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A very large and active part of Probability Theory is concerned with
the formulation and analysis of models for the evolution of large
systems arising in the sciences, including both Physics and Biology.
These models include both randomness in the evolution, and inter-
actions among various parts of the system. This article presents
some of the main models in this area, as well as some of the ma-
jor results about their behavior that have been obtained during the
past forty years. An important technique in this area, as well as in
related parts of Physics, is the use of correlation inequalities. These
express positive or negative dependence between random quantities
related to the model. In some types of models, the underlying de-
pendence is positive, while in others it is negative. We will give
particular attention to these issues, and to applications of these in-
equalities. Among the applications are central limit theorems that
give convergence to a Gaussian distribution.

voter models | contact process | Glauber dynamics | exclusion process | cor-

relation inequalities

Models for interacting systems
During the past half century, mathematical models for the
evolution of large interacting systems arising in a number of
scientific areas have been proposed and analyzed. Here are
some of these areas, together with a sampling of papers in
which such models have arisen: Physics (e.g., magnetic sys-
tems [1] and high energy scattering [2]), Biology (e.g., dynam-
ics of mutation in a structured population [3], tumor growth
[4], [5], spread of infection [6], [7], competition between dif-
ferent strains of viruses [8], mutations of pathogens [9], and
biopolymers [10]), Sociology (e.g., cooperative behavior [11],
[12], [13], and spatial distribution of unemployment [14]), and
the analysis of traffic flow ([15], [16]).

Some of the analysis of these systems has been mathemat-
ical, while other approaches have been based on simulations.
R. L. Dobrushin ([17]) and F. Spitzer ([18]) are usually cred-
ited with initiating the mathematical developments about 40
years ago. The modern theory of models of this type is treated
in my two monographs – [19] and [20].

Typically, the model is a random process ηt with state

space {0, 1}Z
d

of binary configurations on the d-dimensional
integer lattice Zd. The interpretation of the values 0 and 1 at
a site x ∈ Zd depends on the model, and on the area that mo-
tivated it. The process satisfies the Markov property, which
means that once one knows the state of the system at a given
time t, the evolution of the system after that time does not
depend on its behavior before time t. It follows that the evo-
lution rules can be described by specifying how the process
will behave in an infinitesimal time period (t, t+dt) as a (ran-
dom) function of the state ηt at time t. This is analogous
to describing a deterministic function y(t) by a differential
equation that it satisfies.

In the present context, the evolution rules are given by cer-
tain transition rates. To say that the transition η → ζ from
one configuration to another occurs at rate λ > 0 means that
in a short time period of length ε, the transition occurs with
probability approximately λε. Usually, the transition rate will

depend on η, and this dependence leads to interactions among
various parts of the system.

While our focus will be on models on the graph Zd, in
many contexts, it is more natural to consider more general
graphs. For similar evolutions on random graphs, see [21], for
example.

A very useful tool in the mathematical analysis of these
systems is that of correlation inequalities – inequalities that
assert that the state of one random quantity has a positive (or
negative) influence on the state of another. These inequalities
often make it possible to treat dependent random quantities
as if they were independent.

Here is the plan for this paper: I will begin by describ-
ing some of the most important models in this area – voter,
contact, magnetic and exclusion – and give a sampling of the
most important results about them. Then I will discuss the
associated correlation inequalities (positive for the first three
models and negative for exclusion), and present some conse-
quences that follow from them.

Before getting started, we need to introduce a bit of no-
tation and terminology from Probability Theory. The proba-
bility of an event A is denoted by P (A). If it appears with a
superscript, as in P η(A), the superscript η is the initial state
of the process. Similarly, EηX is the expected value, or mean
value, of the random quantity X, when the initial state of the
system is η. Bernoulli random variables are random variables
that take only two values, typically 0 and 1. Thus a proba-

bility distribution on {0, 1}Z
d

gives the joint distribution of
a collection of (generally not independent) Bernoulli random
variables indexed by Zd.

Voter models. The simplest models in this area are known as
voter models. They were introduced in [22] and [23]. Later
it was realized that they are very similar to the earlier “step-
ping stone” model of population genetics introduced in [3]. A
biased version was proposed as a model for tumor growth in
[4].

In [23], the idea was to model conflict between popula-
tions. Sites x for which η(x) = 1 represent areas controlled
by one population; those for which η(x) = 0 are controlled by
the other. A site controlled by one group is taken over by the
other at a rate that is proportional to the number of neighbors
controlled by the opposing group.
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The voter interpretation of [22] was not the motivation in
that paper – the actual motivation was of a more mathemat-
ical nature. However, I will describe the model in electoral
terms. Each site in Zd represents a person, who at any given
time, has one of two possible opinions, labelled 0 and 1. Each
person waits a unit exponentially distributed time T – i.e., one
for which P (T > t) = e−t. At that time, he chooses one of his
2d neighbors at random, and adopts that neighbor’s opinion.

Here is the main question: Is it the case that the system
reaches a consensus (in the voter interpretation), or that one
population takes over the entire space (in the spatial conflict
interpretation), in the sense that

lim
t→∞

P (ηt(x) = ηt(y)) = 1 [1]

for all x, y ∈ Zd and all initial configurations? The key to the
answer lies in a connection between the voter model and a
classical random walk X(t), which moves on Zd in the follow-
ing way: It waits where it is for a unit exponential time, and
then moves to a randomly chosen neighbor. Here is a special
case of the connection. Suppose that initially each voter inde-
pendently tosses a fair coin to decide which opinion to adopt.
Then

P (ηt(x) = ηt(y)) =

1

2
+

1

2
P y−x

`
X(s) = 0 for some s < t

´
.

[2]

A classical result in probability theory states that X(t) is re-
current (i.e., hits 0 eventually with probability 1) if d = 1 or
2, but not if d ≥ 3. It follows that the limiting statement [1]
holds if and only if d ≤ 2.

A key issue for all the models we consider is understand-
ing the nature of their stationary distributions. A probability

distribution µ on {0, 1}Z
d

is said to be stationary for ηt if the
process with that initial distribution continues to have distri-
bution µ at later times. The importance of stationary distri-
butions comes from the fact that any limiting distribution of
the process as t→∞ is stationary. Thus the identification of
stationary distributions is the first step in the analysis of the
limiting behavior of ηt.

When [1] holds, the voter model has only trivial stationary
distributions: If µ is stationary, then

µ{η : η ≡ 0 or η ≡ 1} = 1.

When d ≥ 3, the situation is quite different:

Theorem 1. Suppose d ≥ 3.
(a) For every 0 ≤ α ≤ 1, there is a stationary distribution

µα in which the proportion of 1’s is exactly α. It is obtained by
starting the system with voters having opinion 1 independently
with probability α, and then passing to the limit as t→∞.

(b) Every stationary distribution can be expressed as an
average of the distributions µα.

In the biased version of the voter model, rates for the
transitions 0 → 1 are larger the corresponding rates for the
transitions 1 → 0. The interpretation now is that 1’s corre-
spond to cancerous cells and 0’s to normal cells. The process
starts with a single cancerous cell. There is positive probabil-
ity that the tumor disappears, but as a result of the bias, there
is also a positive probability that it continues to grow forever.
One of the important results for this model ([24]) is that the
growth is linear in time, and that it takes on a deterministic
asymptotic shape as t→∞.

Contact models. The contact process was introduced in [6].
Here the interpretation is one of spread of infection. Later it

was realized that the model is closely related to a field theory
in high energy physics ([2]). This is surprising, since nothing
in the description of the model suggests that there might be
such a connection.

With the infection interpretation, sites with the value 1
are infected, while those with the value 0 are healthy. In-
fected sites remain infected for a unit exponential time, inde-
pendently of the states of their neighbors, and then become
healthy. Healthy sites become infected at rate

λ× (the number of infected neighbors).

This transition mechanism is deceptively similar to that of the
voter model, but the analysis is much harder because connec-
tions such as [2] no longer hold.

Now a type of phase transition occurs. For small values
of λ, the infection dies out, in the sense that

lim
t→∞

P η(ηt(x) = 1) = 0

for all initial configurations η and all sites x. For larger λ,
this is not the case, and there is a probability distribution ν

on {0, 1}Z
d

with a positive density of infected sites that is
stationary for the evolution. The threshold value λd that sep-
arates the regimes of survival and extinction of the infection
cannot be computed exactly, even in one dimension, but it
can be approximated numerically. It does satisfy the rigorous
bounds

1

2d− 1
≤ λd ≤

2

d
.

Thus 1 ≤ λ1 ≤ 2, for example. Somewhat better bounds are
available in low dimensions: 1.539 ≤ λ1 ≤ 1.942, for example.
For large d, the lower bound above is asymptotically correct:
2dλd → 1.

Magnetic models. In this case, it is more natural to let the
possible values of η(x) be ±1 rather than 0 and 1, since they
represent magnetic spins. The central objects of study in sta-
tistical mechanics are the Gibbs distributions for the Ising

model, which are probability distributions µ on {−1,+1}Z
d

that are described by specifying the conditional probabilities
for the state at x ∈ Zd, given the states at other sites:

µ(η(x) = +1 |η(y) = ζ(y) for all y 6= x) =

eβ
P

y:|y−x|=1 ζ(y)

eβ
P

y:|y−x|=1 ζ(y) + e−β
P

y:|y−x|=1 ζ(y)
.

Here β > 0 represents the reciprocal of the temperature. Clas-
sical results include the fact that these conditional probabili-
ties determine µ uniquely for all β in one dimension, while in
higher dimensions the Gibbs distribution is unique for small
β, but not for large β.

The transition rates for the random evolution, which is
known as the Glauber dynamics ([1]), are chosen so that the
Gibbs distributions are stationary (and in fact reversible) for
the evolution. There are many choices with this property; in
one, the rate of flipping the state at x from η(x) to −η(x) is
taken to be

e−βη(x)
P

y:|y−x|=1 η(y)

when the configuration is η. Note that these rates are large if
η(x) differs from the states at most of its neighbors, and small
if it largely agrees with them. This means that spins prefer
to align themselves with their neighbors, which is certainly
reasonable to expect in this context.

A natural question is whether all stationary distributions
for the time evolution are Gibbs distributions. This is known
to be the case if d = 1 (easy) or d = 2 (hard) ([25]), but
remains an open problem in higher dimensions.
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While the original motivation for these models comes from
Physics, they have also led to important techniques known as
Markov Chain Monte Carlo or Gibbs sampling. Here the ob-
jective is to simulate a Gibbs distribution on a large but finite
set of sites. Rather than doing it directly, which is impossible
given the large size of the system, the evolution is run for a
long time t, and the distribution at time t is used in place
of the limiting Gibbs distribution. This is a huge field with
many applications; here are two references: [26], [27].

Exclusion processes. These are of a different nature than the
models described so far. Transitions change the values at two
sites rather than only one. Now the states 0 and 1 represent
occupancy by particles. Particles move on Zd in such a way
that there is at most one particle per site. A particle at x
moves to y, if it is vacant (hence the name exclusion), at rate
p(y − x), where p(x) ≥ 0 for each x and

P
x p(x) = 1. An

alternative description is the following: A particle at x waits
a unit exponential time, and then chooses a y to try to move
to with probability p(y − x). If y is vacant, it moves there,
while if y is occupied, it remains at x.

A probability distribution on {0, 1}Z
d

is called exchange-
able if it does not change when finitely many coordinates of
η are permuted. It is not hard to check that all exchangeable
distributions are stationary for the exclusion process. It is
harder to determine whether these are all the stationary dis-
tributions. Here is one of the early results about this problem
([28], [29]):

Theorem 2. Suppose p(·) is symmetric, i.e., p(−x) = p(x) for
all x. Then all stationary distributions are exchangeable.

The above conclusion is often false for asymmetric sys-
tems. For example, take the case in which d = 1, p(1) = p,
p(−1) = 1− p, and p(x) = 0 otherwise. If p > 1

2
, so particles

experience a drift to the right, there are stationary distribu-
tions with respect to which there are only finitely many par-
ticles to the left of the origin, and only finitely many empty
sites to the right of the origin. In one example, the coordinates
{η(x), x ∈ Z1} are independent, with

P (η(x) = 1) =
px

px + (1− p)x . [3]

In fact, all stationary distributions are constructed from these
and the exchangeable ones in this case. Generalizations of this
statement to one dimensional systems with long range jumps
can be found in [30]. In this context, explicit formulas such
as [3] are usually not available.

To describe a rather surprising consequence of the asym-
metry, we will continue with the one-dimensional nearest-
neighbor case. Suppose the initial distribution is of the fol-
lowing type: negative sites are independently occupied with
probability λ, and nonnegative sites with probability ρ. If
λ = ρ, this distribution is exchangeable, and hence station-
ary. What happens in the limit as t → ∞ if λ 6= ρ? Here is
the answer ([31], [32]):

Theorem 3. (a) If p = 1
2

, then

lim
t→∞

P (ηt(x) = 1) =
λ+ ρ

2
.

(b) If p > 1
2

, then

lim
t→∞

P (ηt(x) = 1) =

8>>><>>>:
1
2

if λ ≥ 1
2

and ρ ≤ 1
2
;

λ if λ ≤ 1
2

and λ+ ρ < 1;

ρ if ρ ≥ 1
2

and λ+ ρ > 1;
1
2

if λ ≤ 1
2

and λ+ ρ = 1.

These results can be predicted by the behavior of associ-
ated partial differential equations – the heat equation

∂u

∂t
=

1

2

∂2u

∂x2

if p = 1
2
, and Burgers’ equation

∂u

∂t
+ (2p− 1)

∂

∂x
[u(1− u)] = 0 [4]

if p > 1
2
. The more elaborate and interesting limiting behav-

ior in the asymmetric case is a consequence of the nonlinearity
in equation [4].

The limiting (in distribution) occupation variables η∞(x)
in Theorem 3 are independent for different x in all of these
cases except λ ≤ 1

2
and λ + ρ = 1, when the covariances are

given by

Cov(η∞(x), η∞(y)) =
1

4
(ρ− λ)2, x 6= y.

Exclusion processes on finite sets have been of substantial
interest as well – see [33], for example. To describe one recent
result, suppose S is a set with n points, and place n distin-
guishable particles on it, one at each point. For each pair
x, y ∈ S, interchange the particles at x and y at a rate that
depends on the locations of the two particles. There are var-
ious Markov chains that are embedded in this structure. By
following the motion of only one of the particles, one obtains
a chain with n states. More generally, following the positions
of k ≤ n particles gives rise to a chain with many more states:
n(n − 1) · · · (n − k + 1). In this case, if one makes the par-
ticles indistinguishable, the k particles move according to a
symmetric exclusion process.

For a concrete example, consider shuffling a standard 52
card deck. Then n = 52, and S is the set of possible positions
of a card in the deck. The shuffling is done by interchanging
the kth and lth cards at a rate that depends on k and l. For
example, the rate might be higher if the two cards are closer
together in the deck than if they are farther apart. If one
follows the position of the ace of spades, say, the chain has 52
possible states. If one follows the positions of all 52 cards, the
corresponding chain has 52! ∼ 1068 states.

The rate of convergence to equilibrium (which is a per-
fectly shuffled deck) is determined by the smallest non-trivial
eigenvalue of a matrix made up of the transition rates. This
eigenvalue can be computed easily when the chain has 52
states, say, but cannot be computed for a chain of anything
like 1068 states. Recently, P. Caputo, T. Richthammer and
I ([34]) were able to prove the 1992 conjecture of D. Aldous
that states that the principal eigenvalues for the large and
small chains are the same for any n and any choice of rates.
It follows that computing the eigenvalue for the smaller chain
is enough to determine the rate of convergence to equilibrium
for the larger chain.

Here is the barest outline of our approach. The proof is
by induction on n. To carry out the induction step, it is nec-
essary to take the set of size n with transition rates associated
to pairs of points in that set, and construct from it a set of
size n− 1, together with a new collection of rates on pairs of
those points. This is done by generalizing the series, parallel,
and star-triangle reductions used in electrical network theory.
Using the induction hypothesis on the smaller set, the prob-
lem becomes one of showing that a particular n! × n! matrix
is positive semi-definite. This is done by a careful analysis of
the structure of a related large matrix.
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Correlation inequalities

There is a natural (partial) order on {0, 1}Z
d

:

η ≤ ζ if η(x) ≤ ζ(x) for all x.

A real valued continuous function f on {0, 1}Z
d

is said to be
increasing if η ≤ ζ implies f(η) ≤ f(ζ). An important prob-
lem is to determine the evolutions and initial distributions for
which

Ef(ηt)g(ηt) ≥ Ef(ηt)Eg(ηt)

for all increasing f and g and all t > 0. This means that the
random variables f(ηt) and g(ηt) are positively correlated in
the usual sense. This section is devoted to a discussion of this
question, together with the analogous question for negative
correlations.

Positive association. A probability distribution µ on {0, 1}Z
d

is said to be positively associated if

Ef(η)g(η) ≥ Ef(η)Eg(η) for all increasing f and g, [5]

when η has distribution µ. The best known result related to
this concept is the FKG theorem ([35]), which gives a suf-
ficient condition (known as the FKG lattice condition) for
positive association. It is easy to check this condition when
the coordinates η(x) are independent (in which case positive
association was known earlier – [36]), and can often be verified
for Gibbs distributions. However, the FKG lattice condition
can essentially never be checked for the distribution at time t
of any of the evolutions we are considering. In fact, it is often
false, even if it turns out that the distribution is positively
associated.

To check that the distribution at time t of an evolution
is positively associated, one uses the following result ([38]),
which applies to a very general class of processes, including
the voter, contact and magnetic (but not exclusion) models
described above:

Theorem 4. Suppose the process satisfies the following two
properties:

(a) Individual transitions affect the state at only one site.
(b) For every continuous increasing function f and every

t > 0, the function η → Eηf(ηt) is increasing.
Then, if the initial distribution is positively associated, so is
the distribution at all later times.

It follows from this that the limiting distribution as t →
∞, if it exists, is also positively associated.

Negative association. In the analogous definition for negative
association, [5] is replaced by

Ef(η)g(η) ≤ Ef(η)Eg(η) for all increasing f and g, [6]

with the additional constraint that f and g should depend on
disjoint sets of coordinates. This constraint is necessary, since
if f = g, [5] automatically holds.

One might hope that negative association is related to the
exclusion process in much the same way that positive associ-
ation is related to voter, contact and magnetic models. Here
is the reason: In the exclusion process, particles are neither
created nor destroyed. Therefore, if one knows that a cer-
tain subset of Zd has many particles, it is likely that disjoint
subsets have relatively fewer particles. It turns out that in
order for this to actually be true, p(·) must be symmetric:
p(−x) = p(x) for all x.

While the intuition is fairly clear, it took 35 years to find
the correct version of the connection between the symmet-
ric exclusion process and negative association ([39],[40],[41]).
Here is one consequence of the general statement for the sym-
metric exclusion process that is proved in [41]:

Theorem 5. Suppose that initially, the random variables
{η(x), x ∈ Zd} are independent. Then

(a) the distribution at time t > 0 is negatively associated,
and

(b) if S is a subset of Zd, the number
P
x∈S ηt(x) of

particles in S at time t has the same distribution as a sumP
x∈S ζt(x) of appropriately chosen independent Bernoulli

random variables.

Part (b) is a very useful property for proving limit theorems,
as we will see in the next section.

Given the form of Theorem 4, one might suspect that neg-
ative association itself is preserved by the symmetric exclusion
evolution. This is not the case (Theorem 3.5 in [42]). The key
to Theorem 5 is finding another property that is preserved,
and that implies properties (a) and (b) in this result.

The property that works is the rather unintuitive one
known as stability. To describe it, suppose the exclusion pro-
cess is evolving on a finite set S = {1, ..., n}. The random
variables {η(x), x ∈ S} are said to be stable if the (generat-
ing) function of n complex variables

f(z1, ..., zn) = Ez
η(1)
1 · · · zη(n)

n

is not zero whenever all the zi’s have strictly positive imagi-
nary parts. It turns out that the property of stability is pre-
served by the symmetric exclusion process. The fact that
independent Bernoulli random variables are stable is easy to
check. The fact that stable random variables are negatively
associated is fairly deep. On the other hand, the fact that
stable random variables have property (b) of Theorem 5 is
easy to see: Take z1, ..., zn to be equal. Then

f(z, ..., z) = Ezη(1)+···+η(n)

is the generating function the sum η(1) + · · · + η(n). This
is a polynomial of degree n, whose roots cannot have posi-
tive imaginary parts by the stability property, and therefore
cannot have negative imaginary part, since the roots occur
in conjugate pairs. They are therefore real, and in fact ≤ 0,
since the polynomial is strictly positive on the positive real
axis. Therefore, it can be factored in the form

f(z, ..., z) = (p1z + 1− p1) · · · (pnz + 1− pn), [7]

where 0 ≤ pi ≤ 1 for each i. Now take ζ(i) to be independent
with P (ζ(i) = 1) = pi. Then ζ(1) + · · · ζ(n) has generating
function [7] as well, so η(1) + · · ·+ η(n) and ζ(1) + · · ·+ ζ(n)
have the same distribution.

Consequences of correlation inequalities
In this section, we describe a few of the many results that are
related to correlation inequalities.

Voter models. It follows from Theorem 4 that when d ≥ 3,
the nontrivial stationary distributions µα for the voter model
are positively associated. In fact, the covariances for the co-
ordinate random variables relative to µα are given by

Cov(η(x), η(y)) = α(1− α)
G(y − x)

G(0)

where

G(x) =

Z ∞
0

P 0(X(t) = x)dt,

which is the expected total amount of time the random walk
spends at x.
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Looking ahead to comments about central limit theorems
for contact and magnetic models below, note thatX

x

Cov(η(x), η(0)) =∞.

This is an indication that the (positive) correlations among
voter opinions are quite strong.

Contact models. It took 15 years to prove that the critical
contact process (i.e., the one with λ = λd) dies out. The
proof ([43],[44]) uses the fact that collections of independent
Bernoulli random variables are positively associated several
times.

The nontrivial stationary distribution ν for the supercrit-
ical (λ > λd) contact process does not satisfy the FKG lattice
condition ([45]). However, it is positively associated by The-
orem 4. Combining Theorem 4.20 of Chapter I of [19] with
Theorem 2.30 of Part I of [20] implies that the covariances of
η(x) and η(y) relative to ν decay exponentially rapidly as a
function of |y − x|. It then follows from results in [46] or [47]
that ν satisfies the central limit theorem:

Theorem 6. Let Sn =
P
|x|≤n η(x). Then

Sn − ESnp
V ar(Sn)

⇒ N(0, 1).

In this statement,⇒ denotes convergence in distribution, V ar
stands for variance, and N(0, σ2) represents the Gaussian dis-
tribution with mean 0 and variance σ2.

The FKG lattice condition is equivalent to the statement
that the distribution is positively associated, even after con-
ditioning on the values of {η(x), x ∈ S} for any S. This raises
the question of whether ν is associated after some special type
of conditioning. It is not when the conditioning is on the event
η(0) = 1. In fact if d = 1, the conditional distribution sat-
isfies [6] if f depends on {η(x), x < 0} and g depends on
{η(x), x > 0} ([48]). The intuition behind this is that if the
origin is known to be infected, the infection must have come
from somewhere. If it did not come from the left, it must have
come from the right.

Nevertheless, ν is positively associated after conditioning
on {η(x) = 0, x ∈ S} ([49], [37]). A consequence of this (to-
gether with other known properties of the contact process) is
that if {η(x), x ∈ Zd} have distribution ν, then there exist
independent Bernoulli random variables {ζ(x), x ∈ Zd} with
density P (ζ(x) = 1) = λ−2

λ
so that ζ(x) ≤ η(x) for all x, if

λ ≥ 2 ([50]). As in Theorem 5(b), this is a connection between
non-independent Bernoulli random variables and independent
ones that is very useful is analyzing the former collection.

For example, consider the site percolation model, in which
one asks whether there is positive probability that infinitely
many sites are connected to the origin by paths that travel
only through sites for which η(x) = 1 (respectively ζ(x) = 1).
Classical results for independent percolation imply that if
d ≥ 2 and λ is sufficiently large, percolation occurs for the
ζ’s. The above result implies that it also occurs for the non-
independent η’s.

Magnetic models.Suppose that initially all spins are +1.
Then for every t > 0, the covariances Cov(ηt(x), ηt(y)) de-
cay exponentially rapidly as a function of |y − x| by Propo-
sition 4.18 of Chapter I of [19]. The random variables ηt(x)
are positively associated by Theorem 4. It then again follows
that the spin variables satisfy the central limit theorem. If
the (distributional) limiting random variables η∞(x) satisfyX

x

Cov(η∞(x), η∞(0)) <∞, [8]

the same argument applies. Condition [8] holds often, but not
always.

Exclusion processes.Assume throughout that the model is
symmetric, p(−x) = p(x) for all x, since it is only then that
useful correlation inequalities are available.

The proof of part of Theorem 2 begins with an extension
of the symmetry property, which is known as duality. Con-
sider two copies of the exclusion process, ηt and ζt, with initial
configurations η and ζ respectively. Then

P η(ηt ≥ ζ) = P ζ(η ≥ ζt) [9]

for all t > 0. When η has infinitely many particles and ζ has
finitely many particles, this symmetry reduces many problems
for the infinite system to corresponding problems for the fi-
nite system. Theorem 5(a) implies that for distinct points
x1, ..., xn ∈ Zd,

P ζ(ζt(x1) = 1, ..., ζt(xn) = 1) ≤

P ζ(ζt(x1) = 1) · · ·P ζ(ζt(xn) = 1).
[10]

The right side can be interpreted as the probability that
n independent (by [9] and the fact that it is a product of
probabilities) particles starting at x1, ..., xn will be in the set
{x : ζ(x) = 1} at time t. Thus problems relating to n particles
moving with the exclusion interaction can often be reduced to
problems relating to n independent particles, which is a great
simplification.

Consider now the problem of the motion of a tagged parti-
cle. The tagged particle is initially placed at the origin; other
sites are initially occupied with probability 1

2
each. The prob-

lem concerns the asymptotic behavior of the position X(t) of
the tagged particle at time t. The presence of the other parti-
cles has the effect of slowing down the tagged particles. The
question is, by how much? The following situation is special
([51]).

Theorem 7. Suppose d = 1 and p(1) = p(−1) = 1
2

. Then X(t)
obeys a central limit theorem, but with an unusual scaling:

X(t)

t
1
4
⇒ N(0,

p
2/π). [11]

In essentially all other cases, X(t) is asymptotically Gaus-

sian, but with a variance that is of order t rather than
√
t

([52],[53],[54]). The proof of [11] is based on [10] as well. A
key point is that the variance of the sum of negatively corre-
lated Bernoulli random variables is at most equal to its mean.

The two applications above use only the weak form [10]
of negative association that has been known since 1974. Here
is an application of the more elaborate version proved in [41]
only recently. Suppose d = 1, and initially all negative sites
are occupied and all positive sites are vacant. Let W (t) be
the number of particles that are to the right of the origin at
time t:

W (t) =
X
x>0

ηt(x).

By Theorem 5, for each t > 0, the summands above are nega-
tively correlated, and there are independent Bernoulli random
variables ζt(x) so that W (t) has the same distribution asX

x>0

ζt(x).

This makes it possible to apply classical central limit theorems
to the sum directly, once one proves that V ar(W (t)) → ∞.
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This fact is intuitively obvious, but is not particularly easy to
prove. The difficulty comes from the fact that in the expres-
sion

V ar(W (t)) =
X
x,y>0

Cov(ηt(x), ηt(y)),

the summands corresponding to x = y are positive, while
those corresponding to x 6= y are negative, and may cancel
the positive contributions and lead to a bounded variance.

The proof that V ar(W (t))→∞ is again based on compar-
isons between finite interacting systems and the corresponding
independent systems. Here is the result proved in [55]:

Theorem 8. If
P
x x

2p(x) <∞, then

W (t)− EW (t)p
V ar(W (t))

⇒ N(0, 1), [12]

with both the mean and the variance of W (t) being of order√
t.

The central limit theorem [12] has been extended to some
choices of p(·) with infinite variance in [56].
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