definitely not Fano if we blow up 6 or
more points. Their Betti numbers are unbounded, in contrast to the smooth Fano
surfaces.

More generally, Testa, Várilly-Alvarado, and Velasco proved that every smooth
projective rational surface X with −KX big has finitely generated Cox ring [41].
Finite generation of the Cox ring (the ring of all sections of all line bundles) is
stronger than the nef cone being rational polyhedral, by the analysis of Hu and Keel
[20]. Chenyang Xu showed that a rational surface with −KX big need not have any
divisor ∆ with (X, ∆) a klt Fano pair [41]. I do not know whether the blow-ups
of higher-dimensional projective spaces considered by Mukai and Castravet-Tevelev
have a divisor ∆ with (X, ∆) a klt Fano pair [29, 10].

It is therefore natural to extend the Morrison-Kawamata cone conjecture from
Calabi-Yau varieties to Calabi-Yau pairs (X, ∆), meaning that KX + ∆ ≡ 0. The
conjecture is reasonable, since we can prove it in dimension 2 [43].

Theorem 7.7. Let (X, ∆) be a klt Calabi-Yau pair of dimension 2. Then Aut(X, ∆)
(and also Aut(X)) acts with a rational polyhedral fundamental domain on the cone
Nef(X) ⊂ N1(X).

Here is a more concrete consequence of Theorem 7.7:

Corollary 7.8. [43] Let (X, ∆) be a klt Calabi-Yau pair of dimension 2. Then
there are only finitely many contractions of X up to automorphisms of X. Related
to that: Aut(X) has finitely many orbits on the set of curves in X with negative
self-intersection.

This was shown in one class of examples by Dolgachev-Zhang [15]. These results
are false for surfaces in general, even for some smooth rational surfaces:
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Example 7.9. Let X be the blow-up of P2 at 9 very general points. Then
Nef(X) is not rational polyhedral, since X contains infinitely many (−1)-curves.
But Aut(X) = 1 [17, Proposition 8], and so the conclusion fails for X.

Moreover, let ∆ be the unique smooth cubic curve in P2 through the 9 points,
with coefficient 1. Then −KX ≡ ∆, and so (X, ∆) is a log-canonical (and even
canonical) Calabi-Yau pair. The theorem therefore fails for such pairs.

We now give a classical example (besides the case ∆ = 0 of Calabi-Yau surfaces)
where Theorem 7.7 applies.

7.1 Example

Let X be the blow-up of P2 at 9 points p1, . . . , p9 which are the intersection of two
cubic curves. Then taking linear combinations of the two cubics gives a P1-family
of elliptic curves through the 9 points. These curves become disjoint on the blow-up
X, and so we have an elliptic fibration X → P1. This morphism is given by the
linear system | − KX |. Using that, we see that the (−1)-curves on X are exactly
the sections of the elliptic fibration X → P1.

In most cases, the Mordell-Weil group of X → P1 is .= Z8. So X contains
infinitely many (−1)-curves, and so the cone Nef(X) is not rational polyhedral.
But Aut(X) acts transitively on the set of (−1)-curves, by translations using the
group structure on the fibers of X → P1. That leads to the proof of Theorem 7.7
in this example. (The theorem applies, in the sense that there is an R-divisor ∆
with (X, ∆) klt Calabi-Yau: let ∆ be the sum of two smooth fibers of X → P1 with
coefficients 1/2, for example.)

8 The cone conjecture in dimension greater than 2

In higher dimensions, the cone conjecture also predicts that a klt Calabi-Yau pair
(X, ∆) has only finitely many small Q-factorial modifications X 99K X1 up to
pseudo-automorphisms of X. (See Kawamata [22] and [43] for the full statement
of the cone conjecture in higher dimensions.) A pseudo-automorphism means a
birational automorphism which is an isomorphism in codimension 1.

More generally, the conjecture implies that X has only finitely many birational
contractions X 99K Y modulo pseudo-automorphisms of X, where a birational
contraction means a dominant rational map that extracts no divisors. There can be
infinitely many small modifications if we do not divide out by the group PsAut(X)
of pseudo-automorphisms of X.

Kawamata proved a relative version of the cone conjecture for a 3-fold X with
a K3 fibration or elliptic fibration X → S [22]. Here X can have infinitely many
minimal models (or small modifications) over S, but it has only finitely many modulo
PsAut(X/S).

This is related to other finiteness problems in minimal model theory. We know
that a klt pair (X, ∆) has only finitely many minimal models if ∆ is big [3, Corollary
1.1.5]. It follows that a variety of general type has a finite set of minimal models. A
variety of non-maximal Kodaira dimension can have infinitely many minimal models
[36, section 6.8], [22]. But it is conjectured that every variety X has only finitely
many minimal models up to isomorphism, meaning that we ignore the birational
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identification with X. Kawamata’s results on Calabi-Yau fiber spaces imply at least
that 3-folds of positive Kodaira dimension have only finitely many minimal models
up to isomorphism [22, Theorem 4.5]. If the abundance conjecture [24, Corollary
3.12] holds (as it does in dimension 3), then every non-uniruled variety has an Iitaka
fibration where the fibers are Calabi-Yau. The cone conjecture for Calabi-Yau fiber
spaces (plus abundance) implies finiteness of minimal models up to isomorphism for
arbitrary varieties.

The cone conjecture is wide open for Calabi-Yau 3-folds, despite significant
results by Oguiso and Peternell [33], Szendröi [40], Uehara [44], and Wilson [45].
Hassett and Tschinkel recently checked the conjecture for a class of holomorphic
symplectic 4-folds [19].

9 Outline of the proof of Theorem 7.7

The proof of Theorem 7.7 gives a good picture of the Calabi-Yau pairs of dimension
2. We summarize the proof from [43]. In most cases, if (X, ∆) is a Calabi-Yau pair,
then X turns out to be rational. It is striking that the most interesting case of the
theorem is proved by reducing properties of certain rational surfaces to the Torelli
theorem for K3 surfaces.

Let (X, ∆) be a klt Calabi-Yau pair of dimension 2. That is, KX + ∆ ≡ 0, or
equivalently

−KX ≡ ∆,

where ∆ is effective. We can reduce to the case where X is smooth by taking a
suitable resolution of (X, ∆).

If ∆ = 0, then X is a smooth Calabi-Yau surface, and the result is known by
Sterk, using the Torelli theorem for K3 surfaces. So assume that ∆ 6= 0. Then X
has Kodaira dimension

κ(X) := κ(X, KX)

equal to −∞. With one easy exception, Nikulin showed that our assumptions imply
that X is rational [2, Lemma 1.4]. So assume that X is rational from now on.

We have three main cases for the proof, depending on whether the Iitaka dimen-
sion κ(X,−KX) is 0, 1, or 2. (It is nonnegative because −KX ∼R ∆ ≥ 0.) By defi-
nition, the Iitaka dimension κ(X, L) of a line bundle L is −∞ if h0(X, mL) = 0 for
all positive integers m. Otherwise, κ(X, L) is the natural number r such that there
are positive integers a, b and a positive integer m0 with amr ≤ h0(X, mL) ≤ bmr

for all positive multiples m of m0 [26, Corollary 2.1.38].

9.1 Case where κ(X,−KX) = 2

That is, −KX is big. In this case, there is an R-divisor Γ such that (X, Γ) is klt
Fano. Therefore Nef(X) is rational polyhedral by the cone theorem, and hence the
group Aut∗(X) is finite. So Theorem 7.7 is true in a simple way. More generally,
for (X, Γ) klt Fano of any dimension, the Cox ring of X is finitely generated, by
Birkar-Cascini-Hacon-McKernan [3].

This proof illustrates an interesting aspect of working with pairs: rather than
Fano being a different case from Calabi-Yau, Fano becomes a special case of Calabi-
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Yau. That is, if (X, Γ) is a klt Fano pair, then there is another effective R-divisor
∆ with (X, ∆) a klt Calabi-Yau pair.

9.2 Case where κ(X,−KX) = 1

In this case, some positive multiple of −KX gives an elliptic fibration X → P1, not
necessarily minimal. Here Aut∗(X) equals the Mordell-Weil group of X → P1 up
to finite index, and so Aut∗(X) .= Zn for some n. This generalizes the example of
P2 blown up at the intersection of two cubic curves.

The (−1)-curves in X are multisections of X → P1 of a certain fixed degree.
One shows that Aut(X) has only finitely many orbits on the set of (−1)-curves in
X. This leads to the statement of Theorem 7.7 in terms of cones.

9.3 Case where κ(X,−KX) = 0

This is the hardest case. Here Aut∗(X) can be a fairly general group acting on
hyperbolic space; in particular, it can be highly nonabelian.

Here −KX ≡ ∆ where the intersection pairing on the curves in ∆ is negative
definite. We can contract all the curves in ∆, yielding a singular surface Y with
−KY ≡ 0. Note that Y is klt and hence has quotient singularities, but it must have
worse than ADE singularities, because it is a singular Calabi-Yau surface that is
rational.

Let I be the “global index” of Y , the least positive integer with IKY Cartier
and linearly equivalent to zero. Then

Y = M/(Z/I)

for some Calabi-Yau surface M with ADE singularities. The minimal resolution of
M is a smooth Calabi-Yau surface. Using the Torelli theorem for K3 surfaces, this
leads to the proof of the theorem for M and then for Y , by Oguiso and Sakurai [34,
Corollary 1.9].

Finally, we have to go from Y to its resolution of singularities, the smooth
rational surface X. Here Nef(X) is more complex than Nef(Y ): X typically contains
infinitely many (−1)-curves, whereas Y has none (because KY ≡ 0). Nonetheless,
since we know “how big” Aut(Y ) is (up to finite index), we can show that the group

Aut(X, ∆) = Aut(Y )

has finitely many orbits on the set of (−1)-curves. This leads to the proof of Theorem
7.7 for (X, ∆). QED

10 Example

Here is an example of a smooth rational surface with a highly nonabelian (discrete)
automorphism group, considered by Zhang [47, Theorem 4.1], Blache [4, Theorem
C(b)(2)], and [43, section 2]. This is an example of the last case in the proof of
Theorem 7.7, where κ(X,−KX) = 0. We will also see a singular rational surface
whose nef cone is round, of dimension 4.
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Let X be the blow-up of P2 at the 12 points: [1, ζi, ζj ] for i, j ∈ Z/3, [1, 0, 0],
[0, 1, 0], [0, 0, 1]. Here ζ is a cube root of 1. (This is the dual of the “Hesse configu-
ration” [13, section 4.6]. There are 9 lines L1, . . . , L9 through quadruples of the 12
points in P2.)

On P2, we have

−KP2 ≡ 3H ≡
9∑

i=1

1
3
Li.

On the blow-up X, we have

−KX ≡
9∑

i=1

1
3
Li,

where L1, . . . , L9 are the proper transforms of the 9 lines, which are now disjoint
and have self-intersection number −3. Thus (X,

∑9
i=1(1/3)Li) is a klt Calabi-Yau

pair.
Section 9.3 shows how to analyze X: contract the 9 (−3)-curves Li on X. This

gives a rational surface Y with 9 singular points (of type 1
3(1, 1)) and ρ(Y ) = 4. We

have−KY ≡ 0, so Y is a klt Calabi-Yau surface which is rational. We have 3KY ∼ 0,
and so Y ∼= M/(Z/3) with M a Calabi-Yau surface with ADE singularities. It turns
out that M is smooth, M ∼= E × E where E is the Fermat cubic curve

E ∼= C/Z[ζ] ∼= {[x, y, z] ∈ P2 : x3 + y3 = z3},

and Z/3 acts on E × E as multiplication by (ζ, ζ) [43, section 2].
Since E has endomorphism ring Z[ζ], the group GL(2,Z[ζ]) acts on the abelian

surface M = E×E. This passes to an action on the quotient variety Y = M/(Z/3)
and hence on its minimal resolution X (which is the blow-up of P2 at 12 points we
started with). Thus the infinite, highly nonabelian discrete group GL(2,Z[ζ]) acts
on the smooth rational surface X. This is the whole automorphism group of X up
to finite groups [43, section 2].

Here Nef(Y ) = Nef(M) is a round cone in R4, and so Theorem 7.7 says that
PGL(2,Z[ζ]) acts with finite covolume on hyperbolic 3-space. In fact, the quo-
tient of hyperbolic 3-space by an index-24 subgroup of PGL(2,Z[ζ]) is familiar to
topologists as the complement of the figure-eight knot [27, 1.4.3, 4.7.1].
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