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Abstract. Aldous’ spectral gap conjecture asserts that on any graph
the random walk process and the random transposition (or interchange)
process have the same spectral gap. We prove the conjecture using a
recursive strategy. The approach is a natural extension of the method
already used to prove the validity of the conjecture on trees. The nov-
elty is an idea based on electric network reduction which reduces the
problem to the proof of an explicit inequality for a random transposi-
tion operator involving both positive and negative rates. The proof of
the latter inequality uses suitable coset decompositions of the associated
matrices on permutations.

1. Aldous’ conjecture

Aldous’ conjecture concerns the spectral gap, a quantity that plays an im-
portant role in the analysis of the convergence to equilibrium of reversible
Markov chains. We begin by reviewing some well known facts about Markov
chains and their spectral gaps. For details we refer to [2].

1.1. Finite state, continuous time Markov chains. Let us consider a
continuous time Markov chain Z = (Zt)t > 0 with finite state space S and
transition rates (qi,j : i 6= j ∈ S) such that qi,j > 0. We will always assume
that the Markov chain is irreducible and satisfies

qi,j = qj,i for all i 6= j.

Such a Markov chain is reversible with respect to the uniform distribution
ν on S, which is the unique stationary distribution of the chain. The infin-
itesimal generator L of the Markov chain is defined by

Lg(i) =
∑

j∈S

qi,j(g(j) − g(i)) ,

where g : S → R and i ∈ S. The matrix corresponding to the linear operator
L is the transition matrix Q = (qi,j)i,j, where qi,i := −∑

j 6=i qi,j, and the
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corresponding quadratic form is
∑

i∈S

g(i)Lg(i) =
∑

i,j∈S

qi,jg(i)(g(j) − g(i)) = −1

2

∑

i,j∈S

qi,j(g(j) − g(i))2 .

Thus, −L is positive semi-definite and symmetric, which implies that its
spectrum is of the form Spec(−L) = {λi : 0 6 i 6 |S| − 1}, where

0 = λ0 < λ1 6 . . . 6 λ|S|−1.

The spectral gap λ1 is characterized as the largest constant λ such that

1

2

∑

i,j∈S

qi,j(g(j) − g(i))2 > λ
∑

i∈S

g(i)2 (1.1)

for all g : V → R with
∑

i g(i) = 0. The significance of λ1 is its interpretation
as the asymptotic rate of convergence to the stationary distribution:

Pi(Zt = j) = ν({j}) + ai,je
−λ1t + o(e−λ1t) for t → ∞,

where typically ai,j 6= 0 (and more precisely ai,i > 0 for some i). For this
reason 1

λ1
is sometimes referred to as the relaxation time of the Markov

chain, and it is desirable to have an effective way of calculating λ1. Aldous’
conjecture relates the spectral gap of the random walk on a finite graph to
more complicated processes on the same graph. This can be very important
in applications, since generally speaking it is easier to compute or estimate
(e.g. via isoperimetric inequalities) the spectral gap of the random walk than
that of the other processes considered, which have much larger state spaces.

We say that the Markov chain with state space S2 and generator L2 is a
sub-process of the chain with state space S1 and generator L1 if there is a
contraction of S1 onto S2, i.e. if there is a surjective map π : S1 → S2 such
that

L1(f ◦ π) = (L2f) ◦ π for all f : S2 → R. (1.2)

In this case, suppose that f is an eigenfunction of −L2 with eigenvalue λ.
Then −L1(f ◦ π) = (−L2f) ◦ π = λf ◦ π and f ◦ π 6= 0 for f 6= 0, so f ◦ π is
an eigenfunction of −L1 with the same eigenvalue λ. Thus

Spec(−L2) ⊂ Spec(−L1),

and in particular the spectral gap of the first process is smaller than or equal
to that of the second process.

1.2. Stochastic processes on a finite weighted graph. In the following
subsections we will define different stochastic processes on a finite graph G,
all of which are Markov chains of the type considered in Section 1.1. Let
G = (V,E) be an undirected complete graph on n vertices; without loss of
generality we assume that its vertex set is V = {1, . . . , n}. Furthermore G
is a weighted graph in that we are given a collection of edge weights (or
conductances) cxy > 0, for xy = {x, y} ∈ E. Since we want the processes
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defined below to be irreducible, we will assume that the skeleton graph, i.e.
the set of edges xy where cxy > 0, is connected. If we want to stress the de-
pendence of one of the processes described below on the underlying weighted
graph, we will write L(G) and λ1(G) for its generator and gap. Finally, we
note that considering complete graphs only is no loss of generality, since
edges with weight 0 can be thought of as being “absent”.

1.2.1. Random walk. The (1-particle) random walk on G is the Markov chain
in which a single particle jumps from vertex x ∈ V to y 6= x at rate cxy;
see Figure 1. Formally, its state space is SRW = V = {1, 2, . . . , n} and its

1
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Figure 1. Random walk on V = {1, 2, 3, 4, 5}. The picture
shows the underlying graph and a transition from state 1 to
state 2.

generator is defined by

LRW f(x) =
∑

y 6=x

cxy(f(y) − f(x)) , for f : V → R, x ∈ V.

By Section 1.1, −LRW has n = |SRW | nonnegative eigenvalues and a positive
spectral gap λRW

1 > 0.

1.2.2. Interchange process. In the interchange process, a state is an assign-
ment of n labeled particles to the vertices of G in such a way that each
vertex is occupied by exactly one particle. The transition from a state η to
a state ηxy (occurring with rate cxy) interchanges the particles at vertices
x and y; see Figure 2. For a formal definition, let Xn denote the set of
permutations of V = {1, . . . , n}, and for η ∈ Xn and xy ∈ E let ηxy = ητxy,
where τxy ∈ Xn is the transposition of x and y. The interchange process on

G is the Markov chain with state space SIP = Xn and generator

LIP f(η) =
∑

xy∈E

cxy(f(ηxy) − f(η)), where f : SIP → R, η ∈ SIP .

We use ηx to denote the label of the particle at x, while ξi = ξi(η) will be
used to denote the position of the particle labeled i. By Section 1.1, −LIP

has |SIP | = n! nonnegative eigenvalues and a positive spectral gap λIP
1 > 0.

The random walk can be obtained as a sub-process of the interchange process
by ignoring all particles apart from the one with label 1; more precisely the
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Figure 2. Interchange process on V = {1, 2, 3, 4, 5}. The
picture shows the underlying graph and a transition from
state η = ( 1 2 3 4 5

5 3 1 4 2 ) to η1,2 = ητ1,2 = ( 1 2 3 4 5
5 3 2 4 1 ). Note that

in this notation the first row refers to the labels.

map π : SIP → SRW , π(η) := ξ1(η) is a contraction in the sense of (1.2).
Thus,

Spec(−LRW ) ⊂ Spec(−LIP ),

and in particular,

λIP
1 6 λRW

1 .

Aldous’ conjecture states that this inequality is, in fact, an equality:

Conjecture 1.1 (Aldous 1992). For all weighted graphs G, the interchange

process and the random walk have the same spectral gap:

λIP
1 (G) = λRW

1 (G) .

The purpose of this paper is to prove this conjecture. Before discussing
the conjecture and outlining our strategy for its proof we will describe its
consequences for other processes on G.

1.2.3. Symmetric exclusion process. In the k-particle exclusion process a
state is an assignment of k indistinguishable particles to k of the n vertices
of G. Here k ∈ {1, . . . , n − 1} is a fixed number, which is often omitted in
our notation. The transition from a state ζ to a state ζxy (occurring with
rate cxy) is possible only if in ζ one of the positions x, y is occupied and the
other is empty. In this transition, the particle at the occupied site jumps to
the empty site; see Figure 3. We note that the 1-particle exclusion process
is the same as the random walk. Formally the k-particle exclusion process
is defined to be the Markov chain with state space SEP = {ζ ⊂ V : |ζ| = k}
and generator

LEPf(ζ) =
∑

xy∈E

cxy(f(ζxy) − f(ζ)), where f : SEP → R, ζ ∈ SEP .

Here ζxy = ζ if xy ⊂ ζ or xy ⊂ ζc and

ζxy =

{
(ζ \ {y}) ∪ {x} if y ∈ ζ and x /∈ ζ,

(ζ \ {x}) ∪ {y} if x ∈ ζ and y /∈ ζ.
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Figure 3. 2-particle exclusion process on the graph V =
{1, 2, 3, 4, 5}. The picture shows the underlying graph and a
transition from ζ = {1, 3} to ζ1,2 = {2, 3}.

By Section 1.1, −LEP has |SEP | =
(
n
k

)
nonnegative eigenvalues and a pos-

itive spectral gap λEP
1 > 0. The k-particle exclusion process can be ob-

tained as a sub-process of the interchange process by declaring the sites
occupied by particles 1 through k to be occupied and the other vertices to
be empty; more precisely π : SIP → SEP , π(η) = {ξ1(η), . . . , ξk(η)} is a
contraction in the sense of (1.2), which gives Spec(−LEP ) ⊂ Spec(−LIP ).
In order to compare the exclusion process to the random walk, let f :
V → R be an eigenfunction of −LRW with eigenvalue λ 6= 0 and define
g : SEP → R by g(ζ) =

∑
x∈ζ f(x). Then g 6≡ 0 (since otherwise f ≡ 0),

and
∑

x,y∈ζ,x 6=y cxy(f(y) − f(x)) = 0 implies

(−LEP g)(ζ) = −
∑

x∈ζ,y /∈ζ

cxy(g(ζxy) − g(ζ))

= −
∑

x∈ζ,y /∈ζ

cxy(f(y) − f(x)) = −
∑

x∈ζ,y 6=x

cxy(f(y) − f(x))

=
∑

x∈ζ

(−LRW f)(x) = λ
∑

x∈ζ

f(x) = λg(ζ),

i.e. g is an eigenfunction of −LEP with eigenvalue λ. This gives

Spec(−LRW ) ⊂ Spec(−LEP ) ⊂ Spec(−LIP ) ,

and thus

λIP
1 6 λEP

1 6 λRW
1 ,

so Conjecture 1.1 would imply that λEP
1 = λRW

1 .

1.2.4. Colored exclusion process. In the colored exclusion process there are
r > 2 types of particles (ni > 1 of type i such that n1 + · · · + nr = n),
where particles of the same type (or color) are indistinguishable. A state is
an assignment of these particles to the vertices of G so that every vertex is
occupied by exactly one particle, and in the transition from a state α to a
state αxy particles at sites x and y interchange their positions; see Figure 4.
Formally, the colored exclusion process is the Markov chain on the state
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Figure 4. Colored exclusion process on V = {1, 2, 3, 4, 5}
with 3 types of particles (n1 = 2, n2 = 1, n3 = 2). The
picture shows the underlying graph and a transition from
α = ({2, 4}, {3}, {1, 5}) to α1,2 = ({1, 4}, {3}, {2, 5}).

space SCEP , which is the set of partitions α = (α1, . . . , αr) of V such that
|αi| = ni, and the generator is defined by

LCEPf(α) =
∑

xy∈E

cxy(f(αxy) − f(α)), where f : SCEP → R, α ∈ SCEP .

Here αxy = α if x, y ∈ αi for some i, and if x ∈ αi and y ∈ αj for i 6=
j we have αxy = (αxy

1 , . . . , αxy
r ), where αxy

i = (αi \ {x}) ∪ {y}, αxy
j =

(αj \ {y}) ∪ {x}, and αxy
k = αk for all k 6= i, j. By Section 1.1, −LCEP

has |SCEP | =
(

n
n1,...,nr

)
nonnegative eigenvalues and a positive spectral gap

λCEP
1 > 0. The n1-particle exclusion process is a sub-process of the colored

exclusion process (by declaring all sites occupied by particles of type 2, . . . , r
to be empty), which in turn is a sub-process of the interchange process (by
declaring particles 1, . . . , n1 to be of type 1, . . . , particles n−nr +1, . . . , n to
be of type r). The definitions of the corresponding contractions are obvious.
This gives, for the given choice of parameters n1, . . . , nr,

Spec(−LEP ) ⊂ Spec(−LCEP ) ⊂ Spec(−LIP ),

and thus

λIP
1 6 λCEP

1 6 λEP
1 .

Since λEP
1 6 λRW

1 from the last subsection, Conjecture 1.1 would imply
λCEP

1 = λRW
1 .

1.2.5. Cycle process. Here we give an example of a process on G that has
a gap that in general is strictly larger than that of the random walk. The
states of the cycle process are n-cycles, where n = |V |. In order to avoid a
trivial situation we assume n > 3. One could think of a rubber band that
at certain points is pinned to the vertices of G. The transition from γ to
γxy (occurring with rate cxy) can be obtained by taking the point of the
rubber band pinned to x from x to y and the point pinned to y from y to
x; see Figure 5. Formally, an n-cycle in G is a set of edges γ ⊂ E forming
a subgraph of G isomorphic to {{1, 2}, . . . , {n − 1, n}, {n, 1}}. The cycle
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Figure 5. Cycle process on V = {1, 2, 3, 4, 5}. The
picture shows the underlying graph and a transition
from γ = {{1, 3}, {3, 2}, {2, 5}, {5, 4}, {4, 1}} to γ1,2 =
{{1, 3}, {3, 2}, {2, 4}, {4, 5}, {5, 1}}.

process is the Markov chain with state space SCP , the set of all n-cycles of
G, and generator

LCP f(γ) =
∑

xy∈E

cxy(f(γxy) − f(γ)), where f : SCP → R, γ ∈ SCP .

Here γxy = {bxy : b ∈ γ}, where for an edge b ∈ E we define bxy = b if x, y /∈ b

or b = xy, and bxy = xz if b = yz (z 6= x, y). Thus, −LCP has |SCP | = (n−1)!
2

nonnegative eigenvalues and a positive spectral gap λCP
1 > 0. The cycle

process can be obtained from the interchange process by pinning a cycle on
the particles labeled 1, . . . , n, 1 in that order, i.e. π : SIP → SCP , π(η) =
{ξ1(η)ξ2(η), . . . , ξn−1(η)ξn(η), ξn(η)ξ1(η)} is a contraction. This gives

Spec(−LCP ) ⊂ Spec(−LIP ), and thus λCP
1 > λIP

1 .

So Conjecture 1.1 would imply λCP
1 > λRW

1 . It is easy to see that in general
the inequality is strict, e.g. for n = 4 and cij = 1 for all ij ∈ E one can
compute λRW

1 = 4 and λCP
1 = 6. We note that the process defined here is

an example from a more general class of processes, where instead of n-cycles
other subgraphs are considered. For all these processes one has an analogous
estimate for the spectral gap.

1.3. Some known special cases. Aldous’ conjecture has received a lot of
attention in recent years - the conjecture was stated as an open problem on
David Aldous’ web page [1] and in the influential monographs [2, 13]. In
the meantime, various special cases have been obtained. The first class of
graphs which was shown to satisfy the conjecture is the class of unweighted
complete graphs (i.e. cxy = 1 for all xy ∈ E). Diaconis and Shashahani
computed all eigenvalues of the interchange process in this case using the
irreducible representations of the symmetric group [6]. Similar results were
obtained for unweighted star graphs in [9]. Recently, remarkable work of
Cesi pushed this algebraic approach further to obtain the conjecture for all
unweighted complete multipartite graphs [4].
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An alternative approach based on recursion was proposed by Handjani
and Jungreis [10] (see also Koma and Nachtergaele [12] for similar results)
who proved the conjecture for all weighted trees. The same ideas were
recently used by Conomos and Starr [16], and Morris [15], to obtain an
asymptotic version of the conjecture for boxes in the lattice Z

d with constant
rates. The basic recursive approach in [10] has been recently rephrased in
purely algebraic terms, see [5, Lemma 3.1].

1.4. Main result. The main result of this paper is a proof of Conjecture 1.1:

Theorem 1.2. For all weighted graphs G, the interchange process and the

random walk have the same spectral gap:

λIP
1 (G) = λRW

1 (G) . (1.3)

From the discussion of the previous sections this result relates the spectral
gaps of various processes to that of the random walk:

Corollary 1.3. For all weighted graphs G, the spectral gaps of the symmetric

exclusion processes, the colored exclusion processes and the cycle process

satisfy

λEP
1 (G) = λRW

1 (G), λCEP
1 (G) = λRW

1 (G) and λCP
1 (G) > λRW

1 (G) .

In order to prove Theorem 1.2 we develop a general recursive approach
based on the idea of network reduction; see Section 2. The method, inspired
by the theory of resistive networks, allows us to reduce the proof of the
theorem to the proof of an interesting comparison inequality for random
transposition operators on different weighted graphs; see Theorem 2.3.

After the first version [3] of this paper appeared, we learned that the same
strategy had been discovered around the same time independently, and from
a slightly different perspective, by Dieker [7]. The comparison inequality
alluded to above was conjectured to hold in both [3, 7]. We are now able to
prove the comparison inequality in Theorem 2.3; see Section 3 below. The
main idea for this proof is a decomposition of the associated matrix into a
covariance matrix and a correction matrix (a Schur complement). A delicate
analysis based on block decompositions corresponding to suitable cosets of
the permutation group reveals that the correction matrix is nonnegative
definite.

1.5. Some properties of the spectrum of −LIP . We end this introduc-
tory section with some basic facts about the spectrum of the interchange pro-
cess that can be deduced from the algebraic approach. We refer to [6, 9, 4]
and references therein for more details. These facts are not needed in what
follows and the reader may safely jump to the next section. However, the
algebraic point of view provides a natural decomposition of the spectrum
that is worth mentioning.
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In Section 1.2.2 we saw that Spec(−LRW ) ⊂ Spec(−LIP ). One can go
a little further and show that, if 0 = λRW

0 < λRW
1 6 · · · 6 λRW

n−1 are the

eigenvalues of −LRW , then for k > 0 and 1 6 i1 < · · · < ik 6 n − 1,

λRW
i1 + · · · + λRW

ik
∈ Spec(−LIP ) . (1.4)

The corresponding eigenfunction is the antisymmetric product of the k one-
particle eigenfunctions of λRW

i1
, . . . , λRW

ik
. In particular, the eigenvalue

λRW
1 + · · · + λRW

n−1 = Tr(−LRW ) = 2
∑

xy∈E

cxy , (1.5)

is associated with functions that are antisymmetric in all particles, i.e. mul-
tiples of the alternating function h(η) = sign(η). (This also follows directly
from h(ηxy) − h(η) = −2h(η).) From the representation theory of the sym-
metric group one can compute (see below) the multiplicity of all eigenvalues
of the form (1.4), and one finds that the overwhelming majority (for large
n) of the spectrum of −LIP are not of this form.

The vector space of functions f : Xn → R is equivalent to a direct sum
⊕αHα, where α ranges over all (equivalence classes of the) irreducible rep-
resentations of the symmetric group. Since the latter are in one to one
correspondence with the partitions of n, one can identify α with a Young
diagram α = (α1, α2, . . . ), where the αi form a non-increasing sequence of
nonnegative integers such that

∑
i αi = n.

Each subspace Hα is in turn a direct sum Hα = ⊕dα

j=1H
j
α, of subspaces

Hj
α, each of dimension dα, where the positive integer dα is the dimension

of the irreducible representation α. In particular, the numbers dα satisfy∑
α(dα)2 = n!. The subspaces Hj

α are invariant for the action of the gen-

erator −LIP , so that −LIP can be diagonalized within each Hj
α. Subspace

Hi
α will produce dα eigenvalues λk(α), k = 1, . . . , dα. Some of these may

coincide if the weights have suitable symmetries (for instance, if G is the
complete graph with cxy = 1 for all xy ∈ E, then they all coincide and −LIP

is a multiple of the identity matrix in each Hα, cf. [6]) but in the general
weighted case they will be distinct. On the other hand, for a given α, the

eigenvalues coming from Hi
α are identical to those coming from Hj

α, for all
i, j = 1, . . . , dα, so that each eigenvalue λk(α) will appear with multiplicity
dα in the spectrum of −LIP . Moreover, using known expressions for the
characters of transpositions, one can compute explicitly the sum

dα∑

k=1

λk(α) ,

for every irreducible representation α, as a function of the edge weights. For
instance, when α is the partition (n − 1, 1, 0, . . . ), which has dα = n − 1,
one obtains the relation (1.5). The trivial partition (n, 0, . . . ) has dimension
1 and the only eigenvalue is 0. This is the space of constant functions.
Similarly, the alternating partition (1n, 0 . . . ) (n ones and then all zeros),
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has dimension 1 and the only eigenvalue is 2
∑

xy∈E cxy. It can be shown

that the eigenvalues of the form (1.4) come from the L-shaped partitions

α = (n−k, 1k, 0, . . . ), each with dimension dα =
(n−1

k

)
. So the total number

of eigenvalues of the form (1.4) is
∑n−1

k=0

(n−1
k

)2
=

(2(n−1)
n−1

)
.

Finally, using known relationships between conjugate irreducible repre-
sentations, see e.g. [11, 2.1.8], [5, (2.12)], one can show that the spectrum of
−LIP can be decomposed into pairs of eigenvalues λ, λ′ such that

λ + λ′ = 2
∑

xy∈E

cxy ,

where λ, λ′ are associated with conjugate Young diagrams.

2. A recursive approach based on network reduction

Given a weighted graph G = (V,E) as above and a point x ∈ V we consider
the reduced network obtained by removing the vertex x. This gives a new
graph Gx with vertex set Vx := V \ {x}, edge set Ex = {yz ∈ E : y, z 6= x}
and edge conductances c̃yz > cyz defined by

c̃yz = cyz + c∗,xyz , c∗,xyz :=
cxycxz∑
w∈Vx

cxw
, (2.1)

for yz ∈ Ex. We refer to Gx as the reduction of G at x or simply as the
reduced graph at x. This is the general version of more familiar network
reductions such as series resistance (from 3 to 2 vertices) or star–triangle
transformations (from 4 to 3 vertices); see Figure 6. We refer to [8, 14, 2]
for the classical probabilistic point of view on electric networks.

5

1
1

2
2

3
3

4
4

=⇒

Figure 6. Reduction of a 5-vertex graph to a 4-vertex graph
at x = 5.

2.1. Random walk on the reduced network. We first show that the
spectral gap of the random walk on the reduced network is not smaller than
the original random walk spectral gap:

Proposition 2.1. The spectral gaps of the random walks on a weighted

graph G and the corresponding reduced graph Gx satisfy

λRW
1 (Gx) > λRW

1 (G) .
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Proof. We will use the shorthand notation L = LRW (G) and Lx = LRW (Gx)
for the generators of the two random walks. We first note that, for any graph
G, λRW

1 (G) can be characterized as the largest constant λ such that
∑

z∈V

(Lg(z))2 > − λ
∑

z∈V

g(z)Lg(z) , (2.2)

holds for all g : V → R. To see this, observe that, for any g, h : V → R,∑
z∈V h(z)Lg(z) =

∑
z∈V g(z)Lh(z). Thus, taking h = Lg, the left hand

side of (2.2) coincides with the quadratic form
∑

z∈V

g(z)L2g(z) ,

and (2.2) says that L2 + λL is nonnegative definite. Taking a basis which
makes L diagonal one sees that this holds iff λ 6 λRW

1 (G).
To prove the proposition, take a function g : V → R harmonic at x, i.e.

such that Lg(x) = 0. Then

g(x) =

∑
y∈Vx

cxyg(y)
∑

w∈Vx
cxw

. (2.3)

For any z ∈ Vx, from (2.3) we have

Lg(z) =
∑

y∈Vx

czy[g(y) − g(z)] + czx[g(x) − g(z)]

=
∑

y∈Vx

(
czy + c∗,xzy

)
[g(y) − g(z)] .

In other words

Lg(z) =

{
Lxg(z) z ∈ Vx

0 z = x

Applying (2.2) to this function we have
∑

z∈Vx

(Lxg(z))2 =
∑

z∈V

(Lg(z))2 > − λRW
1 (G)

∑

z∈V

g(z)Lg(z)

= −λRW
1 (G)

∑

z∈Vx

g(z)Lxg(z) .

Since the function g is arbitrary on Vx, using (2.2) again - this time for the
graph Gx - we obtain λRW

1 (Gx) > λRW
1 (G). �

Proposition 2.1 generalizes the observation in [10] that if G is a graph
with a vertex x of degree 1 (i.e. only one edge out of x has positive weight),
then the spectral gap of the random walk cannot decrease when we cancel
x and remove the only edge connecting it to the rest of G. (In that case
c̃yz = cyz since x has degree 1.)

We end this subsection with a side remark on further relations between the
generators L = LRW (G) and Lx = LRW (Gx). When we remove a vertex it
is interesting to compare the energy corresponding to the removed branches
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with the energy coming from the new conductances. The following identity
can be obtained with a straightforward computation.

Lemma 2.2. For any fixed x ∈ V and any g : V → R,

∑

y∈Vx

cxy[g(y) − g(x)]2 =
∑

yz∈Ex

c∗,xyz [g(y) − g(z)]2 +
1∑

y 6=x

cxy
(Lg(x))2 .

Consider the operator L̃x defined by L̃xg(x) = 0 and L̃xg(z) = Lxg(z)

for z 6= x, where g : V → R. Then L̃x is the generator of the random
walk on Gx ∪ {x}, where x is an isolated vertex. Lemma 2.2 implies that

the quadratic form of −L̃x is dominated by the quadratic form of −L. It

follows from the Courant-Fisher min-max theorem that, if λ̃0 6 · · · 6 λ̃n−1

denote the eigenvalues of −L̃x, then λ̃i 6 λRW
i (G), i = 0, . . . , n − 1. Note

that this is not in contradiction with the result in Proposition 2.1 since,

due to the isolated vertex x, one has λ̃0 = λ̃1 = 0, and λ̃k+1 = λRW
k (Gx),

k = 1, . . . , n − 2. While the bound in Proposition 2.1 will be sufficient for
our purposes, it is worth pointing out that, as observed in [7], at this point
standard results on interlacings can be used to prove the stronger statement

λRW
j (G) 6 λRW

j (Gx) 6 λRW
j+1 (G) , j = 1, . . . , n − 2 .

2.2. Octopus estimate. The following theorem summarizes the main tech-
nical ingredient we shall need. Here ν is the uniform probability measure on
all permutations Xn, and we use the notation ν[f ] =

∫
f dν. The gradient

∇ is defined by

∇xyf(η) = f(ηxy) − f(η) .

Theorem 2.3. For any weighted graph G on |V | = n vertices, for every

x ∈ V and f : Xn → R:
∑

y∈Vx

cxy ν[(∇xyf)2] >
∑

yz∈Ex

c∗,xyz ν[(∇yzf)2] . (2.4)

Note that if f(η) = g(ξ1) is a function of one particle, then a simple com-
putation gives

ν[(∇uvf)2] =
2

n
(g(u) − g(v))2 , uv ∈ E ,

so that this special case of Theorem 2.3 is contained in Lemma 2.2. The
identity in Lemma 2.2 also shows that in this case the inequality is saturated
by functions that are harmonic at x. On the other hand, the general case
represents a nontrivial comparison inequality between a weighted star graph
and its complement, with weights defined by (2.1). Inspired by its tentacular
nature we refer to the bound (2.4) as the octopus estimate. We will give a
proof of Theorem 2.3 in Section 3.
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2.3. Reformulation of the conjecture. We shall use the following con-
venient notation: As above let ν denote the uniform probability measure
Xn, ∇ the gradient and b a generic edge, whose weight is denoted cb. In this
way LIP =

∑
b cb∇b and the Dirichlet form −ν[fLIPf ] is

E(f) =
1

2

∑

b

cb ν[(∇bf)2] .

The spectral gap λIP
1 is the best constant λ so that for all f : Xn → R:

E(f) > λVarν(f) , (2.5)

where Varν(f) = ν[f2] − ν[f ]2 is the variance of f w.r.t. ν. In order to
get some hold on the eigenvalues of the interchange process that are not
eigenvalues of the random walk we introduce the vector space

H = {f : Xn → R : ν[f | ξi] = 0 for all i ∈ V }
= {f : Xn → R : ν[f | ηx] = 0 for all x ∈ V },

where ν[· | ξi] and ν[· | ηx] are the conditional expectations given the position
of the particle labeled i and given the label of the particle at x respectively.
The equality in the definition of H is a consequence of

ν[· | ξi](η) = ν[· | ξi = x] = ν[· | ηx = i] = ν[· | ηx](η) ,

where η ∈ Xn is such that ξi(η) = x. Since

ν[LIP f | ξi] = LRW (ν[f | ξi]) for all f : Xn → R,

H is an invariant subspace of −LIP , and if f /∈ H is an eigenfunction of −LIP

with eigenvalue λ, then ν[f | ξi] 6= 0 for some i, and ν[f | ξi] is an eigenfunc-
tion of −LRW with the same eigenvalue λ. So H contains all eigenfunctions
corresponding to eigenvalues in Spec(−LIP ) \ Spec(−LRW ). Therefore, if
µIP

1 = µIP
1 (G) denotes the smallest eigenvalue of −LIP associated to func-

tions in H (i.e. the best constant λ in (2.5) restricting to functions f ∈ H),
then for every graph G one has

λIP
1 (G) = min{λRW

1 (G), µIP
1 (G)} .

The assertion λIP
1 (G) = λRW

1 (G) of Theorem 1.2 becomes then equivalent
to

µIP
1 (G) > λRW

1 (G) . (2.6)

In the rest of this section we show how the network reduction idea, assuming
the validity of Theorem 2.3, yields a proof of Theorem 1.2.

2.4. Proof of Theorem 1.2. We use the notation from the previous sec-
tions. In particular we write λRW

1 (Gx) and λIP
1 (Gx) for the spectral gaps of

the random walk and the interchange process in the network reduced at x.
Let us first show that Theorem 2.3 implies an estimate of µIP

1 (G).
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Proposition 2.4. For an arbitrary weighted graph G

µIP
1 (G) > max

x∈V
λIP

1 (Gx) . (2.7)

Proof. Let f ∈ H and x ∈ V . Since ν[f | ηx] = 0, we have

ν[f2] = Varν(f) = ν[Varν(f | ηx)] ,

where Varν(f | ηx) is the variance w.r.t. ν[· | ηx]. For a fixed value of ηx,
ν[· | ηx] is the uniform measure on the permutations on Vx = V \{x}. There-
fore using the spectral gap bound (2.5) on the graph Gx we have

λIP
1 (Gx)Varν(f | ηx) 6

1

2

∑

b: b6∋x

(cb + c∗,xb )ν[(∇bf)2 | ηx] ,

with c∗,xb defined by (2.1). Taking the ν-expectation we obtain:

λIP
1 (Gx) ν[f2] 6

1

2

∑

b: b6∋x

(cb + c∗,xb )ν[(∇bf)2] .

From Theorem 2.3:∑

b: b6∋x

c∗,xb ν[(∇bf)2] 6
∑

b: b∋x

cb ν[(∇bf)2] .

Therefore,
λIP

1 (Gx) ν[f2] 6 E(f) . (2.8)

Since x ∈ V and f ∈ H were arbitrary, this proves that, for every x ∈ V ,
µIP

1 (G) > λIP
1 (Gx), establishing the inequality (2.7). �

Propositions 2.1 and 2.4 allow us to conclude the proof by recursion.
Indeed, note that λIP

1 (G) = λRW
1 (G) is trivially true when G = b is a single

weighted edge b. (When n = 2, the random walk and the interchange process
are the same 2-state Markov chain.) If G is a weighted graph on n vertices,
we assume that λIP

1 (G′) = λRW
1 (G′) holds on every weighted graph G′ with

n − 1 vertices, in particular on Gx. Therefore

µIP
1 (G) > max

x∈V
λIP

1 (Gx) = max
x∈V

λRW
1 (Gx) > λRW

1 (G),

where we also have used Propositions 2.1 and 2.4. Thus we have shown
(2.6), which is equivalent to λIP

1 (G) = λRW
1 (G).

3. Proof of the octopus estimate

For the proof of Theorem 2.3 we slightly change our notation as follows.
We set V = {0, 1, . . . , n − 1} and x = 0. The only rates appearing in (2.4)
are c0i, so we set

ci := c0i for 1 6 i , c0 := −
∑

i > 1

ci

and c :=
∑

1 6 i 6 n−1

c2
i +

∑

1 6 i<j 6 n−1

cicj .
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Note that c0 < 0 and
∑

i > 0

ci = 0, c = −
∑

0 6 i<j

cicj and c∗,0ij = −cicj

c0
. (3.1)

Using this shorthand notation the octopus estimate (2.4) simplifies to

−
∑

0 6 i<j

cicj

∑

η

(f(ητij) − f(η))2 > 0, (3.2)

where τij denotes the transposition of i, j ∈ V , i.e. ητij = ηij . Thus it
suffices to show that the matrix C defined by

Cη,η′ =





c if η = η′

cicj if ητij = η′

0 otherwise,
(3.3)

is positive semi-definite for every n and all rates c1, . . . , cn−1 > 0.

3.1. Decomposition of the matrix C. In the following we write A > B
if the same inequality holds for the corresponding quadratic forms, i.e. if
A − B is positive semi-definite. Obviously, this defines a partial order and
we will repeatedly use the following simple facts for square matrices A,B
and a real number a:

A > 0 , B > 0 ⇒ A + B > 0 ; A > 0 , a > 0 ⇒ aA > 0 ;
(

A 0
0 B

)
> 0 ⇔ A,B > 0 .

Note that every transposition takes even to odd permutations and vice versa,
so C has the block structure

C =

(
cI Xt

X cI

)
, where I is the identity matrix,

and we have used a basis which lists first all even permutations, and then
all odd permutations. We have

C̃ :=

(
1
c XtX Xt

X cI

)
=

(
1√
c
X

√
cI

)t (
1√
c
X

√
cI

)
> 0,

since AtA > 0 for any matrix A, and C and C̃ only differ by

C − C̃ =

(
1
cC

′ 0
0 0

)
, where C ′ = c2I − XtX.

C ′ is a symmetric n!
2 × n!

2 -matrix, to be referred to as the correction matrix.
It coincides with c times the Schur complement of the odd-odd block of C.
The matrices C, C ′ and X only depend on the rates c1, . . . , cn−1 and the
system size n = |V |, and whenever we want to stress this dependence we
will write C(n), C ′(n) and X(n). By the above, the proof of Theorem 2.3
will be complete once we show that C ′ is positive semi-definite:

C ′(n) > 0 for all n > 2. (3.4)
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3.2. Structure of the correction matrix. It turns out that the correc-
tion matrix has a relatively simple structure: It can be written as a linear
combination of matrices where the coefficients are products of rates and the
matrices do not depend on the rates at all.

Lemma 3.1. We have C ′(2) = 0, C ′(3) = 0 and

C ′(n) =
∑

J⊂V :|J |=4

−cJAJ(n) for all n > 4, (3.5)

where cJ :=
∏

i∈J ci and AJ(n) is defined by

AJ
η,η′(n) =





2 if η = η′

2 if η−1η′ is a product of 2 disjoint 2-cycles

with entries from J
−1 if η−1η′ is a 3-cycle with entries from J
0 otherwise

(3.6)

for all even permutations η, η′ ∈ XV .

Proof. We simply calculate C ′
η,η′ for all even permutations η, η′ using C ′ =

c2I − XtX. For n = 2, c = c2
1 and X(2) is the 1 × 1-matrix X(2) = (−c2

1),
so C ′(2) = 0. For n = 3, c = c2

1 + c1c2 + c2
2 and

X(3) =




c1c2 −c2(c1 + c2) −c1(c1 + c2)
−c1(c1 + c2) c1c2 −c2(c1 + c2)
−c2(c1 + c2) −c1(c1 + c2) c1c2


 ,

where the rows are indexed by the odd permutations (12), (01), (02) and the
columns are indexed by the even permutations id, (021), (012) in that order.
This gives C ′(3) = c2I(3) − Xt(3)X(3) = 0.

For n ≥ 4 we observe that Xη1,η2(n) = 0 unless η1 and η2 differ by a
single transposition. Thus C ′

η,η′(n) = 0 unless η and η′ differ by a product
of exactly two transpositions. Note that such a product of two transpositions
can be a product of two disjoint transpositions (i.e. 2-cycles), a 3-cycle, or
the identity.
(a) If η−1η′ is a product of two disjoint 2-cycles, e.g. (01)(23), a complete list
of decompositions of η−1η′ into a product of two transpositions is (01)(23) =
(23)(01), so using K := {0, 1, 2, 3} we have

C ′
η,η′(n) = −(c0c1c2c3 + c2c3c0c1) = 2(−cK) .

(b) If η−1η′ is a 3-cycle, e.g. (012), a complete list of decompositions of
η−1η′ into a product of two transpositions is (012) = (01)(20) = (12)(01) =
(20)(12), so using K := {0, 1, 2} we have

C ′
η,η′(n) = −(c0c1c2c0 + c1c2c0c1 + c2c0c1c2)

= cK

∑

i/∈K

ci = (−1)
∑

J⊃K,|J |=4

−cJ .
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(c) If η−1η′ = id, we have η−1η′ = τ2 for every transposition τ , so we have

C ′
η,η′(n) = c2 −

∑

i<j

(cicj)
2 = 2

∑

J :|J |=4

−cJ .

Here we have used
(∑

i<j

cicj

)2
−

∑

i<j

(cicj)
2

= 2
∑

i<j<k

(
c2
i cjck + cic

2
jck + cicjc

2
k

)
+ 6

∑

i<j<k<l

cicjckcl

= 2
( ∑

i<j<k

cicjck

∑

l

cl − 4
∑

i<j<k<l

cicjckcl

)
+ 6

∑

i<j<k<l

cicjckcl

= −2
∑

i<j<k<l

cicjckcl.

Thus we have checked (3.5) entrywise. �

We already know that C ′(2) = 0 and C ′(3) = 0. In order to motivate the
following lemmata let us also look at C ′(4) and C ′(5): Using the shorthand
notation

A := A{0,1,2,3}(4) , and A(i) := A{0,1,2,3,4}\{i}(5) , for 0 ≤ i ≤ 4,

the decomposition (3.5) of the correction matrices gives

C ′(4) = −c0c1c2c3A , and

C ′(5) = −c0c2c3c4A
(1) − . . . − c0c1c2c3A

(4) − c1c2c3c4A
(0).

For C ′(4) we observe that −c0c1c2c3 ≥ 0, so it suffices to show that A ≥ 0.
For C ′(5) we observe that

−c0c2c3c4 = (c1 + c2 + c3 + c4)c2c3c4 ≥ c1c2c3c4,

and similarly for the coefficients of A(2), A(3) and A(4). If A(i) ≥ 0, this
implies

C ′(5) ≥ c1c2c3c4(A
(1) + A(2) + A(3) + A(4) − A(0)),

and since c1c2c3c4 ≥ 0 we are done once we have shown that the matrix
in the parentheses is ≥ 0. For general n we will need the following two
lemmata. In their proofs we will repeatedly use the notation XK and X+

K
for the set of all permutations on a set K and the set of all even permutations
on K.

Lemma 3.2. For all n > 4 and J ⊂ V with |J | = 4:

AJ(n) > 0 . (3.7)

Proof. Consider the block structure of AJ(n) corresponding to the blocks
formed by the n!/4! left cosets of X+

J in X+
V . By definition of AJ(n) in (3.6),

the diagonal block corresponding to the coset X+
J can be identified with

A := A{0,1,2,3}(4) (if J is identified with {0, 1, 2, 3}). Furthermore AJ
η,η′(n)
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only depends on η−1η′, and thus AJ
ησ,ησ′ (n) = AJ

σ,σ′(n) for all σ, σ′ ∈ X+
J

and η ∈ X+
V , which implies that all diagonal blocks of AJ(n) are equal, and

thus they are copies of A. Finally, AJ
η,η′(n) = 0 unless η−1η′ ∈ X+

J , which

shows that all non-diagonal blocks of AJ(n) are 0. Because of this block
decomposition of AJ(n) we only have to show A > 0.

By (3.6) A = A{0,1,2,3}(4) is a symmetric 12 × 12 matrix with entries
2,−1, 0 only. Using a computer algebra program one can check that A has
the eigenvalues 0 (with multiplicity 10) and 12 (with multiplicity 2), which
implies the assertion for n = 4. For the sake of completeness we will also
show how to obtain the spectrum of A without using a computer: The matrix
A is indexed by X+

4 := X+
{0,1,2,3}. We note that X+

4 consists of the identity, 3

permutations that are a product of two disjoint 2-cycles and 8 permutations
that are 3-cycles. Furthermore H := {id, (01)(23), (02)(13), (03)(12)} is a
subgroup of X+

4 , so we can decompose X+
4 into a disjoint union of 3 cosets of

H in X+
4 . Two permutations from the same coset ηH differ by an element of

H, whereas two permutations from different cosets can’t differ by an element
of H, i.e. they have to differ by a 3-cycle. Thus by (3.6) A has the block
structure

A =




2E4 (−1)E4 (−1)E4

(−1)E4 2E4 (−1)E4

(−1)E4 (−1)E4 2E4


 = 3




E4 0 0
0 E4 0
0 0 E4


 − E12, (3.8)

where Em ∈ R
m×m is the matrix with all entries equal to 1. The matrix En

has the eigenvalues 0 (with multiplicity n−1) and n (with multiplicity 1), and
the eigenvector corresponding to the eigenvalue n is (1, . . . , 1). Furthermore
the two matrices in the above decomposition of A commute. This implies
that A has the eigenvalues 0 (with multiplicity 10) and 12 (with multiplicity
2). �

Lemma 3.3. For all n > 5 and K ⊂ V with 0 ∈ K and |K| = 5:

BK(n) :=
∑

J⊂K:|J |=4

εJAJ(n) > 0, (3.9)

where εJ is the sign of −cJ , i.e. εJ = 1 if 0 ∈ J and εJ = −1 if 0 /∈ J .

Proof. The structure of the proof is very similar to the one of the preceding
lemma: We consider the block structure of BK(n) corresponding to the n!/5!
cosets of X+

K in X+
V . The diagonal block corresponding to the coset X+

K can

be identified with B := B{0,1,2,3,4}(5) (if K is identified with {0, 1, 2, 3, 4}),
and as in the proof of Lemma 3.2 we see that all diagonal blocks are equal
and thus copies of B and all non-diagonal blocks are 0. Because of this block
decomposition of BK(n) we only have to show B > 0.

B = B{0,1,2,3,4}(5) is a symmetric 60 × 60 matrix with small integer en-
tries that can be computed from (3.6). Using a computer algebra program
one can check that B has the eigenvalues 0 (with multiplicity 45) and 24
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(with multiplicity 15), which implies the assertion for n = 5. However, the
following argument allows us to obtain the spectrum of B without using a
computer. Using the shorthand notation introduced before Lemma 3.2, we
observe that

BA(0) = (A(1) + A(2) + A(3) + A(4) − A(0))A(0) = 0. (3.10)

Before proving (3.10) we will use it to compute the spectrum of B. Let

B+ := A(1) + A(2) + A(3) + A(4) + A(0) so that B = B+ − 2A(0).

As an immediate consequence of (3.10), (B+ − 2A(0))A(0) = 0 and

A(0)(B+ − 2A(0)) = [(B+ − 2A(0))A(0)]t = 0,

i.e.

B+A(0) = 2(A(0))2 and A(0)B+ = 2(A(0))2.

By symmetry we get the same relations for A(i) instead of A(0), and by the
proof of Lemma 3.2 A(i) is a symmetric matrix with eigenvalues 0 and 12
only, so (A(i))2 = 12A(i). Using all of these relations we get

(B+)2 =
4∑

i=0

B+A(i) =
4∑

i=0

2(A(i))2 = 24
4∑

i=0

A(i) = 24B+

and

B2 = (B+ − 2A(0))2 = (B+)2 − 2B+A(0) − 2A(0)B+ + 4(A(0))2

= 24B+ − 8(A(0))2 + 4(A(0))2 = 24B+ − 48A(0) = 24B,

i.e. 1
24B is a projection and thus has eigenvalues 0, 1 only. So B has eigen-

values 0, 24 only. Since the trace of B is 60 × (2 + 2 + 2 + 2− 2) = 360, the
multiplicity of the eigenvalue 24 has to be 360

24 = 15, and the multiplicity of
the eigenvalue 0 has to be 45.

We will now prove (3.10), i.e. B = 0 on the image of A(0). By the proof of
Lemma 3.2, we know the block structure of A(0) corresponding to the cosets
of X+

{1,2,3,4} in X+
{0,1,2,3,4}: The non-diagonal blocks are 0 and the diagonal

blocks are copies of A, and by (3.8), the image of A is

{a1ηH + a′1η′H + a′′1η′′H : a, a′, a′′ ∈ R , such that a + a′ + a′′ = 0},

where H = {id, (01)(23), (02)(13), (03)(12)} and ηH, η′H, η′′H are the three
distinct cosets of H in X+

{0,1,2,3}. So in particular

Im(A) ⊂ Span(1ηH : η ∈ X+
{0,1,2,3}),

and by the block structure of A(0) this implies

Im(A(0)) ⊂ Span(1ηH(0) : η ∈ X+
{0,1,2,3,4}),
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where H(0) = {id, (12)(34), (13)(24), (14)(23)}, and thus it suffices to show
that Bv = 0 for every vector v of the form v = 1ηH(0) , i.e.

∑

σ∈H(0)

Bη,η′σ = 0 for all η, η′ ∈ X+
{0,1,2,3,4}. (3.11)

Since Bη,η′σ only depends on η−1η′σ, for the proof of (3.11) we may assume
without loss of generality that η = id. The following observations help to
reduce the number of choices of η′ that have to be considered: Since η′

has to be an even permutation of {0, 1, 2, 3, 4}, η′ has to be id, a 3-cycle,
a 5-cycle or a product of two disjoint 2-cycles. Every 5-cycle necessarily
has an entry 0, and the 3-cycle and the product of the 2-cycles may or
may not contain an entry 0. This gives 6 cases altogether. Since B =
A(1) + . . .+A(4)−A(0) and H(0) are invariant under permutations of 1,2,3,4,
and in each of the above cases the permutations differ only by permuting the
roles of 1,2,3,4, it is sufficient to consider one permutation from each case, say
η′ ∈ {id, (123), (012), (03142), (12)(34), (02)(34)}. Since (12)(34) ∈ idH(0)

and (03142), (02)(34) ∈ (012)H(0) (see below), we are done once we check∑
σ∈H(0) Bid,η′σ = 0 for η′ ∈ {id, (123), (012)}. In each of the three cases

we compute η′H(0) and check f(η′) :=
∑

σ∈η′H(0) Bid,σ by considering the

contributions for a fixed σ from A
(i)
id,σ for 1 ≤ i ≤ 4 and from −A

(0)
id,σ.

(a) If η′ = id, we have η′H(0) = H(0) = {id, (12)(34), (13)(24), (14)(23)}. id
gives a contribution of 2 + 2 + 2 + 2 − 2 = 6, the others permutations give
a contribution of −2 each, so f(η′) = 6 − 2 − 2 − 2 = 0.

(b) If η′ = (123), we have η′H(0) = {(123), (243), (142), (134)}, and each of
these gives a contribution of 1 − 1 = 0. (E.g. (123) is a 3-cycle with entries
from J = {0, 1, 2, 3} or from J = {1, 2, 3, 4}.) Thus f(η′) = 0.

(c) If η′ = (012), we have η′H(0) = {(012), (02)(34), (03142), (04132)}. (012)
gives the contribution −1 − 1, (02)(34) gives 2 and the 5-cycles do not
contribute. so f(η′) = −2 + 2 = 0. �

3.3. Proof of Theorem 2.3. In Subsection 3.1 we have seen that Theo-
rem 2.3 follows once we have shown that the correction matrix is positive
semi-definite. This can now be obtained from the results of Subsection 3.2
concerning the structure of the correction matrix:

Lemma 3.4. For every n > 2 we have C ′(n) > 0.

Proof. We already have seen that C ′(n) = 0 for n = 2, 3 and C ′(4) =
−c0c1c2c3A > 0. For n > 5 we use the variable J for a subset J ⊂ V with
|J | = 4 and K for a subset K ⊂ V with 0 ∈ K and |K| = 5. The lemma
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follows from the two inequalities in

0 6
∑

K

|cK |
|c0|

∑

J⊂K

εJAJ(n) =
∑

J

( ∑

K⊃J

εJ |cK |
|c0|

)
AJ(n)

6
∑

J

(−cJ)AJ (n) = C ′(n).

The first inequality is an immediate consequence of (3.9), and the second
follows from (3.7) once we have checked that

∑

K⊃J

εJ |cK |
|c0|

6 − cJ , for all J .

If 0 /∈ J , the only set K ⊃ J containing 0 is K = J ∪ {0} and we get

∑

K⊃J

εJ |cK |
|c0|

=
εJ |cJ∪{0}|

|c0|
= εJ |cJ | = −cJ .

If 0 ∈ J , the sets K ⊃ J containing 0 are of the form K = J ∪{i} with i /∈ J
and we get

∑

K⊃J

εJ |cK |
|c0|

=
∑

i/∈J

εJ |cJ∪{i}|
|c0|

= −cJ

∑
i/∈J |ci|
|c0|

6 − cJ

since −cJ > 0 in this case, and
∑

i/∈J

|ci| 6
∑

i>0

|ci| =
∑

i>0

ci = −c0 = |c0|.

�
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