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Abstract Consider an age-dependent, single-species branching process defined by a
progeny number distribution, and a lifetime distribution associated with each independent
particle. In this paper, we focus on the associated inverse problem where one wishes to for-
mally solve for the progeny number distribution or the lifetime distribution that defines the
Bellman-Harris branching process. We derive results for the existence and uniqueness (the
identifiability) of these two distributions given one of two types of information: the extinc-
tion time probability of the entire process (extinction time distribution), or the distribution of
the total number of particles at one fixed time. We demonstrate that perfect knowledge of the
distribution of extinction times allows us to formally determine either the progeny number
distribution or the lifetime distribution. Furthermore, we show that these constructions are
unique. We then consider “data” consisting of a perfectly known total number distribution
given at one specific time. For a process with known progeny number distribution and ex-
ponentially distributed lifetimes, we show that the rate parameter is identifiable. For general
lifetime distributions, we also show that the progeny distribution is globally unique. Our
results are presented through four theorems, each describing the constructions in the four
distinct cases.

Keywords Branching process · Bellman-Harris · Inverse problem

This work was supported by the National Science Foundation through grants DMS-1021818
and DMS-1032131, and the Army Research Office through grant 58386MA.

P.-W. Fok (�)
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
e-mail: pakwing@udel.edu

T. Chou
Departments of Biomathematics and Mathematics, UCLA, Los Angeles, CA 90095-1766, USA
e-mail: tomchou@ucla.edu

mailto:pakwing@udel.edu
mailto:tomchou@ucla.edu


770 P.-W. Fok, T. Chou

1 Introduction

Branching processes have proved useful in many applications, including modeling cell pro-
liferation and differentiation, propagation of surnames, and analyzing radioactive chain re-
actions [1–4]. A mathematical model for the branching of a single species of identical parti-
cles is the Bellman-Harris process, defined by a particle lifetime distribution and a progeny
number distribution. The lifetime distribution determines the statistics of the time a parti-
cle waits before branching, while the progeny number distribution determines the statistics
of how many offspring particles each parent particle generates at each branching event.
Schematics of the single-species branching process are shown in Fig. 1. Here, the process
is initiated with a single parent particle that branches at a time between τ and τ + dτ with
probability G(τ)dτ . Each branching event results in the parent particle giving birth to k ≥ 2
new particles with probability bk , or dying with probability b0. All particle lifetimes are
independently and identically drawn from the probability distribution function G(τ).

Mathematically, the branching process is conveniently described via the probability gen-
erating function (pgf) F(z, t) for the probability fn(t) of observing n total particles at time t :

F(z, t) =
∞∑

n=0

fn(t)z
n.

Note that normalization
∑∞

n=0 fn(t) = 1 yields F(z = 1, t) = 1.
For completeness, we follow standard derivations of the age-dependent, continuous-time

Bellman-Harris branching process by considering the process to be initially seeded by a
single parent particle [1–4]. Defining F(z, t |τ) as the generating function of the process
conditioned on the original parent particle having first branched between time τ and τ + dτ ,
we find

F(z, t |τ) =
{

z, t < τ,

B[F(z, t − τ)], t ≥ τ,
(1)

Fig. 1 (a) A realization of a Bellman-Harris branching process that went extinct at time Te. If the process
dies in finite time, can the distribution of extinction times be used to determine the progeny or lifetime
distributions? (b) A realization of a Bellman-Harris branching process with a known number distribution of
particles at time t = T . In the depicted realization there are five surviving particles at time T . Can the total
number distribution at a fixed time be used to determine the progeny or lifetime distributions? In principle,
both types of “data” can only be obtained from an infinite number of measurements (Color figure online)
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where

B[z] =
∞∑

k=0

bkz
k, (2)

is the generating function for the progeny number distribution bk ≥ 0. The coefficients of zk

in B[z] correspond to the probability that k particles are born at each branching event. For
processes with finite maximum offspring and branching probabilities {b0, b1, . . . , bN }, not
all zero, our convention in Eq. (2) is to take bk = 0 for k > N . Generating k = 1 particle
at the time of branching is simply equivalent to renewing the particle’s lifespan. This gen-
erally does not occur in cell proliferation or nuclear chain reactions (the main applications
we have in mind) and so throughout this paper, we always assume that the particles either
die, or generate k > 1 particles at each branching event. Therefore we always take b1 = 0.
Averaging Eq. (1) over the lifetime distribution G(τ), we find

F(z, t) ≡
∫ ∞

0
F(z, t |τ)G(τ)dτ = z

∫ ∞

t

G(τ)dτ +
∫ t

0
B

[
F(z, t − τ)

]
G(τ)dτ, (3)

where z ∈ [0,1] and t ∈ [0,∞). This branching process is defined by two parameter func-
tions, b, the vector of progeny number probabilities, and G(τ), the probability density func-
tion (pdf) of lifetimes for each particle before it branches. Given a set b and a lifetime
distribution G(τ), Eq. (3), along with the initial condition F(z,0) = z, can be solved to find
a F(z, t), from which fn(t) can be recovered.

Equation (3), and its multispecies generalization have been well-studied by researchers
across many disciplines [5–8], particularly in cell biology. In the forward problem one knows
the set of progeny probabilities b and the lifetime distribution function G(t), and wishes to
calculate the total particle probability distribution fn(t) [3], the moments of the particle
numbers (for example the mean

∑∞
n=0 nfn(t)), or the extinction probabilities of the pro-

cess [9]. Often, exponentially-distributed lifetimes are assumed, turning Eq. (3) into a non-
linear ODE of the Riccati type. This nonlinear equation can be further reduced to a series of
linear ODEs describing the evolution of the moments of the particle number.

Often however, the underlying details of the branching process are not precisely known
a priori, but statistical properties of the branching process can be measured. Thus, infer-
ence and the inverse branching problem are also important topics. Maximum likelihood
approaches have been used to estimate parameters defining simple branching processes
[10–13]. Estimation of parameters in a more sophisticated branching model was done in [14]
where the distribution of times to death and to reproduction may differ [15]. These studies
attempt to estimate the parameters of a branching process from measurements of quantities
such as the mean particle number [16]. Non-parametric approaches have also been explored.
For example, in [17] the authors use a Bayesian approach to estimate offspring and lifetime
distributions given the whole history of the process up to some fixed time.

In this paper, we shall consider only the formal inverse problem of finding the set b or
the lifetime distribution G(τ) from exactly known statistics of the branching process. Rather
than estimating parameters, we simply explore the mathematical uniqueness of the inverse
problem defined by the nonlinear integral Eq. (3) and two types of perfect information.
Whether G(τ) or b is identified depends on the application. For processes such as nuclear
chain reactions, the progeny distribution b resulting from a neutron collision may be broadly
distributed depending on the neutron energy, but the collision events may be exponentially
distributed in time [18]. For biological organisms including cells, the life-cycle determines
the distribution of reproductive events G(τ) that is typically non-exponential. However, in
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Fig. 2 Reconstruction of a branching process from two types of functional information. (a) The extinction
time distribution, F(0, t) ≡ f0(t) (shown in blue). (b) The number distribution at a given time, F(z,T )

(shown in red). Thick black lines indicate common, known, information about the surface F(z, t): F(z,0) = z

and F(1, t) = 1 (Color figure online)

cell proliferation the progeny number distribution bk is nonzero only for k = 0 and k = 2, so
that only two daughter cells are produced upon each division event (exceptions can arise in
cancer cells that have been observed to produce up to five progeny (b5 > 0) under confined
conditions [19]). Therefore scenarios arise where one of b or G(τ) is known and the other
must be determined from some statistical properties of the process.

One type of information that could be used to determine b or G(τ) is the cumulative
distribution function of extinction times F(0, t). Note that limt→∞ F(0, t) < 1 in general
because the process may never extinguish. The extinction probability is positive only if
b0 > 0. Therefore the function F(z, t) is known at t = 0, where F(z,0) = z; at z = 1, where
F(z = 1, t) = 1 from normalization; and at z = 0. These known parts of the function F(z, t)

are indicated by the thick curves in Fig. 2(a). In particular, F(0,0) = 0.
Another possible type of information is the total particle number distribution of the

branching processes at one fixed time T . This may in principle be derived from an infinite
number of samples of the process. The resulting distribution of particle numbers at time T ,
fn(T ), yields exactly the pgf F(z,T ) = ∑∞

n=0 fn(T )zn. In this case, F(z, t) is known at
t = 0, where F(z,0) = z; at z = 1, where F(z = 1, t) = 1 from normalization; and at time
0 < T < ∞. These known parts of the function are indicated by the thick curves in Fig. 2(b).

The remainder of this paper essentially explores the conditions under which the rest of
the function F(z, t) can be reconstructed from these two types of information. Specifically,
we wish to determine if the probabilities b and/or lifetime distribution G(τ) can be extracted
from the thick curves in Figs. 2, and if so, whether or not they are unique.

Throughout this paper, we assume that the branching process is always seeded by a single
particle at t = 0. We will refer to Eq. (3) and assume that:

(A1) G(t) is a strictly positive continuous probability distribution function: G(t) > 0 if
t ≥ 0 and

∫ ∞
0 G(t)dt = 1.

(A2) B[z] is a bounded, infinitely differentiable function on z ∈ [0,1] through Eq. (2), with
b0 > 0, b1 = 0 and bj ≥ 0 for j ≥ 2.

Furthermore, we will freely use the fact that a probability distribution is uniquely defined
by its Laplace transform [23] (i.e. L{F1(t)} = L{F2(t)} if and only if F1(t) = F2(t) for
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distributions F1(t) and F2(t)) and we use both L and the tilde notation to denote Laplace
transform:

L
{
H(t)

} = H̃ (s) =
∫ ∞

0
e−stH(t)dt.

2 Reconstruction from Extinction time Distributions

In this section, we first consider Eq. (3) when the cumulative extinction probability
F(z = 0, t) is perfectly measured (see Fig. 2(a)). We will use the following two lemmas
throughout this paper. The first illustrates some general properties of the pgf F(z, t). The
second is used in several of the theorems to show convergence of certain integrals and is
proved in [20].

Lemma 1 Let F(z, t) be a solution to Eq. (3) and let G(t) be a continuous pdf. Then the pgf
F(z, t) satisfies 0 ≤ F(z, t) ≤ 1 and is continuous on (z, t) ∈ [0,1) × [0,∞). Furthermore,
it has infinitely many z-derivatives on [0,1).

Proof A well-known property of pgfs like F(z, t) is that they are continuous, infinitely
differentiable and strictly monotonically increasing on [0,1) for each 0 ≤ t < ∞ (e.g. see
Theorem 1 in [1])—and therefore bounded. Since all the integrands in (3) are bounded
functions, F(z, t) is also continuous for t ∈ [0,∞). Since

∑∞
i=0 fi(t) = F(1, t) = 1 and

F(0, t) ≥ 0, we have 0 ≤ F(z, t) ≤ 1. �

Lemma 2 Assume that h(x) and all its derivatives exist on (0,∞] and vanish at x = ∞.
Also for some k > −1, let h(x) ∼ xk as x → 0+. Then as λ → ∞,

∫ ∞

0
h(x)e±iλxdx = O

(
λ−(k+1)

)
.

A proof this result can be found in [20].

2.1 Reconstruction of Lifetime Distribution G(t) Given Progeny Number Distribution b

If the progeny number distribution b, and the corresponding generating function B[z] is
known, is there more than one lifetime distribution function G(t) that yields the same ex-
tinction time statistics? To answer this question, we prove the following:

Theorem 1 (Reconstruction and uniqueness of lifetime probabilities from extinction proba-
bilities) For Eq. (3), assume that B[z] is known and satisfies (A2), and there is an underlying
probability distribution of lifetimes G(t) that gives rise to F(0, t), the cumulative extinction
time distribution. Furthermore assume F(0, t) = O(t) as t → 0+. Then G(t) is given by

G(t) =
∫

Γ

F̃ (0, s)est

K̃(s)

ds

2πi
, K̃(s) = L

{
B

[
F(0, t)

]}
, (4)

where the contour Γ lies to the right of all the poles of the integrand. Furthermore, G(t)

is determined uniquely by (4): if F1(0, t) and F2(0, t) are extinction time distributions
and G1(t) and G2(t) are the associated lifetime distributions, then F1(0, t) = F2(0, t) ⇒
G1(t) = G2(t).
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Proof We first show that Eq. (4) is true for any cumulative extinction time distribution
F(0, t). Upon taking the Laplace transform of the Bellman-Harris equation (3) at z = 0,
we find

F̃ (0, s) = K̃(s)G̃(s), (5)

and K̃(s) is the Laplace transform of the function

K(t) ≡ B
[
F(0, t)

]
. (6)

Since F and G are bounded functions by Lemma 1(i) and assumption (A1), all three
Laplace-transformed functions in (5) exist providing Re(s) > 0. Upon inverse Laplace trans-
forming G̃(s), we find

G(t) =
∫ γ+i∞

γ−i∞

F̃ (0, s)est

K̃(s)

ds

2πi
, (7)

where γ > 0. To show that the integral (7) converges for all t ≥ 0, let s = γ + iμ, μ ∈ R.
Lemma 2 implies that as μ → ±∞,

F̃ (0, γ + iμ) =
∫ ∞

0
e−iμtg0(t)dt = O

(
μ−2

)
, (8)

K̃(γ + iμ) =
∫ ∞

0
e−iμtg1(t)dt = O

(
μ−1

)
, (9)

where g0(t) = e−γ tF (0, t) = O(t) and g1(t) = e−γ t
∑∞

m=0,
=1 bmFm(0, t) = O(1) as
t → 0+. Note that Fm(z, t) ≡ [F(z, t)]m. Since

G(t) = eγ t

2π

∫ ∞

−∞
eiμt F̃ (0, γ + iμ)

K̃(γ + iμ)
dμ, (10)

we see that G(t) is proportional to the inverse Fourier transform of F̃ (0, γ + iμ)/K̃(γ + iμ).
This ratio is square integrable at μ = ±∞ by (8) and (9). Furthermore F̃ (0, γ + iμ)/K̃(γ +
iμ) is non-singular for finite μ since the contour in (7) lies to the right of all singularities in
the integrand. Therefore (7) and (10) must exist for all t [22]. In particular G(t) ≡ 0 when
t < 0.

What remains is for us to show that this G(t) is unique. Assume there are two lifetime
distributions G1(t) and G2(t) that give rise to extinction probabilities F1(0, t) and F2(0, t).
If F1 = F2, we can subtract the corresponding integral equations (Eq. (3)) evaluated at z = 0
to find

0 =
∫ t

0
B

[
F(0, t − τ)

](
G1(τ ) − G2(τ )

)
dτ.

This equation can be written in terms of the Laplace transforms of K(t) ≡ B[F(0, t)] and
G1(t) − G2(t):

K̃(s)
(
G̃1(s) − G̃2(s)

) = 0.

Since b0 > 0 by (A2), then F(0, t) > 0 and B[F(0, t)] > 0. Therefore, K̃(s) > 0, implying
G̃1(s) = G̃2(s) and G1(t) = G2(t) (two distributions are identical if and only if their Laplace
transforms are identical [23]). As long as extinction occurs with nonzero probability, and
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one lifetime distribution G(t) leads to a specific extinction time distribution F(0, t), then no
other different lifetime distribution can lead to the same extinction time distribution. �

In Theorem 1, we assumed that there exists an underlying Bellman-Harris process with
associated branching probabilities {bj } and lifetime distribution function G(t) that generated
the cumulative extinction time distribution F(0, t); the main result of the theorem was that
G(t) can be found from F(0, t) and {bj } through (4). However, if we are simply given
F(0, t) without any conditions on the existence of G, we also need to show that (4) is
indeed a pdf, i.e. G(t) ≥ 0 for all t > 0 and

∫ ∞
0 G(t)dt = 1. Conditions for G(t) to be a pdf

in terms of its Laplace transform can be found in [23], namely:

– F̃ (0, s)/K̃(s) has infinitely many derivatives in s and (−1)n dn

dsn
F̃ (0,s)

K̃(s)
≥ 0 when s > 0 for

every integer n.
– lims→0

F̃ (0,s)

K̃(s)
= 1.

If the conditions of Theorem 1 and these two conditions above are satisfied, then the ex-
tinction time data F(0, t) corresponds to a Bellman-Harris branching process and the corre-
sponding pdf of lifetimes G(t) can be found through (4).

2.2 Reconstruction of Progeny Number Distribution b Given G(t)

Now, consider the complementary problem where the lifetime distribution G(t) is known.
Can one find a unique progeny number distribution b for each cumulative extinction proba-
bility distribution? We prove

Theorem 2 (Reconstruction and uniqueness of progeny number probabilities from extinc-
tion probabilities) Consider Eq. (3) with an unknown underlying progeny number distri-
bution bj , j = 0,1,2, . . . . With a known lifetime distribution G(t) satisfying (A1), assume
the process generates a cumulative extinction time distribution F(0, t) which is strictly in-
creasing in t . Furthermore, assume F(0, t) = O(t) as t → 0+. Then the bj are (i) uniquely
determined by F(0, t) and (ii) formally given in terms of the cumulative extinction time
distribution by

b0 = K(0), (11)

bj = lim
t→0

K(t) − ∑j−1
k=0 bkF

k(0, t)

F j (0, t)
, j > 0, (12)

where

K(t) =
∫

Γ

F̃ (0, s)est

G̃(s)

ds

2πi
,

and Γ lies to the right of all singularities of the integrand.

Proof We first prove uniqueness. Consider two branching processes with the same life-
time distribution G(t), but with different sets of progeny number probabilities b and b∗
corresponding to the coefficients of B[z] and B∗[z] respectively. If these two branching
processes generate the same extinction time distribution F(0, t), the difference between the
corresponding Eqs. (3) becomes

∫ t

0

(
B

[
F(0, t − τ)

] − B∗[F(0, t − τ)
])

G(τ)dτ = 0.
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Introducing K(t) = B[F(0, t)], K∗(t) = B∗[F(0, t)], and K̃(s), K̃∗(s) as the corresponding
Laplace transforms—valid for Re(s) > 0—we find

(
K̃(s) − K̃∗(s)

)
G̃(s) = 0, (13)

where G̃(s) is also defined for Re(s) > 0. Since G̃(s) 
≡ 0 when Re(s) > 0, condition (13)
is satisfied only if K̃(s) = K̃∗(s), which means B[F(0, t)] = B∗[F(0, t)]. After expanding
B[F ] = b0 + ∑∞

j=2 bjF
j and B∗[F ] = b∗

0 + ∑∞
j=2 b∗

jF
j we find

(
b0 − b∗

0

) +
∞∑

j=2

(
bj − b∗

j

)
F j (0, t) = 0,

which must hold for 0 ≤ F(0, t) ≤ Fmax where Fmax = limt→∞ F(0, t). Since {1,F 2,F 3, . . .}
are linearly independent on F ∈ [0,Fmax], bj = b∗

j for j = 0,1,2, . . . , i.e. b = b∗.
We now show how to determine the unique progeny number distribution b from a known

extinction time distribution F(0, t). From Eq. (3),

F(0, t) =
∫ t

0
K(t − τ)G(τ)dτ, (14)

where K(t) ≡ B[F(0, t)]. By taking Laplace transforms of (14), we find F̃ (0, s) =
K̃(s)G̃(s) when Re(s) > 0, leading to

K(t) =
∫ γ+i∞

γ−i∞

F̃ (0, s)est

G̃(s)

ds

2πi
, γ > 0. (15)

Using Lemma 2, we find

F̃ (0, γ + iμ) =
∫ ∞

0
e−iμt

{
e−γ tF (0, t)

}
dt = O

(
μ−2

)
, (16)

G̃(γ + iμ) =
∫ ∞

0
e−iμt

{
e−γ tG(t)

}
dt = O

(
μ−1

)
, (17)

as μ → ±∞ since e−γ tF (0, t) = O(t) and limt→0+ e−γ tG(t) > 0. Furthermore, since

K(t) = eγ t

∫ ∞

−∞

F̃ (0, γ + iμ)

G̃(γ + iμ)
eiμt dμ

2π
,

K(t) is proportional to an inverse Fourier transform. At μ = ±∞, F̃ (0, γ + iμ)/G̃(γ + iμ)

is square integrable by (16) and (17). It is also non-singular for finite μ since the contour in
(15) lies to the right of all singularities in the integrand. Therefore F̃ (0, γ + iμ)/G̃(γ + iμ)

is square integrable on μ ∈ [−∞,+∞] and the integral (15) must converge for all t [22]. In
particular, K(t) ≡ 0 for t < 0.

The probabilities bj can be extracted from F(0, t) through

K(t) = b0 + b2F
2(0, t) + b3F

3(0, t) + · · · . (18)

Since F(0,0) = 0, the single-particle decay probability b0 = K(0). Likewise, bj for j > 0
are reconstructed recursively from (18) by the relations

bj = lim
t→0

K(t) − ∑j−1
k=0 bkF

k(0, t)

F j (0, t)
. �
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We have shown in this theorem that a completely known extinction time distribution
function F(0, t) allows one to uniquely find constants {bi} providing the lifetime distri-
bution G(t) is given. If it is known a priori that there are probabilities {bi} that gener-
ated F(0, t) in a Bellman-Harris process, they can be reconstructed through formulas (11)
and (12). However, if F(0, t) is an arbitrary function, application of (11) and (12) will not
guarantee that the resulting {bi} are probabilities (e.g. some of the bi could be negative,
or they may not sum to 1). Therefore bi ≥ 0,

∑
i bi = 1 with bi defined through (11) and

(12) are necessary conditions for F(0, t) to correspond to the cumulative extinction prob-
ability for a Bellman-Harris branching process. In principle, these conditions define the
class of cumulative distribution functions F(0, t) that can arise from Bellman-Harris pro-
cesses.

3 Reconstruction from a Single Number Distribution

In this section, we consider the reconstruction of either the lifetime distribution G(t) or
the progeny number distribution b from a known total number probability distribution at
a single fixed time 0 < T < ∞. Since fn(T ) are known for all n, the generating function
F(z,T ) is also precisely known for all 0 ≤ z ≤ 1, as shown in Fig. 2(b). Our results focus
on uniqueness of the reconstruction.

3.1 Uniqueness of Lifetime Distribution G(t) Given b

We first prove some lemmas to illustrate properties of the solution to (3).

Lemma 3 Consider the integral equation

y(t) =
∫ t

0
y(t − τ)H(τ)dτ + cP (t), (19)

where H(t) and P (t) are strictly positive and continuous for t ≥ 0. Then y(t) ≷ 0 for t ≥ 0
if c ≷ 0.

Proof Because of the continuity of H and P , it can be shown [24] that y(t) is continuous
for t > 0. Let c > 0. Then y(0) > 0. Suppose that y(t) is not positive for all t . Since y is
continuous, there is a point t∗ > 0 such that y(t∗) = 0 and y(t) > 0 for t < t∗. Then Eq. (19)
implies

∫ t∗

0
y
(
t∗ − τ

)
H(τ)dτ = −cP

(
t∗

)
< 0.

But since H(t) > 0, the integral is positive and we have a contradiction. Therefore y(t) > 0
for all t . The proof for c < 0 is similar. �

Definition 1 A trajectory F(z, t) is a solution of (3) for a particular value of z.

Definition 2 A fixed point of (3) is a value of z∗ that satisfies B[z∗] − z∗ = 0.

We will show below in Lemma 4 that a fixed point is a constant-in-time trajectory of
Eq. (3).
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Definition 3 A fixed point z∗ is stable if for any fixed z ∈ (0,1), the trajectory F(z, t) → z∗
as t → ∞.

The next lemma suggests that solutions to (3) can be understood in terms of the stability
of individual trajectories, analogous to the theory of autonomous differential equations.

Lemma 4 Consider the integral equation (3) and let G(t) satisfy the conditions in (A1).
Then:

(i) When B ′[1] > 1, (3) has two distinct fixed points at z = z∗ < 1 and z = 1, and F(z, t) =
z∗,1 are two constant-in-time trajectories of Eq. (3). If 0 ≤ z < 1, then z∗ is stable with
F(z, t) strictly monotonically increasing (decreasing) if z < z∗ (z > z∗). This case is
commonly known as the supercritical case.

(ii) When B ′[1] = 1 or B ′[1] < 1, z∗ = 1 is the only stable fixed point of (3). If 0 ≤ z <

1, F(z, t) is strictly monotonically increasing. These are also known as the critical
(B ′[1] = 1) and subcritical (B ′[1] < 1) cases.

Proof Since B ′′[z] > 0 for all z ∈ [0,1], B[z] − z can have either 0, 1 or 2 distinct roots.
But z = 1 is clearly a root because

∑∞
m=0 bm = 1. Therefore B[z] − z either has 1 or 2

roots. If b0 = 0 then the second root is z∗ = 0. Now consider b0 > 0. If B ′[1] > 1, it is clear
that B[z] − z < 0 for z = 1−. Since B[0] > 0, there must be a second root in (0,1) by the
Intermediate Value Theorem. We call this root z∗. If B ′[1] = 1 or < 1, then z = 1 is the only
root.

We now treat the two subcases B ′[1] > 1 and B ′[1] = 1, <1 separately.

(i) Upon taking time derivatives of (3), we have

∂F (z, t)

∂t
= (

B[z] − z
)
G(t) +

∫ t

0

∂F

∂t
(z, t − τ)B ′[F(z, t − τ)

]
G(τ)dτ, (20)

where ∂F
∂t

is treated as the unknown and F is the solution to (3). We look for a tra-
jectory F(z, t) that is constant in t for a fixed z. Then (20) implies B[z] − z = 0
so the only constant solutions are F(z∗, t) = z∗ and F(1, t) = 1. The kernel of (20)
B ′[F(z, t − τ)]G(τ) is continuous and strictly positive since G is continuous and pos-
itive by assumption and F is continuous by Lemma 1(i). Therefore, by Lemma 3, we
have ∂F

∂t
≷ 0 if B[z] − z ≷ 0. Hence F(z, t) is monotonically increasing in t if z < z∗

and monotonically decreasing if 1 > z > z∗. Given G(t) and B[z], uniqueness of F

in (3) for t > 0 [1] means that solutions cannot cross: increasing (decreasing) solu-
tions are bounded from above (below) by z∗ and so these solutions must asymptote to
a constant, F0 say. In (3), as t → ∞, z

∫ ∞
t

G(τ)dτ → 0 and
∫ t

0 B[F(t − τ)]G(τ)dτ →
B[F0]

∫ ∞
0 G(τ)dτ . Therefore F0 satisfies B[F0] − F0 = 0 or F0 = z∗,1. Therefore

F(z, t) → z∗ if 0 ≤ z < 1 and F(z, t) = 1 if z = 1.
(ii) If z = 1, then B[z] − z = 0 and F(1, t) = 1 is the only constant solution to (20). If

z < 1, B[z] − z > 0. Using Lemma 3 on (20), we find that ∂F (z,t)

∂t
> 0. Using a similar

argument to (i), we conclude that F(z, t) = 1 is globally attracting. �

We now restrict ourselves to exponential lifetime distributions to show global unique-
ness in the rate parameter. Then we consider a small perturbation of an arbitrary lifetime
distribution in Lemma 5 and derive an integral equation that determines its relationship to
the corresponding perturbation in the number distribution. The properties of the integral
equation remain open to further study.
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Theorem 3 (Global uniqueness of exponential lifetime probabilities from number distri-
bution) Consider two branching processes with progeny number distribution B[z] satisfy-
ing (A2) and exponential lifetime distributions G1(t) = λ1e

−λ1t and G2(t) = λ2e
−λ2t . Sup-

pose these branching processes give rise to z-transformed number distributions F1(z, T )

and F2(z, T ) respectively through Eq. (3) where T > 0 is a fixed measuring time. Then
F1(z, T ) 
= F2(z, T ) for 0 ≤ z ≤ 1 if and only if λ1 
= λ2.

Proof When the lifetime distributions are exponentially distributed with G(t) = λe−λt , it is
simple to show [1] that (3) reduces to the nonlinear ordinary differential equation

∂F

∂t
= −λ

(
F(z, t) − B

[
F(z, t)

])
, (21)

with initial condition F(z,0) = z. Dividing by λ, and setting t ′ = λt and F(z, t) =
Φ(z, t ′) = Φ(z,λt) we find that

∂Φ
(
z, t ′

)

∂t ′
= −(

Φ − B[Φ]), (22)

with initial condition Φ(z, t ′ = 0) = z. For a given 0 ≤ z ≤ 1, the solution of (22) is unique
so we have

F1(z, t) = Φ(z,λ1t), (23)

F2(z, t) = Φ(z,λ2t). (24)

It is clear from (23) and (24) that λ1 = λ2 ⇒ F1(z, T ) = F2(z, T ). Now assume that λ1 
= λ2.
Although (22) is a nonlinear differential equation, it is just a special case of (3) so Lemma 4
still applies.

1. In the supercritical case, Φ(z, t ′) in Eq. (22) is strictly monotonically increasing (de-
creasing) if z < z∗ (z > z∗) where z∗ satisfies B[z∗] − z∗ = 0. Therefore for 0 ≤ z < z∗,
when λ1 ≷ λ2 F1(z, T ) ≷ F2(z, T ) since Φ(z,λ1T ) ≷ Φ(z,λ2T ). For z∗ < z < 1,
F1(z, T ) ≶ F2(z, T ) when λ1 ≷ λ2. Therefore λ1 
= λ2 ⇒ F1(z, T ) 
= F2(z, T ).

2. In the critical and subcritical cases, Φ(z, t ′) is strictly monotonically increasing if 0 ≤
z < 1. Therefore F1(z, T ) ≷ F2(z, T ) if λ1 ≷ λ2 and λ1 
= λ2 ⇒ F1(z, T ) ≷ F2(z, T ).

�

If we do not restrict the class of G(t) to be exponential, the problem of global uniqueness
becomes much harder. Note that we are only interested in uniqueness/non-uniqueness of
G(t) for 0 ≤ t ≤ T . In fact, by writing Eq. (3) with t = T as

F(z,T ) = z +
∫ T

0

(
B

[
F(z,T − τ)

] − z
)
G(τ)dτ,

it is easy to see that two functions G(τ) that are identical for τ ≤ T , but not for τ > T ,
would yield the same number distribution fn(T ).

In the next lemma we explore the issue of local uniqueness. Suppose that for a given
B[z], the lifetime distribution G gives rise to a number distribution F(z, t). How do small
changes in the lifetime distribution, δG(t) relate to small changes in the number distribution
at a fixed time T , δF (z,T )? The changes are assumed to be square integrable functions
so that δG ∈ L2[0, T ] and δF ∈ L2[0,1] where L2[a, b] denotes the space of all square
integrable functions on [a, b].
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Lemma 5 For Eq. (3), let G(t) and {bk} be given and let F(z, t) be the corresponding
solution, which is known for 0 ≤ z ≤ 1 and t > 0. Let T > 0 be a fixed measurement time
and consider an infinitesimal perturbation δG(t) ∈ L2[0, T ] of the lifetime distribution G(t)

leading to a corresponding perturbation δF (z,T ) ∈ L2[0,1]. Let
∫ ∞

0

∫ ∞
0 G2(t − τ)dtdτ <

∞, with G(t) = 0 when t < 0. Then δG and δF are related through the first-kind Fredholm
equation

∫ T

0
M(z, τ)δG(τ)dτ = δF (z,T ), 0 ≤ z ≤ 1, (25)

where:

M(z, τ) = B
[
F(z,T − τ)

] − z +
∫ T

τ

dτ ′Γ
(
T , τ ′, z

)(
B

[
F

(
z, τ ′ − τ

)] − z
)
, (26)

Γ (t, τ, z) = K(t, τ, z) +
∫ t

τ

dt ′K
(
t, t ′, z

)
K

(
t ′, τ, z

)

+
∫ t

τ

dt ′
∫ t ′

τ

dt ′′K
(
t, t ′, z

)
K

(
t ′, t ′′, z

)
K

(
t ′′, τ, z

) + · · · , (27)

and

K(t, τ, z) = dB[F(z, τ )]
dF

G(t − τ). (28)

Proof Let the functions F(z, t) and G(t) satisfy Eq. (3). Suppose G is perturbed by δG(t),
resulting in a small perturbation δF (z, t). Then G(t) + δG(t) and F(z, t) + δF (z, t) satisfy
Eq. (3):

F + δF = z

∫ ∞

t

(G + δG)dτ +
∫ t

0
B[F + δF ](G + δG)dτ. (29)

Upon taking the difference between (29) and (3), assuming δG, δF  1 and neglecting
second and higher order terms, we find that the perturbations δG and δF are linearly related
through

δF (z, t) −
∫ t

0
K(t, τ, z)δF (z, τ )dτ = δS(z, t), (30)

where K(t, τ, z) is defined in (28) and

δS(z, t) =
∫ t

0
dτ

(
B

[
F(z, t − τ)

] − z
)
δG(τ). (31)

Our goal is to find an integral equation for δG from (30) and (31) by eliminating δS. Equa-
tion (30) is a linear Volterra equation of the second kind. From Lemma 1, F(z, t) is bounded
on 0 ≤ z ≤ 1 and 0 ≤ t < ∞ and B ′[z] is increasing in z. Therefore

∫ ∞

0

∫ ∞

0

∣∣K2(t, τ, z)
∣∣dtdτ =

∫ ∞

0

∫ ∞

0

∣∣∣∣
dB[F(z, τ )]

dF
G(t − τ)

∣∣∣∣
2

dtdτ,

< B ′[1]2
∫ ∞

0

∫ ∞

0

∣∣G(t − τ)
∣∣2

dtdτ,

< ∞,
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and

∣∣δS(z, t)
∣∣ ≤

∫ T

0

∣∣B
[
F(z, t − τ)

] − z
∣∣∣∣δG(τ)

∣∣dτ,

≤
{∫ T

0

∣∣B
[
F(z, t − τ)

] − z
∣∣2

dτ

}1/2{∫ T

0

∣∣δG(τ)
∣∣2

dτ

}1/2

,

≤
{∫ T

0

∣∣B
[
F(z, t − τ)

]∣∣2 + |z|2dτ

}1/2{∫ T

0

∣∣δG(τ)
∣∣2

dτ

}1/2

,

≤ (2T )1/2

{∫ T

0

∣∣δG(τ)
∣∣2

dτ

}1/2

,

< ∞

since δG is square integrable on [0, T ]. Therefore
∫ T

0 |δS(z, t)|2dt < ∞. Since K and δS

are square integrable in (30), it can be solved in terms of a resolvent kernel Γ :

δF (z, t) = δS(z, t) +
∫ t

0
Γ (t, τ, z)δS(z, τ )dτ, 0 ≤ z ≤ 1, (32)

where Γ is defined through a Liouville-Neumann series in (27). Evaluating (32) at t = T ,
we have for 0 ≤ z ≤ 1,

δS(z, T ) +
∫ T

0
Γ (T , τ, z)δS(z, τ )dτ = δF (z,T ). (33)

Substituting Eq. (31) into (33), we have

∫ T

0

(
B

[
F(z,T − τ)

] − z
)
δG(τ)dτ

+
∫ T

0
dτΓ (T , τ, z)

∫ τ

0

(
B

[
F

(
z, τ − τ ′)] − z

)
δG

(
τ ′)dτ ′ = δF (z,T ),

which can be rewritten as

MδG ≡
∫ T

0
M(z, τ)δG(τ)dτ = δF (z,T ), (34)

where M(z, τ) is given by (26). �

Now suppose that the two lifetime distributions G and G + δG generate exactly the same
number distribution so that δF (z,T ) = 0 in (34). Then local uniqueness of G(t) from
F(z,T ) would imply that δG(t) = 0 for 0 ≤ t ≤ T . Likewise, local non-uniqueness would
imply that there is a non-zero (non-trivial) δG that satisfies MδG = 0.

Currently it is still an open question if δF (z,T ) = 0 for 0 ≤ z ≤ 1 ⇒ δG(t) = 0 for 0 ≤
t ≤ T . Further work must be done to characterize the null space of the operator M, or equiv-
alently the closure of the range of the adjoint M∗ where M∗δH(z) ≡ ∫ 1

0 dzM(z, τ )δH(z).
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3.2 Reconstruction of Progeny Distribution b Given Lifetime Distribution G(t)

Lemma 6 Let G(t) > 0 and P (t) > 0 for t ≥ 0. For the two integral equations

y1(t) = c1

∫ t

0
y1(t − τ)G(τ)dτ + P (t),

y2(t) = c2

∫ t

0
y2(t − τ)G(τ)dτ + P (t),

assume that c1, c2 > 0. Then y1(t) ≷ y2(t) for all t ≥ 0 if c1 ≷ c2.

Proof Let c2 > c1 > 0. Then for t ≥ 0 y1 and y2 are strictly positive by Lemma 3 and we
have

y1(t) − y2(t) =
∫ t

0

[
c1y1(t − τ) − c2y2(t − τ)

]
G(τ)dτ,

< c2

∫ t

0

[
y1(t − τ) − y2(t − τ)

]
G(τ)dτ,

so that

y1(t) − y2(t) = c2

∫ t

0

[
y1(t − τ) − y2(t − τ)

]
G(τ)dτ + C(t),

where C(t) < 0 for all t ≥ 0. Since y1(t) and y2(t) are continuous for t ≥ 0 [24], C(t) ≡
y1(t)−y2(t)−c2

∫ t

0 [y1(t −τ)−y2(t −τ)]G(τ)dτ is also continuous for t > 0. By Lemma 3,
y1(t) − y2(t) < 0. The proof for 0 < c2 < c1 is similar. �

Lemma 7 Consider the two integral equations

y1(t) =
∫ t

0
y1(t − τ)G(τ)dτ + c1P (t) + Q(t),

y2(t) =
∫ t

0
y2(t − τ)G(τ)dτ + c2P (t) + Q(t),

and assume Q(t) is continuous, G(t) > 0 and P (t) > 0 for t ≥ 0. Then y1(t) ≷ y2(t) for all
t ≥ 0 if c1 ≷ c2.

Proof The proof follows immediately if we consider the integral equation for y1 − y2 and
apply Lemma 3. �

We now prove that perfect measurement of the number distribution at a fixed time T > 0
uniquely determines the branching probabilities. Our proof relies on a local analysis of the
trajectories of (3) near the fixed points z = z∗. Recall that such points satisfy B[z]−z = 0. In
the critical and subcritical cases, z∗ = 1 is attracting and in the supercritical case 0 ≤ z∗ < 1
is attracting. Although our method is local in z, it is global in t . The idea is to linearize
Eq. (3) about the fixed points and show that when B1[·] 
≡ B2[·], if z is close to z∗ then
F1(z, t) 
= F2(z, t) for t > 0. Moreover, we show that if B1[z] ≡ B2[z], F1(z, t) = F2(z, t)

for t ≥ 0 and z ∈ [0,1].
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Theorem 4 (Global uniqueness of progeny number probabilities from a number distribu-
tion) Consider two branching processes with the same continuous lifetime distribution G(t)

satisfying the conditions in (A1). Suppose their progeny number distributions, defined by
their generating functions B1[z] and B2[z], give rise to the pgfs of two number distribu-
tions F1(z, T ) and F2(z, T ) at time t = T . Then F1(z, T ) = F2(z, T ) for all z if and only if
B1[z] ≡ B2[z].

Proof We show that:

(i) When B1[z] ≡ B2[z], F1(z, T ) = F2(z, T ) for all T ≥ 0 and 0 ≤ z ≤ 1.
(ii) When B1[z] 
≡ B2[z], there cannot exist a T > 0 such that F1(z, T ) = F2(z, T ) for all

0 ≤ z ≤ 1.

Item (i) is quickly proved as follows: first suppose that B1[z] ≡ B2[z]. Since the solution
to Eq. (3) is unique for a given branching function [21], we must have F1(z, t) = F2(z, t) on
[0,1] × [0,∞) and clearly F1(z, T ) = F2(z, T ).

The remainder of the proof is to show (ii). Let z∗
1 be any stable fixed point of B1[z] and

z∗
2 be any stable fixed point of B2[z]. If z∗

1 
= z∗
2, then without loss of generality, let z∗

1 < z∗
2

and fix a point z satisfying z∗
1 < z < z∗

2. Then by Lemma 4, F1(z, t) → z∗
1 is a strictly

decreasing trajectory in t while F2(z, t) → z∗
2 is a strictly increasing trajectory. Therefore

F1(z
∗
1, t) 
= F2(z

∗
2, t) for t > 0 so there cannot exist a T > 0 such that F1(z, T ) = F2(z, T )

for all 0 ≤ z ≤ 1.
Now suppose that z∗

1 = z∗
2 = z∗. This would be the case, for example, when both branch-

ing process are subcritical and z∗
1 = z∗

2 = 1. For |δz|  1, the Bellman-Harris integral equa-
tion is still satisfied at z = z∗ + δz:

Fj

(
z∗ + δz, t

) = (
z∗ + δz

)∫ ∞

t

G(τ)dτ +
∫ t

0
Bj

[
Fj

(
z∗ + δz, t − τ

)]
G(τ)dτ, (35)

for j = 1,2. Expanding F1, B1 and F2, B2 in a Taylor series about z∗, we find

F1
(
z∗ + δz, t

) =
∞∑

n=0

F
(n)

1 (z∗, t)
n! δzn, (36)

B1

[
z∗ + δz

] =
∞∑

n=0

B
(n)

1 [z∗]
n! δzn, (37)

F2

(
z∗ + δz, t

) =
∞∑

n=0

F
(n)

2 (z∗, t)
n! δzn, (38)

B2

[
z∗ + δz

] =
∞∑

n=0

B
(n)

2 [z∗]
n! δzn, (39)

where F ′(z, t) = ∂zF (z, t) and F (m)(z, t) = ∂m
z F (z, t). Our strategy is to substitute (36)–

(39) into (35), and equate powers of δzn to find linear integral equations for F
(n)
j (z∗, t).

If B1[z] 
≡ B2[z], some terms of their Taylor series must differ. Suppose B
(n)

1 [z∗] =
B

(n)

2 [z∗] for n = 0,1, . . . ,m−1 but B
(m)

1 [z∗] 
= B
(m)

2 [z∗]. We complete the proof by showing
that F

(m)

1 (z∗, t) 
= F
(m)

2 (z∗, t) for t > 0.
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– Case m = 1
We have B1[z∗] = B2[z∗] and B ′

1[z∗] 
= B ′
2[z∗]. Then at O(δz0), F

(0)

1 (z∗, t) =
F

(0)

2 (z∗, t) = z∗ are solutions to Eq. (3). However, at O(δz), F ′
1 and F ′

2 satisfy

F ′
1

(
z∗, t

) =
∫ ∞

t

G(τ)dτ + B ′
1

[
z∗]

∫ t

0
F ′

1

(
z∗, t − τ

)
G(τ)dτ, (40)

F ′
2

(
z∗, t

) =
∫ ∞

t

G(τ)dτ + B ′
2

[
z∗]

∫ t

0
F ′

2

(
z∗, t − τ

)
G(τ)dτ. (41)

By Lemma 6, F ′
1(z

∗, t) 
= F ′
2(z

∗, t) for t > 0 so F1(z, t) 
= F2(z, t) for t > 0 when z =
z∗ + δz.

• Case m = 2
For this case, B1[z∗] = B2[z∗], B ′

1[z∗] = B ′
2[z∗], F

(0)

1 (z∗, t) = F
(0)

2 (z∗, t) and (40) and
(41) imply F ′

1(z
∗, t) = F ′

2(z
∗, t) ≡ F ′(z∗, t): we have to go to higher order in δz to show

F1(z, t) 
= F2(z, t).
Suppose that B ′

1[z∗] = B ′
2[z∗] = B ′[z∗] but that B ′′

1 [z∗] 
= B ′′
2 [z∗]. Then at O(δz2), F ′′

1
and F ′′

2 satisfy

F ′′
1

(
z∗, t

) = B ′[z∗]
∫ t

0
F ′′

1

(
z∗, t − τ

)
G(τ)dτ + B ′′

1

[
z∗]P (t),

F ′′
2

(
z∗, t

) = B ′[z∗]
∫ t

0
F ′′

2

(
z∗, t − τ

)
G(τ)dτ + B ′′

2

[
z∗]P (t),

where P (t) ≡ ∫ t

0 (F ′(z∗, t − τ))2G(τ)dτ is continuous. It is clear that the second deriva-
tive of B is now responsible for distinguishing the two solutions F1(z

∗ + δz, t) and
F2(z

∗ + δz, t). Since B ′[z∗] > 0, upon using Lemma 7, F ′′
1 (z∗, t) 
= F ′′

2 (z∗, t) for t > 0
and therefore F1(z, t) 
= F2(z, t) for t > 0.

• Case m > 2
Suppose that B

(n)

1 [z∗] = B
(n)

2 [z∗] = B(n)[z∗] for n = 0,1, . . . ,m − 1, B
(m)

1 [z∗] 
=
B

(m)

2 [z∗] and F
(n)

1 (z∗, t) = F
(n)

2 (z∗, t) = F (i)(z∗, t) for n = 0,1, . . . ,m − 1. To order
O(δzm) we have

F
(m)

1

(
z∗, t

) = B ′[z∗]
∫ t

0
F

(m)

1

(
z∗, t − τ

)
G(τ)dτ

+ B
(m)

1

[
z∗]Pm(t) + Qm(t), (42)

F
(m)

2

(
z∗, t

) = B ′[z∗]
∫ t

0
F

(m)

2

(
z∗, t − τ

)
G(τ)dτ

+ B
(m)

2

[
z∗]Pm(t) + Qm(t), (43)

where

Pm(t) =
∫ t

0

[
∂F

∂z

(
z∗, t − τ

)]m

G(τ)dτ,

Qm(t) =
∫ t

0
G(τ)Rm

[
F ′, . . . ,F (m−1);B ′′, . . . ,B(m−1)

]
dτ,



Identifiability of Age-Dependent Branching Processes 785

and Rm[F ′(z∗, t −τ), . . . ,F (m−1)(z∗, t −τ);B ′′[z∗], . . . ,B(m−1)[z∗]] is an algebraic func-
tion whose exact form is not important. Applying Lemma 7 on Eqs. (42) and (43), we
conclude that F

(m)

1 (z∗, t) 
= F
(m)

2 (z∗, t) for t > 0. �

4 Conclusions

We have investigated the reconstructibility of lifetime distributions and progeny number
distributions of a single-species Bellman-Harris process. We assumed perfectly known data
of two types: an extinction time distribution (equivalent to the survival probability of the
processes), and the total number distribution at a single fixed time T . We find that for a
given extinction time distribution, both the lifetime distribution function G(τ) and progeny
number distribution b can be found provided the other is given. Moreover, these distributions
are unique and injective with respect to the cumulative extinction probability F(0, t).

For perfect number distributions, known at a single fixed time T , we showed global iden-
tifiability of the lifetime distribution by restricting the class of distributions to be exponen-
tial. For the case of arbitrary lifetimes, we explored local identifiability by linearizing (3) and
found a relation between small changes in G(t) and small changes in F(z,T ). Therefore,
for a known B[z], local identifiability of G remains an open problem. On the other hand, for
a known G(t), we established global identifiability of the progeny number distribution B[z].

Again, we emphasize that Theorems 1 and 2 give reconstructions for G(t) and {bj } only
if the exact data were derived from an underlying Bellman-Harris process. Formulas (4)
and (11)–(12) assume that the underlying process that generated F(0, t) is a Bellman-Harris
process. For an arbitrary set of exact data F(0, t), however, there is no guarantee that G(t)

is a pdf or {bj } are a set of probabilities. For example, if F(0, t) is generated by a pro-
cess where particles branch after living for a random amount of time and are removed at a
time-dependent rate, applying formulas (4) and (11)–(12) could generate G(t) that do not
integrate to unity or {bj } that do not sum to unity. In fact, whether or not “sensible” G(t)

or {bj } can be obtained would provide arguments for model selection. We leave as future
work the task of characterizing in more detail those functions F(0, t) that are the cumulative
extinction probabilities of some underlying Bellman-Harris branching process.

Our results define which parameter functions of the Bellman-Harris process can be
uniquely determined. These findings may guide numerical and statistical approaches to in-
ference of branching processes, even though perfect data is not available. Possible extensions
of our analyses include the utilization of perfectly measured pgfs at multiple discrete times
F(z,T1),F (z,T2), . . . , to better reconstruct the parameterizing functions in the branching
model.
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