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A B S T R A C T

There has been renewed interest in understanding the mathematical structure of ecological population models
that lead to overcompensation, the process by which a population recovers to a higher level after suffering
a permanent increase in predation or harvesting. Here, we apply a recently formulated kinetic population
theory to formally construct an age-structured single-species population model that includes a cannibalistic
interaction in which older individuals prey on younger ones. Depending on the age-dependent structure of this
interaction, our model can exhibit transient or steady-state overcompensation of an increased death rate as well
as oscillations of the total population, both phenomena that have been observed in ecological systems. Analytic
and numerical analysis of our model reveals sufficient conditions for overcompensation and oscillations. We
also show how our structured population partial integrodifferential equation (PIDE) model can be reduced to
coupled ODE models representing piecewise constant parameter domains, providing additional mathematical
insight into the emergence of overcompensation.
1. Introduction

Overcompensation, which describes the phenomenon in which the
total population of a species increases after experiencing removal or
culling [1], has become an increasingly important concept in ecol-
ogy. This phenomenon, also termed the ‘‘hydra effect’’, states that
a population increases in response to an increased death or removal
rate [1–3]. These overcompensation effects have been shown to arise
in European green crab [4], perch [5], and Tribolium beetles [6,7].
Overcompensation to selective harvesting is often seen in many tree
[8] and fish populations [9,10]. Apical dominance in botany [11,12],
whereby a central stem dominates secondary stems can also give rise
to a type of pruning-induced overcompensation.

There are multiple hypotheses for the mechanism underlying over-
compensation, including the removal of apical dominance [13–15] in
plant stem populations, development of resistance to herbivory [16]
in plant populations, reduction of competition or cannibalism in an-
imal populations [4,17], and stage-specific interactions [6,7,18,19].
Other attempts to explain overcompensation also often rely on the
interplay between multiple species, including consumer-resource com-
petition. For example, a three-compartment consumer-resource model
which tracks the amount of food, the number of predators, and the
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food consumption rate has been used to construct a model exhibit-
ing ‘‘overcompensation’’ arising in the form of time-periodic increases
and decreases of the total predator population [20]. Extensions of
such consumer-resource models that incorporate intraspecific canni-
balism in which adults prey on juveniles when food is scarce have
also been used to demonstrate overcompensation [21]. Such consumer-
resource models are constructed for animal populations and assume
overcompensation arises when resources are abundant.

However, a recent biological/experimental report suggested that
overcompensation can arise solely from intraspecific interactions, espe-
cially cannibalism [4,6,7,18,22]. This motivates us to provide a math-
ematical characterization of cannibalism-induced overcompensation.
Single-species discrete-time stage-specific models have been proposed
and shown to exhibit overcompensation as well as periodic and even
chaotic dynamics [19,23]. Recently, [18] developed a continuous-time
version of these models based on prior stage-specific models [24–
26]. These models have been shown to exhibit nontrivial sustained
oscillations through a Hopf bifurcation. But whether and how over-
compensation may arise from such age-specific interactions are simply
characterized.

Here, we generalize stage-specific models [24–26] by formulating a
simple age-structured partial integrodifferential equation (PIDE) model
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with a general cannibalistic interaction that allows us to more formally
study overcompensation. Our structured PIDE model will be developed
from a high-dimensional kinetic/stochastic theory of age-structured
cannibalistic interactions, which can formally be projected onto an
age-structured logistic-growth-type PIDE model. Although continuous
time and continuous-age PIDE models have been proposed [6,7], they
have been lumped into discrete age bins before analysis. Population
oscillations can arise in these lumped models, but they have not been
analyzed in the context of overcompensation.

Our generalized PIDE model is easily solved numerically, allowing
us to evaluate both its dynamics and how oscillations and overcompen-
sation, transient or permanent, arise. Distinct from previous consumer-
resource models [20,21,27,28], we show that our PIDE model can
exhibit a rich variety of overcompensating dynamics that arises from
intraspecific interactions alone, without being triggered by external
factors such as an increase in resources. Mathematically, logistic-type
discrete-stage self-inhibition models [29,30] have been shown to also
give rise to undamped population oscillations.

Besides analyzing our age-structured PIDE model, we also reduce
it to a set of coupled ODEs that more closely resemble multispecies or
multistage ecological population models. We will discuss and compare
the qualitative differences between an age-structured model and a
stage-structured model in the overcompensation setting. For exam-
ple, in [18], overcompensation is found to arise in a simple two-
compartment–young and old populations–ODE model. In our structured
population model, we show that a two-compartment ODE reduction
does not admit overcompensation of an increase in death rate if the
birth rates are kept constant, but that three or more compartments can.

In fact, our age-structured interacting model, as well as its ODE-
system approximation, can exhibit rich behavior including dynamic and
permanent overcompensation of increases in the death rate and the
emergence of transient or permanent population oscillations following
the loss of stability of a positive stable point [31]. These dynamics allow
us to quantitatively distinguish transient overcompensation, where the
total population temporarily increases following a temporary increase in
death rate, from permanent, steady-state overcompensation, in which a
permanent increase in death leads to a permanent increase in the total
population.

In the next section, we develop a nonlinear single-species age-
structured model that describes interactions such as cannibalism in
animal populations. Numerical experiments are carried out in Section 3
to explore conditions under which overcompensation arises and to val-
idate previous experimental findings. We also explicitly show how our
age-structured PIDE model can be ‘‘discretized’’ into systems of ODEs,
allowing us to derive additional corresponding conditions for overcom-
pensation and oscillating populations. We give concluding remarks and
discuss some future directions in the Summary and Conclusions section.

2. Age-structured intraspecies predation model

Motivated by the above real-world ecological examples, we formally
construct a simple single-species age-structured population PIDE model
for cannibalization that can lead to overcompensation. We start with a
linear kinetic theory framework that was recently developed to describe
the evolution of a probability density of proliferating cell populations
[32–34]. To track all ages in a population, we define the vector 𝐱𝑠 =
(𝑥1,… , 𝑥𝑠) in which 𝑥𝑖 is the age of the 𝑖th individual and 𝑠 is the total
number of individuals.

We denote the probability that an animal population has 𝑠 individ-
uals with ages 𝐱𝑠 at time 𝑡 to be 𝜌𝑠(𝐱𝑠; 𝑡). Without loss of generality, we
assume that the probability 𝜌𝑠 is symmetric in the age variables, i.e.,
for any permutation of (𝑥1,… , 𝑥𝑠) denoted by 𝐱′𝑠, 𝜌𝑠(𝐱𝑠; 𝑡) = 𝜌𝑠(𝐱′𝑠; 𝑡).
Normalization of 𝜌𝑠(𝐱𝑠; 𝑡) also demands ∑∞

𝑠=0 ∫
∞
0 𝜌𝑠(𝐱𝑠; 𝑡)d𝐱𝑠 ≡ 1, ∀ 𝑡.

If we denote the birth rate and death rate for the 𝑖th individual in
 𝑥

2 
the population by 𝛽𝑖 and 𝜇𝑖 respectively, 𝜌𝑠(𝐱𝑠; 𝑡) satisfies the following
PIDE [33]

𝜕𝜌𝑠(𝐱𝑠; 𝑡)
𝜕𝑡

+
𝑠
∑

𝑖=1

𝜕𝜌𝑠(𝐱𝑠; 𝑡)
𝜕𝑥𝑖

=

−
𝑠
∑

𝑖=1

(

𝛽𝑖 + 𝜇𝑖
)

𝜌𝑠(𝐱𝑠; 𝑡) +
𝑠+1
∑

𝑖=1
∫

∞

0
𝜇𝑖 𝜌𝑠+1(𝐱𝑠+1[𝑥𝑖 = 𝑦]; 𝑡)d𝑦

𝑠(𝐱𝑠[𝑥𝑖 = 0], 𝑡) = 1
𝑠

𝑠−1
∑

𝑗=1
𝛽𝑗 𝜌𝑠−1(𝐱𝑠,−𝑖; 𝑡),

(1)

here 𝐱𝑠+1[𝑥𝑖 = 𝑦] ∶= (𝑥1,… , 𝑥𝑖 = 𝑦, 𝑥𝑖+1,… , 𝑥𝑠+1), 𝐱𝑠[𝑥𝑖 = 0] ∶=
𝑥1,… , 𝑥𝑖−1, 0, 𝑥𝑖+1,… , 𝑥𝑠), and 𝐱𝑠,−𝑖 ∶= (𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑠). Details

of the derivation of the linear kinetic equation (1) are given in [32–34].
The birth and death rates 𝛽𝑖 and 𝜇𝑖, may depend on the ages of

ndividuals 𝑥𝑗≠𝑖 other than that of the 𝑖th one. Such multi-individual
ependences of 𝛽𝑖, 𝜇𝑖 lead to correlations and ultimately nonlinear
erms. Here, we assume the birth rate 𝛽𝑖 = 𝛽(𝑥𝑖, 𝑡) of individual 𝑖
epends on only the age 𝑥𝑖 of that individual. The death rate can be
ecomposed into a natural death rate and a cannibalistic interaction
erm, i.e.,

𝑖 = 𝜇(𝑥𝑖, 𝑡) +
∑

𝑗≠𝑖
𝐾(𝑥𝑗 , 𝑥𝑖, 𝑡), (2)

here 𝜇(𝑥𝑖, 𝑡) is the natural death rate of individual 𝑖 and 𝐾(𝑥𝑗 , 𝑥𝑖, 𝑡)
s the cannibalizing rate of individual 𝑗 on individual 𝑖. Note that
(𝑥𝑗 , 𝑥𝑖, 𝑡) can depend on both the ages of the predator and the prey,
hich generalizes the previous model in [27] where 𝐾 only depends
n the prey’s age.

With these definitions, the PIDE satisfied by 𝜌𝑠 becomes

𝜕𝜌𝑠(𝐱𝑠; 𝑡)
𝜕𝑡

+
𝑠
∑

𝑖=1

𝜕𝜌𝑠(𝐱𝑠; 𝑡)
𝜕𝑥𝑖

=

−
𝑠
∑

𝑖=1

[

𝛽
(

𝑥𝑖, 𝑡
)

+ 𝜇(𝑥𝑖, 𝑡) +
∑

𝑗≠𝑖
𝐾(𝑥𝑗 , 𝑥𝑖, 𝑡)

]

𝜌𝑠(𝐱𝑠; 𝑡)

+ (𝑠 + 1)∫

∞

0

[

𝜇(𝑦, 𝑡) +
𝑠
∑

𝑖=1
𝐾(𝑥𝑖, 𝑦, 𝑡)

]

𝜌𝑠+1(𝐱𝑠, 𝑦; 𝑡)d𝑦

𝑠(𝐱𝑠[𝑥𝑖 = 0], 𝑡) = 1
𝑠

𝑠−1
∑

𝑗=1
𝛽
(

𝑥𝑗 , 𝑡
)

𝜌𝑠−1(𝐱𝑠,−𝑖; 𝑡),

(3)

and the argument (𝐱𝑠, 𝑦) indicates an additional (𝑠+1)st individual with
ge 𝑦.

The population density at age 𝑥 can thus be defined as a sum over
ll possible numbers of individuals and marginalizing over all but one
ge:

(𝑥, 𝑡) ∶=
∞
∑

𝑠=0
𝑠∫ 𝜌𝑠(𝐱𝑠[𝑥1 = 𝑥]; 𝑡)d𝐱𝑠,−1. (4)

e now show that the dependence of 𝐾 on both 𝑥𝑗 and 𝑥𝑖 generates
onlinear population dynamics that can give rise to overcompensation
f increased death as well as oscillations. Upon applying the marginal-
zation and summation of Eq. (4) to Eq. (3), we obtain a PIDE satisfied
y 𝑛(𝑥, 𝑡):
𝜕𝑛(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝑛(𝑥, 𝑡)
𝜕𝑥

= −𝜇(𝑥, 𝑡)𝑛(𝑥, 𝑡) −∫

∞

0
𝐾(𝑥′, 𝑥, 𝑡)𝑛(2)(𝑥′, 𝑥, 𝑡)d𝑥′,

𝑛(0, 𝑡) =∫

∞

0
𝛽(𝑥, 𝑡)𝑛(𝑥, 𝑡)d𝑥.

(5)

here

(2)(𝑥′, 𝑥, 𝑡) ∶=
∞
∑

𝑠=0
𝑠(𝑠 − 1)∫ 𝜌𝑠(𝐱𝑠[𝑥1 = 𝑥′, 𝑥2 = 𝑥]; 𝑡)d𝐱𝑠,−2. (6)

nd 𝐱𝑠,−2 ∶= (𝑥3,… , 𝑥𝑠). Specifically, if the correlation between 𝑥 and
′ is small, and 𝑠 ≫ 1, we can approximate 𝑛(2)(𝑥′, 𝑥, 𝑡) ≈ 𝑛(𝑥′, 𝑡)𝑛(𝑥, 𝑡)
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and obtain a closed-form PIDE for 𝑛(𝑥, 𝑡):

𝜕𝑛(𝑥, 𝑡)
𝜕𝑡

+
𝜕𝑛(𝑥, 𝑡)
𝜕𝑥

= −
[

𝜇(𝑥, 𝑡) +∫

∞

0
𝐾(𝑥′, 𝑥, 𝑡)𝑛(𝑥′, 𝑡)d𝑥′

]

𝑛(𝑥, 𝑡),

𝑛(0, 𝑡) =∫

∞

0
𝛽(𝑥, 𝑡)𝑛(𝑥, 𝑡)d𝑥.

(7)

Eq. (7) is the most general form of a simple deterministic model
that incorporates a continuously distributed predator–prey interaction
within an age-structured population model [35,36]. Here, the quadratic
interaction term couples predator and prey populations through the
predation kernel 𝐾(𝑥′, 𝑥, 𝑡). Previous analyses of (7) and related equa-
tions used them to model cannibalism [22,37], particularly egg–larvae
interactions of the Tribolium beetle [6,7]; however, these studies did
not derive the equations from the underlying kinetic theory as we have
shown above nor did they analyze overcompensation in response to
increased death as we will in the next section.

If 𝐾(𝑥′, 𝑥, 𝑡) = 0, Eq. (7) reduces to the classical age-structured McK-
endrick model, which does not exhibit permanent overcompensation.
If 𝐾(𝑥′, 𝑥, 𝑡) ∶= 𝑘(𝑥, 𝑡)𝛿(𝑥′ − 𝑥), where 𝛿 is the Dirac delta function,
Eq. (7) coincides with previously studied age-structured growth models
[29,30], reducing to

𝜕𝑛(𝑥, 𝑡)
𝜕𝑡

+
𝜕𝑛(𝑥, 𝑡)
𝜕𝑥

= −
(

𝜇(𝑥, 𝑡) + 𝑘(𝑥, 𝑡)𝑛(𝑥, 𝑡)
)

𝑛(𝑥, 𝑡),

𝑛(0, 𝑡) =∫

∞

0
𝛽(𝑥, 𝑡)𝑛(𝑥, 𝑡)d𝑥.

(8)

As we will be interested primarily in steady-state overcompensation,
or population transients associated with instantaneous jumps in the
death rate, we will restrict our analysis to time-independent 𝐾(𝑥′, 𝑥)
and instantaneous changes to otherwise time-independent 𝛽(𝑥) and
𝜇(𝑥). Dynamically, changing birth and death rates can be implemented
by changing 𝛽 and 𝜇 instantaneously to new values that subsequently
remain constant (time-independent). Thus, we will henceforth assume
time-independent 𝛽, 𝜇 (and 𝐾) after their abrupt change. If a steady-
state population density 𝑛∗(𝑥) is reached, it will then satisfy

d𝑛∗(𝑥)
d𝑥

= −
[

𝜇(𝑥) +∫

∞

0
𝐾(𝑥′, 𝑥)𝑛∗(𝑥′)d𝑥′

]

𝑛∗(𝑥),

𝑛∗(0) =∫

∞

0
𝛽(𝑥)𝑛∗(𝑥)d𝑥.

(9)

Under this setup, we will show that for our model to display steady-
state overcompensation associated with increased death rate, an inter-
action kernel 𝐾(𝑥′, 𝑥) that varies with both 𝑥′ and 𝑥 is necessary.

Incidentally, we note that our PIDE model Eq. (9) can be simply
extended to describe populations over structured variables 𝑥 that rep-
resent quantities other than age. For example, if 𝑥 represents organism
size instead of age, it may follow a growth law

d𝑥
d𝑡 = 𝑔(𝑥, 𝑡). (10)

sing a similar derivation starting from the multiparticle kinetic theory
or the probability density, we obtain an equation for the population
ensity 𝑛(𝑥, 𝑡) that is similar to Eq. (7)

𝜕𝑛(𝑥, 𝑡)
𝜕𝑡

+
𝜕(𝑔(𝑥, 𝑡)𝑛(𝑥, 𝑡))

𝜕𝑥

= −
[

𝜇(𝑥, 𝑡) +∫

∞

0
𝐾(𝑥′, 𝑥, 𝑡)𝑛(𝑥′, 𝑡)d𝑥′

]

𝑛(𝑥, 𝑡),

𝑔(0, 𝑡)𝑛(0, 𝑡) =∫

∞

0
𝛽(𝑥, 𝑡)𝑛(𝑥, 𝑡)d𝑥.

(11)

hus, the dynamics of a population structured according to variables
uch as size or weight can be analyzed using Eq. (11).

However, if d𝑥
d𝑡 = 𝑔(𝑥) (time-inhomogeneous growth), then by

defining 𝑦 = ∫ 𝑥
0

1
𝑔(𝑧)d𝑧, d𝑦 = d𝑡, and the new structured variable 𝑦

ould be seen as an age. In this scenario, we shall obtain a differential
 s

3 
equation for 𝑛(𝑦, 𝑡)

𝜕𝑛(𝑦, 𝑡)
𝜕𝑡

+
𝜕𝑛(𝑦, 𝑡)
𝜕𝑦

= −
[

𝜇(𝑦, 𝑡) +∫

∞

0
𝐾(𝑦′, 𝑦, 𝑡)𝑛(𝑦′, 𝑡′)d𝑦

]

𝑛(𝑦, 𝑡),

𝑛(0, 𝑡) =∫

∞

0
𝛽(𝑦, 𝑡)𝑛(𝑦, 𝑡)d𝑦.

(12)

which is identical in form to Eq. (7). For simplicity and without loss
of generality, we henceforth explore overcompensation in a population
structured according to age or according to an attribute that grows in
a time-inhomogeneous manner, allowing us to use Eq. (8) or (12).

3. Results and discussion

Overcompensation of the total population can be reflected as a tran-
sient increase in the overall population following a transient increase
in 𝜇, as a permanent change in the steady-state population and/or as
a periodically fluctuating population following permanent increases in
the death rate. Although the general conditions on 𝐾(𝑥′, 𝑥) required
for the model to exhibit overcompensation and/or oscillations cannot
be analytically derived, we present several cases that preclude or
allow overcompensation. We also present a piecewise constant function
approximation to convert our PIDE model to a system of ODEs, further
providing mathematical insight into the dynamical behavior of our
model.

3.1. Specific interactions that preclude overcompensation

Here, we consider permanent changes in the birth and death rates
𝛽, 𝜇 and present simple interactions 𝐾(𝑥′, 𝑥) for which permanent,
steady-state overcompensation can be proven not to arise:

(A.1) 𝐾(𝑥′, 𝑥) = 𝑘(𝑥)𝛿(𝑥′ − 𝑥), 𝑘(𝑥) > 0. Correspondingly, Eq. (9)
reduces to d𝑛∗∕d𝑥 = −𝜇(𝑥)𝑛∗ − 𝑘(𝑥)(𝑛∗)2, 𝑛∗(𝑥 = 0) =
∫ ∞
0 𝛽(𝑥)𝑛∗(𝑥)d𝑥.

(A.2) 𝐾(𝑥′, 𝑥) = 𝐾(𝑥′) with constant 𝛽, 𝜇. This interaction is inde-
pendent of prey age 𝑥 and the resulting model corresponds to
an age-structured McKendrick model with a modified death
rate 𝜇 → 𝜇 + ∫ ∞

0 𝐾(𝑥′)𝑛(𝑥′)d𝑥 as proposed in [30].
(A.3) 𝐾(𝑥′, 𝑥) = 𝐾(𝑥) with constant 𝛽, 𝜇. This case corresponds to

predators of any age 𝑥′ preferentially cannibalizing prey of
age 𝑥 according to 𝐾(𝑥). With this interaction kernel, Eq. (7)
reduces to a self-consistent McKendrick equation, as in (ii),
except with a modified death rate 𝜇 → 𝜇+𝐾(𝑥)𝑁∗. A uniform
interaction kernel (constant 𝐾) is a subcase.

ere, 𝛿(𝑥) is the Dirac delta distribution and 𝜃(𝑥 > 0) = 1, 𝜃(𝑥 ≤
) = 0 denotes the Heaviside function. All of these cases admit simple,
nique, nonzero steady states. The corresponding reduced models of
ases (A.1), (A.2), and (A.3) all admit simple self-consistent solutions.
or constant birth and death rates 𝛽 and 𝜇, we prove in Appendix A that
nteractions (A.1), (A.2), and (A.3) all preclude steady-state overcom-
ensation; that is, the total steady-state population 𝑁∗ ≡ ∫ ∞

0 𝑛∗(𝑥)d𝑥,
here 𝑛∗ is the steady-state solution of Eq. (9), does not increase
hen 𝜇 increases. Case (A.1) indicates that a more distributed kernel

s required for overcompensation. Case (A.2) indicates that variation
n predator age 𝑥′ alone is insufficient to generate steady-state over-
ompensation. Case (A.3) represents an interaction kernel that varies
nly in prey age 𝑥 and is also insufficient to generate steady-state over-
ompensation. These results imply that steady-state overcompensation
equires 𝐾(𝑥′, 𝑥) that varies to some degree in both the prey age 𝑥 and
redator age 𝑥′.

.2. Specific interactions that may exhibit overcompensation

We have also found two simple forms for 𝐾(𝑥′, 𝑥) that may exhibit

teady-state overcompensation
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Table 1
A list of analytic forms of 𝐾(𝑥′ , 𝑥) that we have investigated in the context of
vercompensation under certain conditions.
Form of 𝐾(𝑥′ , 𝑥) Overcompensation Analysis

𝑘(𝑥)𝛿(𝑥′ − 𝑥) Not possible Analytical
𝐾(𝑥′) Not possible Analytical
𝐾(𝑥) Not possible Analytical
𝑘𝛿(𝑥 − 𝑎)𝛿(𝑥′ − 𝑏) Possible Analytical
𝑘𝛿(𝑥)𝜃(𝑥′ − 𝑏) Possible Analytical
𝜃(𝑥′ −𝑋)𝜃(𝑋 − 𝑥) Possible Numerical
𝑥′𝜃(𝑥′ −𝑋)𝜃(𝑋 − 𝑥) Possible Numerical
(𝑥′ − 𝑥)𝜃(𝑥′ −𝑋)𝜃(𝑋 − 𝑥) Possiblea Numerical

a Indicates that the total population is fluctuating over time but that the time-averaged
population exhibits overcompensation in response to increases in the death rate.

(B.1) 𝐾(𝑥′, 𝑥) = 𝑘𝛿(𝑥− 𝑎)𝛿(𝑥′ − 𝑏), with 𝛽 > 𝜇, 𝑘 > 0 constant. Under
this point-source and point-sink interaction, the steady-state
equation is d𝑛∗∕d𝑥 = −

[

𝜇 + 𝑘𝑛∗(𝑏)𝛿(𝑥 − 𝑎)
]

𝑛∗, which is solved
by 𝑛∗(𝑥) = 𝑛∗(𝑥 = 0)𝑒−𝜇𝑥−𝑘𝑛∗(𝑏)𝜃(𝑥−𝑎),

(B.2) 𝐾(𝑥′, 𝑥) = 𝑘𝛿(𝑥)𝜃(𝑥′ − 𝑏) with constant 𝛽 > 𝜇, 𝑘 > 0. The
interaction describes adults with age 𝑥 ≥ 𝑏 feeding, with
rate 𝑘 on newborns or eggs. The steady-state ODE becomes
d𝑛∗∕d𝑥 = −

[

𝜇 + ∫ ∞
𝑏 𝑘𝑛∗(𝑥′)𝛿(𝑥)d𝑥′

]

𝑛∗(𝑥), which is solved by
𝑛∗(𝑥) = 𝑛∗(0)𝑒−𝜇𝑥−𝑘𝑁b with 𝑁𝑏 ∶= ∫ ∞

𝑏 𝑛∗(𝑥)d𝑥.

Appendix B provides detailed calculations of the total population under
models (B.1) and (B.2). Further analysis shows the conditions (param-
eter regimes of 𝜇, 𝑘, 𝛽) under which steady-state overcompensation,
𝜕𝑁∗∕𝜕𝜇 > 0, arises.

Table 1 summarizes the different forms of the cannibalism rate func-
tions 𝐾(𝑥′, 𝑥) for which we have analytically or numerically demon-
strated either the possibility or impossibility of overcompensation. All
results are obtained using age-independent birth and death rates 𝛽 and
𝜇.

3.3. Existence and uniqueness of the positive steady state

The specific forms of 𝐾(𝑥′, 𝑥) given above that either preclude or
allow overcompensation provides some mechanistic insight into the
interaction that can give rise to overcompensation. Roughly, the inter-
action kernel 𝐾(𝑥′, 𝑥) should have a positive gradient in the 𝑥′ direction
and a negative gradient in the 𝑥 direction. This asymmetry in 𝐾(𝑥′, 𝑥)
leads to sufficient suppression of the older, predating population such
that a ‘‘killing of the killers’’ effect leads to larger total populations.

Henceforth, we consider a fairly general form for 𝐾(𝑥′, 𝑥) that
incorporates the dependencies on both 𝑥′ and 𝑥 that is compatible with
overcompensation:

𝐾(𝑥′, 𝑥) = 0, ∀𝑥 ≥ 𝑋, or 𝑥′ ≤ 𝑥. (13)

Here, 𝑋 is an age threshold such that no individual above age 𝑋 can
be cannibalized. In Appendix C, we prove that given time-independent
𝛽(𝑥), 𝜇(𝑥) our model (Eqs. (7) and (9)) admits one unique steady state
𝑛∗ under some conditions. Thus, for a transient perturbation of the
birth and death rates (which eventually return to their constant pre-
perturbation values) permanent overcompensation of the population
cannot arise. The system has no other accessible steady state and the to-
tal population returns to its unique steady-state value, provided it does
not vanish during its transient evolution. However, abrupt, permanent
increases in the death rate may lead to permanent overcompensation as
the new steady state associated with higher 𝜇 may be associated with a
higher total population 𝑁∗ = ∫ ∞

0 𝑛∗(𝑥, 𝑡)d𝑥. In Appendix D, we discuss
general characterization/conditions for existence of the positive steady
state.
 i

4 
3.4. Overcompensation of increased death rates

Since analytically finding all conditions under which Eq. (7) or
Eq. (9) exhibits overcompensation is difficult, we shall carry out nu-
merical experiments to show how overcompensation arises for some
simple forms of 𝐾(𝑥′, 𝑥) after instantaneous changes in 𝛽 and 𝜇 from
one constant value to another. In general, we find that a cannibalism
interaction 𝐾 that decreases with 𝑥 and increases with 𝑥′ is more likely
to exhibit larger overcompensation. We examine two simple forms of
𝐾: 𝐾1(𝑥′, 𝑥) = 𝑘𝜃(𝑥′ − 𝑋)𝜃(𝑋 − 𝑥) and 𝐾2(𝑥′, 𝑥) = 𝑘𝑥′𝐾1(𝑥′, 𝑥) =
2𝑥′𝜃(𝑥′ −𝑋)𝜃(𝑋 − 𝑥), both of which satisfy Eq. (13). Since 𝑘 is a rate,
e can measure 𝛽 and 𝜇 in units of 𝑘 and time 𝑡 and ages 𝑥 in units
f 1∕𝑘. In such units, we set 𝑘 = 1 without loss of generality and the
imensionless interactions take the forms

1(𝑥′, 𝑥) ≡ 𝜃(𝑥′ −𝑋)𝜃(𝑋 − 𝑥),

2(𝑥′, 𝑥) ≡ 𝑥′𝐾1(𝑥′, 𝑥)

= 𝑥′𝜃(𝑥′ −𝑋)𝜃(𝑋 − 𝑥).

(14)

or concreteness, we choose 𝑋 = 2 and plot heatmaps of the dimen-
ionless predation kernels 𝐾1 and 𝐾2 in Fig. 1(a) and (e). Subsequent
esults derived from using these interactions are displayed across each
ow.

The analysis of steady-state overcompensation boils down to in-
estigating how the solution 𝑛∗ obeying Eq. (9), and in particular,
ow the total population 𝑁∗ = ∫ ∞

0 𝑛∗(𝑥)d𝑥 changes with 𝛽 and 𝜇.
ig. 1(b) and (f) are heatmaps of the total steady state population
∗ as a function of birth rate 𝛽 and death rate 𝜇, for 𝐾1 and 𝐾2,

espectively. These solutions 𝑁∗ = ∫ ∞
0 𝑛∗(𝑥)d𝑥 are derived from the

olution to Eq. (9). Note that when 𝛽 < 𝜇, the only stable steady
tate is 𝑛∗(𝑥), 𝑁∗ = 0. The dashed curves in Fig. 1(b) and (f) are
‘phase boundaries’’ defined by 𝜕𝜇𝑁∗ = 0 that separate parameter
pace into regimes where 𝜕𝜇𝑁∗ < 0 from those where 𝜕𝜇𝑁∗ > 0. At
arger values of 𝜇 (and smaller 𝛽) 𝑁∗ decreases with 𝜇, indicating the
bsence of overcompensation, or a normal response. However, at larger
and smaller 𝜇, 𝜕𝜇𝑁∗ > 0 indicating overcompensation in response

o increases in 𝜇. Fig. 1(c) and (g) show the corresponding curves
∗(𝜇) for fixed values of 𝛽, quantitatively illustrating the different
agnitudes of steady-state overcompensation through different values

f the slope 𝜕𝜇𝑁∗. These results, along with the interactions shown
o preclude long-lasting overcompensation, indicate that permanent
vercompensation in our model requires cannibalization of the young
y the old and a 𝐾(𝑥′, 𝑥) that increases in 𝑥′ and decreases in 𝑥.

To interrogate the dynamics of the population following perturba-
ions to the death rate, we now start the system at its steady state
orresponding to specific values 𝛽0, 𝜇0 and consider how the population
(𝑡) evolves after applying these two different perturbations:

1(𝑡) = 𝜇0 + (log 2)𝛿(𝑡), 𝜇2(𝑡) = 𝜇0 + 𝜃(𝑡)𝛥𝜇. (15)

o be specific, we take 𝛽0 = 2, 𝜇0 = 1∕2, and 𝛥𝜇 = 1∕2. The death rate
unction 𝜇1(𝑡) includes a delta function at 𝑡 = 0, which corresponds
o an instantaneous removal of half the population from the steady
tate associated with 𝛽0, 𝜇0 and the corresponding interaction 𝐾. A
inite volume discretization [38] with 𝛥𝑥 = 0.02, 𝑥max = 10, 𝛥𝑡 = 0.002
as used to numerically solve Eq. (7) to find 𝑛(𝑥, 𝑡), which is then
sed to construct 𝑁(𝑡) = ∫ ∞

0 𝑛(𝑥, 𝑡)d𝑥. Fig. 1(d) and (h) show damped
scillations in 𝑁(𝑡) associated with 𝐾1 and 𝐾2 = 𝑥′𝐾1, respectively.
lthough 𝜇1(𝑡) immediately returns to the value 𝜇1(𝑡 > 0) = 𝜇0, and
(𝑡 → ∞) → 𝑁∗, at shorter times, 𝑁(𝑡) oscillates and can exceed 𝑁∗

t intermediate times. Thus, transient overcompensation can arise even
hough the population returns to the same value set by 𝛽0, 𝜇0. If 𝜇2(𝑡)
s used, the death rate jumps from 𝜇0 to 𝜇0 + 𝛥𝜇 at 𝑡 = 0, leading
ltimately to a higher steady-state population. For 𝜇2, in addition to
higher steady-state population, initial oscillations can lead to even

igher transient populations.
Motivated by these results showing that 𝑁∗ can increase upon
ncreasing 𝜇 for fixed values of 𝛽, we provide in Appendix E additional
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Fig. 1. (a) Heatmap of the dimensionless predation interaction 𝐾1(𝑥′ , 𝑥) = 𝜃(𝑥′ −2)𝜃(2−𝑥). (b) Heatmap of the total steady-state population 𝑁∗ as a function of constant 𝛽 and 𝜇. A
nontrivial stable fixed point arises only for 𝛽 > 𝜇. The region of no overcompensation, where 𝜕𝜇𝑁∗ < 0, is indicated while the parameters that admit steady-state overcompensation,
where 𝜕𝜇𝑁∗ > 0 (not indicated), occur in the upper-left corner. The dashed curve delineates the phase boundary on which 𝜕𝜇𝑁∗ = 0. (c) 𝑁∗ plotted as a function of 𝜇 for fixed
values of 𝛽 = 2.5, 2, 1.5. (d) Plots of 𝑁(𝑡) for 𝛽 = 2 and death rate sequences 𝜇1(𝑡) and 𝜇2(𝑡) (Eq. (15)). For 𝜇1(𝑡), damped oscillations yield transient overcompensation, while 𝜇2(𝑡)
results in a permanent, steady-state overcompensation, in addition to damped oscillations. (e-h) The corresponding results for 𝛽 = 2 and the predation/cannibalization interaction
𝐾2(𝑥′ , 𝑥) = 𝑥′𝐾1(𝑥′ , 𝑥).
examples of mechanisms whereby a steady-state overcompensation can
arise. First, we consider overcompensation in a model where resources
are scare and predation can provide nourishment required for repro-
duction. This effect can be modeled by a predation-enhanced fecundity
of the form 𝛽(𝑥) = 𝛽0 + ( 14 ) ∫

∞
0 𝐾(𝑥, 𝑥′)𝑛(𝑥′, 𝑡)d𝑥′. This model is shown to

preserve overcompensation associated with increases in 𝜇, as detailed
in Appendix E.1.

We also show in Appendix E.2 that age-dependent harvesting can
lead to overcompensation. Harvesting or culling of the population that
is modeled via an additional removal term
𝜕𝑛(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑛(𝑥, 𝑡)
𝜕𝑥

= −
[

𝜇(𝑥, 𝑡) + ∫

∞

0
𝐾(𝑥′, 𝑥)𝑛(𝑥′, 𝑡)d𝑥′

]

𝑛(𝑥, 𝑡)

− ℎ(𝑛; 𝑥, 𝑡),

𝑛(0, 𝑡) = ∫

∞

0
𝛽(𝑥)𝑛(𝑥, 𝑡)d𝑥,

(16)

where ℎ(𝑛; 𝑥, 𝑡) represents the rate of harvesting that may depend non-
linearly on the structured population. Increases in a realistic harvesting
function ℎ(𝑛; 𝑥, 𝑡) are shown to lead to permanent increases in the
total population. Finally, we also prove in Appendix E.3 that for an
interaction that satisfies Eq. (13), increasing a constant 𝛽 will always
lead to an increase in 𝑁∗; however, for asymmetric predation kernels
that can be negative (a young-eat-old interaction), overcompensation
in response to increased birth rates, where 𝜕𝛽𝑁∗ < 0 for fixed values of
𝜇, can arise.

3.5. Undamped oscillations

The instantaneous changes in the death rate given by Eqs. (15) and
the interactions 𝐾1 and 𝐾2 give rise to damped oscillations that even-
tually settle back to their corresponding unique values 𝑁∗. However,
oscillations may be undamped and lead to periodic overcompensation
when the fixed point loses stability and bifurcates to a stable limit cycle.
Such oscillations have been observed, for example, in European green
crabs populations [4]. Although the source of such oscillations may be
5 
difficult to disentangle from the effects of seasonality, they have been
modeled in different contexts using a single-compartment discrete-time
population model [31]. Overcompensation has also been described in
consumer-resource models, as cycles of rising and falling populations
[20], as in the classical predator–prey model.

Here, we use a simple, realistic old-eat-young cannibalization rate

𝐾3(𝑥′, 𝑥) = (𝑥′ − 𝑥)𝜃(𝑥′ − 2)𝜃(2 − 𝑥) (17)

in Eq. (7) and assume constant birth rate 𝛽 and death rate 𝜇. Upon
using a finite volume discretization with 𝛥𝑥 = 0.01 and initial condition
𝑛(𝑥, 0) = 𝑒−2𝑥∕2, we numerically solve Eq. (7) in 𝑡 ∈ [0, 𝑇 ], 𝛥𝑡 = 0.002
to investigate whether the total population 𝑁(𝑡) oscillates. Fig. 2(a)
shows the heatmap of the interaction kernel 𝐾3(𝑥′, 𝑥) = (𝑥′ − 𝑥)𝜃(𝑥′ −
2)𝜃(2 − 𝑥), while Fig. 2(b) shows a heatmap of an oscillating structured
population density 𝑛(𝑥, 𝑡) approximated by its local mean value 𝑛(𝑗, 𝑡) =
(𝛥𝑥)−1 ∫ (𝑗+1)𝛥𝑥

𝑗𝛥𝑥 𝑛(𝑦, 𝑡)d𝑦. These oscillations lead to an oscillating total
population 𝑁(𝑡), as shown in Fig. 2(c). Oscillations damp out when 𝜇
is large, but persist for smaller values of 𝜇. The long-time amplitudes
of oscillation shown in Fig. 2(d) indicate a sharp decrease as 𝜇 is
increased. To better resolve the long-time average values of 𝑁(𝑡),
we define its function average 𝑁(𝑡) ≡ 1

𝑡 ∫
𝑡
0 𝑁(𝑠)d𝑠 and plot them in

Fig. 2(e). Besides oscillations that can lead to temporary overcompen-
sation, increasing 𝜇 in the regime studied also led to increased averaged
values of 𝑁(𝑡), and in particular, when oscillations are damped out
at larger 𝜇, permanent overcompensation can arise where the steady
values 𝑁∗ increase with 𝜇. Thus, as 𝜇 increases, periodic overcompen-
sation transitions to steady-state overcompensation. The phase diagram
separating regimes of transient and permanent oscillations is shown
in Fig. 2(f). As 𝛽 increases and 𝜇 decreases, the dynamics transition
from a monotonically converging one (to steady-state value 𝑁∗) to a
periodically oscillating one, with a finite oscillation magnitude that
arises when 𝛽 exceeds a critical value 𝛽 ≈ 1.87 + 0.93𝜇.
∗
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Fig. 2. (a) Heatmap of the interaction kernel 𝐾3(𝑥′ , 𝑥) = (𝑥′ − 𝑥)𝜃(𝑥′ − 2)𝜃(2 − 𝑥) (Eq. (17)). (b) The population density computed using Eq. (17), 𝛽 = 2.5, and 𝜇 = 0.6, and
approximated as 𝑛(𝑗, 𝑡) ≡ (𝛥𝑥)−1 ∫ (𝑗+1)𝛥𝑥

𝑗𝛥𝑥 𝑛(𝑦, 𝑡)d𝑦 with 𝛥𝑥 = 0.02 displays persistent periodic oscillations. (c) The total population 𝑁(𝑡) = ∫ ∞
0 𝑛(𝑥, 𝑡)d𝑥 also exhibits oscillations that

persist(damp out) for small(large) values of 𝜇. (d) The long-time oscillation amplitude max𝑇−20≤𝑡≤𝑇 𝑁(𝑡)−min𝑇−20≤𝑡≤𝑇 𝑁(𝑡) near 𝑇 = 500, 𝑇 = 1000, and 𝑇 = 2000, respectively, plotted
as a function of 𝜇 (𝛽 = 2.5). As 𝑇 is increased, the transition to oscillating states as 𝜇 is decreased becomes sharper These numerical results suggest that the transition at 𝜇 ∼ 0.7
has jump discontinuity in the first-order derivative. (e) Time-averaged populations 𝑁(𝑡) ≡ 1

𝑡
∫ 𝑡
0 𝑁(𝑠)d𝑠 for 𝛽 = 2.5, 𝜇 = 0.6, 0.7, 0.8, 0.9 that more clearly reveal the mean values of

𝑁(𝑡 → ∞). (f) Oscillation amplitude in 𝛽-𝜇 space. As 𝛽 increases from 2 to 3 and 𝜇 decreases from 1.5 to 0.5, undamped oscillations arise. Here, the oscillation amplitudes are
measured by max480<𝑡≤500 𝑁(𝑡) − min480<𝑡≤500 𝑁(𝑡). In the regime plotted, we find that undamped oscillations arise for 𝛽 ≳ 1.87 + 0.93𝜇.
3.6. Reduction of structured population PIDE to ODE systems

We have provided some numerical examples which explicitly show
various types of overcompensation in response to variations in con-
stant 𝜇, 𝛽. However, our model can also be approximated via coarse-
graining and discretization and formulated in terms of a system of
coupled nonlinear ODEs. Systems of ODEs are typically used to describe
multispecies models in which previous studies have found overcompen-
sation. Multistage models in which, e.g., adult or later-stage insect feed
on eggs or early-stage individuals [39,40] can also be directly modeled
by our discrete stage discretized ODEs.

Since the analysis of the general nonlinear PIDE model Eq. (7) or
the steady-state integral–differential equation Eq. (9) is difficult and
uniqueness only under Eq. (13) and a few specific proofs of cases that
preclude overcompensation could be found (see Appendix A), related
analyses of the ODE system can be more easily performed [18,41] if
parameters and variables are considered to be piecewise constants. In
addition to providing mathematical insight into the approximate, lower
dimensional ODE system, the simplest numerical implementation of a
finite volume method for the PIDE model Eq. (7) is conceptually similar
to piecewise constant discretization in the age variable.

Here, we formally discretize our PIDE model and explore whether
the resulting ODE models exhibit the analogous behaviors of the full
PIDE model discussed above. We discretize the space of ages [0,∞)
into 𝐿 + 1 bins: [𝑥𝑖, 𝑥𝑖+1), 𝑖 = 0,… , 𝐿 where 𝑥𝑖 = 𝑖𝛥𝑥 if 𝑖 ≤ 𝐿, and
𝑥𝐿+1 = ∞. Let the population on the 𝑖th bin [𝑥𝑖, 𝑥𝑖+1) be denoted 𝑛𝑖(𝑡) =
∫ 𝑥𝑖+1 𝑛(𝑦, 𝑡)d𝑦, (𝑥 → ∞). By integrating Eq. (7) over increments, each
𝑥𝑖 𝐿+1

6 
𝑛𝑖 obeys
d𝑛𝑖
d𝑡

= 𝑛(𝑥𝑖, 𝑡) − 𝑛(𝑥𝑖+1, 𝑡) − ∫

𝑥𝑖+1

𝑥𝑖
𝜇(𝑥, 𝑡)𝑛(𝑥, 𝑡)d𝑥

− ∫

𝑥𝑖+1

𝑥𝑖
d𝑥∫

∞

𝑥
d𝑥′ 𝑛(𝑥′, 𝑡)𝐾(𝑥′, 𝑥)𝑛(𝑥, 𝑡),

𝑛(0, 𝑡) =
𝐿
∑

𝑖=0
∫

𝑥𝑖+1

𝑥𝑖
𝛽(𝑥, 𝑡)𝑛(𝑥, 𝑡)d𝑥.

(18)

This reduction technique is similar to that used in [42] to reduce
infinite dimensional PDE models for structured populations into a
finite-dimensional set of ODEs.

We now take the coefficients 𝛽, 𝜇, and 𝐾 to be piecewise constant
in each compartment, i.e.,

𝛽(𝑥, 𝑡) = 𝛽𝑖(𝑡), 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1),

𝜇(𝑥, 𝑡) = 𝜇𝑖(𝑡), 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1),

𝐾(𝑥′, 𝑥) = 𝐾𝑗,𝑖(𝑡), 𝑥′ ∈ [𝑥𝑗 , 𝑥𝑗+1), 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1),

(19)

where 𝛽(𝑥, 𝑡) = 𝛽𝑖(𝑡), 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1) if 𝛽 is independent of cannibalism.
Eq. (18) then simplifies to

d𝑛0
d𝑡

= − 𝜇0(𝑡)𝑛0(𝑡) − 𝑛0(𝑡)
𝐿
∑

𝑗=0
𝐾𝑗,0𝑛𝑗 (𝑡) +

𝐿
∑

𝑗=1
𝛽𝑗 (𝑡)𝑛𝑗 (𝑡) −

𝑛0(𝑡)
𝛥𝑥

,

d𝑛𝑖
d𝑡

= − 𝜇𝑖(𝑡)𝑛𝑖(𝑡) − 𝑛𝑖(𝑡)
𝐿
∑

𝑗=𝑖
𝐾𝑗,𝑖𝑛𝑗 (𝑡) −

𝑛𝑖(𝑡) − 𝑛𝑖−1(𝑡)
𝛥𝑥

,

d𝑛𝐿
d𝑡

= − 𝜇𝐿(𝑡)𝑛𝐿(𝑡) − 𝑛𝐿(𝑡)𝐾𝐿,𝐿𝑛𝐿(𝑡) +
𝑛𝐿−1(𝑡)
𝛥𝑥

.

(20)

𝐾𝑖,𝑖 represents the within-compartment competition introduced due to
the discretization. In the following, we will assume that 𝐾𝑖,𝑖 = 0 and
that 𝛽0 = 0. Note that the ODE system Eq. (20) is also the discretized
finite volume method we used to numerically solve the original PIDE
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Eq. (7). We are particularly interested in whether the simplified ODE
model Eq. (20) with time-independent coefficients gives rise to the
rich dynamics observed in the original PIDE model, especially as 𝐿 is
varied. Our main results are: (i) the ODE system Eq. (20) has at most
one positive steady state, (ii) the two-compartment ODE model (setting
𝐿 = 1 in Eq. (20)) has a unique positive steady state and the steady-
state populations 𝑛0 and 𝑛1 never increase with the death rate. This
result differs from that of the two-stage ODE model in [18] because a
different type of interaction was invoked, (iii) the three-compartment
ODE model (𝐿 = 2) exhibits a unique, positive, stable steady state
and can exhibit overcompensation of increased death rates, and (iv)
higher-𝐿 ODE systems can exhibit long-term oscillations in addition to
permanent overcompensation as the positive steady state destabilizes.
The proofs for these results are detailed in Appendix F.

4. Summary and conclusions

In this paper, we use a linear kinetic population model to for-
mally derive a bilinear, age-structured PIDE that incorporates a contin-
uum of intraspecies cannibalistic interactions. Distinct from previous
models that typically assume complicated interactions within multi-
stage/multispecies populations or rely on complex consumer-resource
interactions, we demonstrate mathematically that our single-species,
bilinear interaction model, structured simply according to age, can give
rise to a variety of dynamical behavior.

Although similar PIDEs have been previously proposed [6,7,22,37]
and undamped population oscillations found, overcompensation in re-
sponse to increased death were not treated. We used realistic forms of
predation to show that this model can exhibit permanent, steady-state
overcompensation of the total population in response to permanent
increases in death rate. General forms of predation kernels 𝐾(𝑥′, 𝑥) that
preclude steady-state overcompensation were enumerated showing that
gradients in both 𝑥′ and 𝑥 are necessary for static overcompensation
(when 𝛽 and 𝜇 are constants). Specifically, our analysis suggests that
𝐾(𝑥′, 𝑥) that increases in 𝑥′ and decreases in 𝑥 are more likely to exhibit
steady-state overcompensation. Using predation kernels 𝐾1(𝑥′, 𝑥) and

2(𝑥′, 𝑥), Eq. (7) was solved numerically using a finite volume method
o show the emergence of steady-state overcompensation. Our PIDE
odel can also be numerically solved using recently developed spectral
ethods that adaptively decompose the solution 𝑛(𝑥, 𝑡) into spatial basis

unctions with time-dependent coefficients. These methods are detailed
n [43–45] and are quite efficient at handling unbounded domains.

Our analyses also allowed us to quantitatively distinguish transient
vercompensation from steady-state overcompensation. Dynamic, or
ransient overcompensation was defined in terms of oscillations in the
otal population that also arose under predation kernels 𝐾1 and 𝐾2
nd abrupt changes in the values of 𝜇 and 𝛽 (see Fig. 1). These cases
xhibited damped oscillations in the total population that transiently
xceeded their expected steady-state values. At long times, the total
opulations converged to steady values uniquely associated with their
ermanent values of 𝜇. For 𝜇 that has permanently increased, steady-
tate overcompensation is not universal but arises only under certain
alues of 𝛽 and 𝜇. However, for values of 𝛽 and 𝜇 under which steady-
tate overcompensation does not arise (for 𝐾 = 𝐾1, 𝐾2), transient
vercompensation may nonetheless arise following jumps in 𝜇(𝑡).

Using certain forms of 𝐾 (see Fig. 1), dynamic or transient overcom-
ensation was observed in terms of oscillations in the total population
hat eventually damps to steady values that could be lower or higher
steady-state overcompensation) following increases in 𝜇(𝑥). However,
imilar to predator–prey models that can exhibit periodic oscillations,
e also found that an interaction such as 𝐾3(𝑥′, 𝑥) = (𝑥′ − 𝑥)𝜃(𝑥′ −
)𝜃(2−𝑥) leads to undamped oscillations in total population for certain
alues of 𝛽 and 𝜇. Undamped oscillations typically arise from Hopf
ifurcations, in which the stable fixed point of a dynamical system
oses stability through a pair of conjugate eigenvalues 𝜆 cross the

e 𝜆 = 0 line as a parameter (such as 𝜇) is tuned. The Hopf bifurcation

7 
heorem, originally constructed for ODE systems [46] states that such
bifurcation always gives rise to a limit cycle. The Hopf bifurcation

heorem has been extended to the general abstract setting of ODEs in
anach space [47] which includes age-structured and predator–prey
roblems [48–50]. While our model is framed in terms of a PIDE, it
onetheless falls under the scope of the generalized Hopf bifurcation
heory in Banach spaces detailed in [48]. Therefore, we conjecture
hat our model, as explored in Fig. 2 exhibits a Hopf bifurcation. To
urther motivate this numerically, we show in Fig. 4 of Appendix F.4
he spectrum of a discretized version of the PIDE model. We find a pair
f conjugate eigenvalues crossing the imaginary axis as 𝜇 is decreased
elow ∼0.7, consistent with the value at which undamped oscillations
merge. Thus, the undamped oscillations in our model may arise from
Hopf bifurcation.

Besides formal proofs that certain simple predation interactions
ule out permanent overcompensation, and numerical exploration of
pecific cases that exhibit dynamical (damped and undamped oscilla-
ions) and steady-state overcompensation, a rigorous analysis of our
onlinear structured population PIDE model remains elusive. However,
implification via coarse-graining and discretizing the age variable
llowed the PIDE to be cast as a system of approximating ODEs for
iecewise constant parameter functions 𝛽(𝑥), 𝜇(𝑥), and 𝐾(𝑥′, 𝑥).

Revutskaya et al. [51] has shown that a discrete-time, two-sex,
hree-compartment model exhibits multistability and overcompensa-
ion under harvesting. However, overcompensation of increased death
oes not require the presence of multistability. Under certain con-
itions, the ODEs derived from our original cannibalistic-interaction
IDEs showed at most one positive steady state, implying that per-
anent overcompensation of increases in the death rate in our model

annot be due to transitions from one steady state to another. In our
ormulation, steady-state overcompensation and permanent oscillations
re also recapitulated in ODE systems of at least three and four dimen-
ions, respectively. These results may provide insight into mathematical
trategies for analyzing our PIDE model under age-dependent birth and
eath rates.

Our mathematical framework suggests a number of possible fu-
ure avenues of investigation. For example, since chaotic behavior
as been shown to arise in a three-dimensional, two-species predator–
rey ODE model [52], an intriguing question is how chaotic solutions
ight arise in our single-species continuously structured model Eq. (7).
ontinuously structured PIDE models can also be combined within mul-
icomponent/multispecies models where even richer behavior might
rise. For example, multicompartment aging models with symmetric
ge-age interactions have been shown to give rise to waves in opin-
on dynamics [53]. How overcompensation or oscillatory behavior of
he total population when it is structured according to and evolves
n size (Eq. (10)) rather than age is also worthwhile modeling. Fi-
ally, in analogy with spatial predator–prey models [54,55], including
ge-dependent spatial diffusion within our continuum structured PIDE
odel may lead to intriguing behavior such as transport-mediated local

nd global overcompensation.
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Mathematical Appendices

Appendix A. Interactions that preclude permanent overcompensa-
tion

Here, we consider a few explicit forms for the cannibalism rate
𝐾(𝑥′, 𝑥) that are analytically tractable. We prove that these simple
interaction terms preclude overcompensation of increases in death rate.

A.1. Self-inhibition 𝐾(𝑥′, 𝑥) = 𝑘(𝑥)𝛿(𝑥′ − 𝑥) (a special case of the Riccati
equation)

We first show that if cannibalization occurs within individuals of the
same structured variable (age in this case), i.e., 𝐾(𝑥′, 𝑥) = 𝑘(𝑥)𝛿(𝑥′ −
), 𝑘(𝑥) > 0, no overcompensation can occur, even for age-dependent
irth and death rates 𝛽(𝑥) and 𝜇(𝑥). The steady-state Eq. (9) becomes a
iccati equation with a specific boundary condition,
d𝑛∗(𝑥)
d𝑥

= −𝜇(𝑥)𝑛∗(𝑥) − 𝑘(𝑥)(𝑛∗(𝑥))2,

𝑛∗(0) = ∫

∞

0
𝛽(𝑥)𝑛∗(𝑥)d𝑥.

(21)

fter defining 𝑞∗(𝑥) ∶= 𝑘(𝑥)𝑛∗(𝑥), Eq. (21) simplifies to
d𝑞∗(𝑥)
d𝑥

= −𝜇̂(𝑥)𝑞∗(𝑥) − [𝑞∗(𝑥)]2, 𝜇̂(𝑥) ∶= 𝜇(𝑥) −
𝑘′(𝑥)
𝑘(𝑥)

,

𝑞∗(0) =∫

∞

0

𝑘(0)
𝑘(𝑥)

𝛽(𝑥)𝑞∗(𝑥)d𝑥.
(22)

Substituting 𝑞∗(𝑥) = 𝑢′(𝑥)∕𝑢(𝑥) into Eq. (22), we obtain the linear ODE
d2𝑢(𝑥)
d𝑥2 + 𝜇̂(𝑥) d𝑢(𝑥)d𝑥 = 0 which admits the general solution

(𝑥) ∝
(

1 + 𝐶 ∫

𝑥

0
𝑒− ∫ 𝑧

0 𝜇̂(𝑦)d𝑦d𝑧
)

, (23)

here 𝐶 is an integration constant and it is assumed that 𝜇̂ has a
ositive lower bound such that 𝑒− ∫ 𝑧

0 𝜇̂(𝑦)d𝑦 is integrable. The steady-state
opulation density 𝑛∗(𝑥) is then reconstructed as

∗(𝑥) = 1
𝑘(𝑥)

𝑒− ∫ 𝑥
0 𝜇̂(𝑥′)d𝑥′

1
𝐶 + ∫ 𝑥

0 𝑒− ∫ 𝑧
0 𝜇̂(𝑦)d𝑦d𝑧

, 𝐶 = 𝑘(0)𝑛∗(0). (24)

ubstituting Eq. (24) into Eq. (21), we find the constraint on 𝐶 =
(0)𝑛∗(0)

= ∫

∞

0

𝑘(0)
𝑘(𝑥)

𝛽(𝑥)𝑒− ∫ 𝑥
0 𝜇̂(𝑥′)d𝑥′

1 + 𝐶 ∫ 𝑥
0 𝑒− ∫ 𝑧

0 𝜇̂(𝑦)d𝑦d𝑧
d𝑥. (25)

Suppose we have two different death rates 𝜇1(𝑥) ≥ 𝜇2(𝑥) (and
thus 𝜇̂1(𝑥) ≥ 𝜇̂2(𝑥)) with their corresponding steady-state solutions
𝑛∗1(𝑥), 𝑛

∗
2(𝑥) defined by their integration constants 𝐶(𝜇1), 𝐶(𝜇2). We first

show that 𝐶(𝜇1) > 𝐶(𝜇2). Define

𝐹𝜇(𝐶) = ∫

∞

0

𝑘(0)
𝑘(𝑥)

𝛽(𝑥)𝑒− ∫ 𝑥
0 𝜇̂(𝑥′)d𝑥′

1 + 𝐶 ∫ 𝑥
0 𝑒− ∫ 𝑧

0 𝜇̂(𝑦)d𝑦d𝑧
d𝑥, (26)

which is a decreasing function of 𝐶 when 𝐶 > 0. Next, note that

𝑒− ∫ 𝑥
0 𝜇̂1(𝑥′)d𝑥′

1 + 𝐶 ∫ 𝑥
0 𝑒− ∫ 𝑧

0 𝜇̂1(𝑦)d𝑦d𝑧
≤ 𝑒− ∫ 𝑥

0 𝜇̂2(𝑥′)d𝑥′

1 + 𝐶 ∫ 𝑥
0 𝑒− ∫ 𝑧

0 𝜇̂2(𝑦)d𝑦d𝑧
(27)

if 𝜇1(𝑥) ≥ 𝜇2(𝑥). This is because 𝑒− ∫ 𝑥
0 𝜇̂2(𝑥′)d𝑥′ ≥ 𝑒− ∫ 𝑥

0 𝜇̂1(𝑥′)d𝑥′ and
− ∫ 𝑧

0 𝜇̂1(𝑥′)d𝑥′𝑒− ∫ 𝑥
0 𝜇̂2(𝑥′)d𝑥′ > 𝑒− ∫ 𝑧

0 𝜇̂2(𝑥′)d𝑥′𝑒− ∫ 𝑥
0 𝜇̂1(𝑥′)d𝑥′ ,∀ 0 < 𝑧 < 𝑥. Thus,
 o
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𝐹𝜇1 (𝐶(𝜇1)) = 1 and 𝜇1(𝑥) ≥ 𝜇2(𝑥) imply 𝐹𝜇2 (𝐶(𝜇1)) > 1. Together with
he constraint 𝐹𝜇2 (𝐶(𝜇2)) = 1 and monotonicity of 𝐹𝜇2 , 𝐹𝜇2 (𝐶(𝜇1)) > 1
mplies 𝐶(𝜇2) > 𝐶(𝜇1); in other words, 𝑛∗2(0) > 𝑛∗1(0). Furthermore, we
ave for all 𝑥 ≥ 0

∗
1(𝑥) =

1
𝑘(𝑥)

𝑒− ∫ 𝑥
0 𝜇̂1(𝑥′)d𝑥′

1
𝐶(𝜇1)

+ ∫ 𝑥
0 𝑒− ∫ 𝑧

0 𝜇̂1(𝑦)d𝑦d𝑧

≤ 1
𝑘(𝑥)

𝑒− ∫ 𝑥
0 𝜇̂2(𝑥′)d𝑥′

1
𝐶(𝜇2)

+ ∫ 𝑥
0 𝑒− ∫ 𝑧

0 𝜇̂2(𝑦)d𝑦d𝑧
= 𝑛∗2(𝑥).

(28)

Thus, the total populations 𝑁∗
1 and 𝑁∗

2 satisfy 𝑁∗
1 = ∫ ∞

0 𝑛∗1(𝑥)d𝑥 ≤
∞
0 𝑛∗2(𝑥)d𝑥 = 𝑁∗

2 . We conclude that no overcompensation will be
bserved under an interaction of the form 𝐾(𝑥′ − 𝑥) = 𝑘(𝑥)𝛿(𝑥′ − 𝑥).

.2. 𝑥-independent cannibalism rate 𝐾 = 𝐾(𝑥′)

We also show that an 𝑥-independent predation interaction (preda-
ors do not prefer prey of any age), 𝐾(𝑥′, 𝑥) = 𝐾(𝑥′), precludes
ermanent overcompensation. In this proof however, we must assume
ge-independent birth and death 𝛽(𝑥) = 𝛽, 𝜇(𝑥) = 𝜇. For 𝐾(𝑥′, 𝑥) =
(𝑥′), the solution to Eq. (9) satisfies

∗(𝑥) = 𝑛∗(0)𝑒−(𝜇+𝐾
∗)𝑥, 𝐾∗ ∶=∫

∞

0
𝐾(𝑥′)𝑛∗(𝑥′)d𝑥′,

𝑛∗(0) = 𝛽𝑁∗= 𝛽∫

∞

0
𝑛∗(𝑥)d𝑥.

(29)

hen 𝜇 ≥ 𝛽, no positive 𝐾∗ in Eq. (29) can satisfy 𝑁∗ = ∫ ∞
0 𝑛∗(𝑥)d𝑥

nd no positive solution exists. Numerical integration of the full time-
ependent model in Eq. (7) shows that the only steady state is 𝑛∗ ≡ 0.
hen 𝜇 < 𝛽, the solution to Eq. (29) is satisfied by 𝐾∗ = 𝛽 − 𝜇 which

eads to 𝑛∗(𝑥) = 𝛽𝑁∗𝑒−𝛽𝑥. Upon using 𝑛∗(𝑥) = 𝛽𝑁∗𝑒−𝛽𝑥 in the expression
∗ = 𝛽 − 𝜇 = ∫ ∞

0 𝐾(𝑥′)𝑛∗(𝑥′)d𝑥′ = 𝛽𝑁∗ ∫ ∞
0 𝐾(𝑥′)𝑒−𝛽𝑥′d𝑥′, we find

∗ =
1 − 𝜇

𝛽

∫ ∞
0 𝐾(𝑥′)𝑒−𝛽𝑥′d𝑥′

, (30)

which strictly decreases with 𝜇. Thus, a predation kernel that is inde-
pendent of prey age 𝑥 cannot exhibit steady-state overcompensation.

A.3. 𝑥′-independent cannibalism rate 𝐾(𝑥′, 𝑥) = 𝐾(𝑥)

For a predation/cannibalization rate of the form 𝐾(𝑥′, 𝑥) = 𝐾(𝑥),
he steady-state Eq. (9) becomes
d𝑛∗(𝑥)
d𝑥

= −
[

𝜇 +𝐾(𝑥)∫

∞

0
𝑛∗(𝑥′)d𝑥′

]

𝑛∗(𝑥),

𝑛∗(0) = 𝛽𝑁∗.
(31)

e now prove that if 𝜇, 𝛽 are constants, then no permanent overcom-
ensation will occur. Eq. (31) is solved by 𝑛∗(𝑥) = 𝑛∗(0)𝑒−𝜇𝑥−𝑁∗𝐾̃(𝑥),
here 𝐾̃(𝑥) ≡ ∫ 𝑥

0 𝐾(𝑦)d𝑦. Upon integrating the solution and using the
oundary condition 𝑛∗(0) = 𝛽𝑁∗, eliminating 𝑛∗(0), and using the
efinition 𝑁∗ = ∫ ∞

0 𝑛(𝑥)d𝑥, we find an implicit solution for 𝑁∗:

1 = 𝛽∫

∞

0
𝑒−𝜇𝑥−𝑁

∗𝐾̃(𝑥)d𝑥 ≡ 𝐹 (𝜇,𝑁∗). (32)

q. (32) is the specific form of Eq. (63) to be derived under a general
ondition later. To see how 𝑁∗ varies with 𝜇, we apply the implicit
unction theorem to obtain

𝛿𝑁∗

𝛿𝜇
= −

(𝜕𝐹∕𝜕𝜇)
(𝜕𝐹∕𝜕𝑁∗)

= −
∫ ∞
0 𝑥𝑒−𝜇𝑥−𝑁∗𝐾̃(𝑥)d𝑥

∫ ∞
0 𝐾̃(𝑦)𝑒−𝜇𝑦−𝑁∗𝐾̃(𝑦)d𝑦

. (33)

or 𝜇,𝑁∗ > 0, the RHS above is negative. Thus, 𝜕𝑁∗∕𝜕𝜇 < 0 and
teady-state overcompensation cannot arise. This result implies that
n interaction kernel 𝐾(𝑥′, 𝑥) that varies only in 𝑥 is insufficient for
teady-state overcompensation and that variation in 𝑥′ is necessary.
his result, along with that in Appendix A.2, suggests that predation
ernels 𝐾(𝑥′, 𝑥) that vary in both 𝑥′ and 𝑥 are required for steady-state

vercompensation, at least for age-independent 𝛽 and 𝜇.
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Appendix B. Simple interactions that can exhibit steady-state
overcompensation

Here, we consider some solvable examples of predation kernels
𝐾(𝑥′, 𝑥) that can exhibit steady-state overcompensation.

.1. Point source and sink

Consider the predation kernel defined as 𝐾(𝑥′, 𝑥) = 𝑘𝛿(𝑥′−𝑏)𝛿(𝑥−𝑎),
and 𝛽, 𝜇 assumed to be constant. The steady state solution of such a
system satisfies:
d𝑛∗(𝑥)
d𝑥

= −
[

𝜇 + 𝑘𝑛∗(𝑏)𝛿(𝑥 − 𝑎)
]

𝑛∗(𝑥). (34)

For such a system, the steady-state expression for 𝑛∗(𝑥) can be
written as:

𝑛∗(𝑥) = 𝑛∗(0)𝑒−𝜇𝑥−𝑘𝑛
∗(𝑏)𝜃(𝑥−𝑎). (35)

Assuming 𝑏 > 𝑎, we deduce from the boundary condition that

1 = ∫

∞

0
𝛽𝑒−𝜇𝑥−𝑘𝑛

∗(𝑏)𝜃(𝑥−𝑎)d𝑥. (36)

Since 𝑛∗(𝑏) > 0, (1 − 𝑒−𝑘𝑛∗(𝑏)) < 1, and Eq. (36) can be satisfied if and
only if

𝑒−𝜇𝑎 > 1 −
𝜇
𝛽
. (37)

nder this condition, 𝑛∗(𝑏) can be determined as

∗(𝑏) = − 1
𝑘
ln
(

1 −
(

1 − 𝜇
𝛽

)

𝑒𝜇𝑎
)

, (38)

hich, when used in conjunction with Eq. (35) determines 𝑛∗(0), lead-
ng to the final expression for the steady state total population

∗ = − 𝑒𝜇𝑏

𝛽𝑘

ln
(

1 −
(

1 − 𝜇
𝛽

)

𝑒𝜇𝑎
)

(

1 −
(

1 − 𝜇
𝛽

)

𝑒𝜇𝑎
) . (39)

ne can see that the magnitude of interaction strength 𝑘 does not
hange the sign of 𝜕𝑁∗∕𝜕𝜇. In the limit 𝑎 → 0+, Eq. (39) reduces to

∗(𝑎 → 0+) = 𝑒𝜇𝑏

𝜇𝑘
ln
(

𝛽
𝜇

)

. (40)

ote that in this limit, the constraint Eq. (37) is always satisfied,
lthough we still require 𝛽 > 𝜇 to ensure that 𝑁∗ is positive. Taking
he derivative of Eq. (40) with respect to 𝜇, we find

𝜕𝑁∗(𝑎 → 0+)
𝜕𝜇

= 𝑒𝑏𝜇

𝜇2𝑘

[

(𝑏𝜇 − 1) ln
(

𝛽
𝜇

)

− 1
]

. (41)

In other words, 𝜕𝑁∗∕𝜕𝜇 is positive, with overcompensation, if and only
if

(𝜇𝑏 − 1) ln
( 𝛽
𝜇

)

> 1. (42)

ince 𝜇 ∈ (0, 𝛽), the lowest value of 𝑏 that can still yield 𝜕𝑁∗∕𝜕𝜇 > 0
overcompensation) for some values of 𝛽, 𝜇 is

c = inf
𝜇∈(0, 𝛽)

⎛

⎜

⎜

⎝

1
𝜇
+ 1

𝜇 ln 𝛽
𝜇

⎞

⎟

⎟

⎠

= 𝑒−
1
2+

√

5
2

𝛽
+ 𝑒−

1
2+

√

5
2

𝛽
(

− 1
2 +

√

5
2

) . (43)

Intuitively, large birth rate 𝛽 and large interaction distance 𝑏 > 𝑏c are
both favorable for overcompensation.

B.2. Predation on newborns/eggs

We now delve into a specific version of our older-predating-on-
younger model, where the predation kernel 𝐾 is given by

𝐾(𝑥′, 𝑥) = lim 𝑘𝛿(𝑥 − 𝜀)𝜃(𝑥′ − 𝑏), (44)

𝜀→0+

(
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where 𝜃 is the Heaviside function. In this scenario, the steady state
solution 𝑛∗(𝑥) is solved by

𝑛∗(𝑥) = 𝑛∗(0)𝑒−𝑘𝑁𝑏𝑒−𝜇𝑥, (45)

here

𝑏 ∶=∫

∞

𝑏
𝑛∗(𝑥)d𝑥 ≡ 𝑛∗(𝑏)

𝜇
. (46)

The birth (boundary) condition can then be expressed as

1 = 𝛽
𝜇 𝑒

−𝑘𝑛∗(𝑏)∕𝜇 . (47)

iven the constraint 𝛽 > 𝜇, the steady state population at 𝑥 = 𝑏
ecomes 𝑛∗(𝑏) = (𝜇∕𝑘) ln

(

𝛽∕𝜇
)

. Using this result in Eq. (45) allows us
to determine 𝑛∗(0) and total population 𝑁∗

𝑁∗ = 𝑒𝜇𝑏

𝑘
ln
(

𝛽
𝜇

)

. (48)

To demonstrate there exists an interval of 𝜇 for which overcompensa-
tion arises provided sufficiently large 𝑏, we examine when the condition

𝜕𝑁∗

𝜕𝜇
=

(

𝜇𝑏 ln
(

𝛽
𝜇

)

− 1
)

𝑒𝜇𝑏

𝜇𝑘
> 0 (49)

holds. The threshold of 𝑏 above which overcompensation is possible is
thus

𝑏c = inf
𝜇∈(0, 𝛽)

1

𝜇 ln
(

𝛽
𝜇

) = 𝑒
𝛽
. (50)

Appendix C. Uniqueness of the positive steady state of Eq. (7)

If the distributed interaction 𝐾(𝑥′, 𝑥) satisfies Eq. (13), we shall
rove uniqueness of a positive steady state under the assumption that
he set {𝑥 ∶ ∃𝑥′ > 𝑥 > 0, 𝐾(𝑥′, 𝑥) > 0} ∩ {𝑥 ∶ 𝛽(𝑥) > 0, 𝑥 > 0} has
ositive measure. We shall prove the following two statements. First,
e assume two steady states, 𝑚∗(𝑥) and 𝑛∗(𝑥), and demonstrate that

f 𝑚∗(𝑋) = 𝑛∗(𝑋) at some age 𝑋, then 𝑚∗(𝑥) and 𝑛∗(𝑥) are precisely
he same steady state everywhere. Second, without loss of generality,
f 𝑛∗(𝑋) > 𝑚∗(𝑋), we will demonstrate that 𝑛∗(𝑥) > 𝑚∗(𝑥) ∀𝑥 ≥ 0.
his dominance relation conflicts with the well-known Euler-Lotka
quation, thereby demonstrating the uniqueness of the steady-state
olution. These results indicate that although overcompensation can
rise from transition to an alternative steady state upon increases in
eath or harvesting [51], multistability is not a necessary condition for
vercompensation of increased death.

To show
∗(𝑋) = 𝑛∗(𝑋) ⇒ 𝑚∗(𝑥) = 𝑛∗(𝑥), ∀𝑥 ≥ 𝑋, (51)

irst note that since 𝐾(𝑥′, 𝑥 > 𝑋) = 0, the interaction terms in Eq. (9)
or both 𝑚(𝑥) and 𝑛(𝑥) vanish for 𝑥 > 𝑋 and thus are linear first-
rder equations with identical decay rates 𝜇(𝑥) and coincident ‘‘initial
onditions’’ 𝑚∗(𝑋) = 𝑛∗(𝑋). Thus, the solutions for 𝑥 > 𝑋 are identical.

What remains is to show that 𝑚∗(𝑋) = 𝑛∗(𝑋) ⇒ 𝑚∗(𝑥) = 𝑛∗(𝑥), ∀𝑥 ≥
. To simplify notation, we set 𝜉 = 𝑋 − 𝑥, 𝜉′ = 𝑋 − 𝑥′ and define
(𝜉) ≡ 𝑛(𝑋−𝑥), 𝑓 ∗(𝜉) ≡ 𝑛∗(𝑋−𝑥), transforming the steady-state problem
q. (9) into a general integral–differential equation with given initial
ata (using Eq. (51))

d𝑓 (0 < 𝜉 ≤ 𝑋)
d𝜉

=
[

𝜇(𝜉) +∫

𝜉

−∞
𝐾(𝜉′, 𝜉)𝑓 (𝜉′)𝑑𝜉′

]

𝑓 (𝜉),

𝑓 (𝜉 ≤ 0) = 𝑓 ∗(𝜉),
(52)

here we have reparameterized 𝜇(𝑥) such that 𝜇(𝜉) = 𝜇(𝑥 = 𝑋 − 𝜉) and
(𝑥′, 𝑥) such that 𝐾(𝜉′, 𝜉) = 𝐾(𝑥′ = 𝑋 − 𝜉′, 𝑥 = 𝑋 − 𝜉). The goal is to
arch the steady-state uniqueness from 𝜉 < 0 (𝑥 > 𝑋) up to 𝜉 = 𝑋

𝑥 = 0). Let us assume that uniqueness of 𝑓 (𝜉) has been demonstrated
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up to 𝜉0, i.e., that 𝑓 (𝜉) = 𝑓 ∗(𝜉) ≡ 𝑛∗(𝑋−𝜉) has been uniquely determined
in (−∞, 𝜉0]. Breaking up the integral term, we write

d𝑓 (𝜉 > 𝜉0)
d𝜉

=
[

𝜇(𝜉) +∫

𝜉0

−∞
𝐾(𝜉′, 𝜉)𝑓 (𝜉′)d𝜉′

+∫

𝜉

𝜉0
𝐾(𝜉′, 𝜉)𝑓 (𝜉′)d𝜉′

]

𝑓 (𝜉),

𝑓 (𝜉 ≤ 𝜉0) =𝑓 ∗(𝜉).

(53)

We can march 𝜉0 forward from 0 and consider a small region (𝜉0, 𝜉0+𝜀)
successively. At each stage, since 𝑓 (𝜉) = 𝑓 ∗(𝜉0 ≤ 𝜉 < 𝜉0 + 𝜀) has been
uniquely determined, we can combine 𝜇(𝜉)+∫ 𝜉0

−∞ 𝐾(𝜉′, 𝜉)𝑓 (𝜉′)d𝜉′ → 𝜇(𝜉).
If we start at 𝜉0 = 0, it suffices to show that the solution to

d𝑓 (𝜉 > 0)
d𝜉

=
[

𝜇(𝜉) + ∫

𝜉

0
𝐾(𝜉′, 𝜉)𝑓 (𝜉′)d𝜉′

]

𝑓 (𝜉),

𝑓 (0) =𝑓 ∗(0)
(54)

is unique in a small domain of (0, 𝜀).
Suppose that 𝜇(𝜉) is (locally) bounded by 𝜇̂, 𝐾(𝜉′, 𝜉) is bounded by

𝐾̂, and 𝑔 is the local solution to the associated differential equation

d𝑔(𝜉 > 0)
d𝜉

=
[

𝜇̂ + 𝐾̂∫

𝜉

0
𝑔(𝜉′)d𝜉′

]

𝑔(𝜉),

𝑔(0) =𝑓 ∗(0).
(55)

The integral 𝐺(𝜉) ≡ ∫ 𝜉
0 𝑔(𝜉′)d𝜉′ then obeys the standard-form second-

order ODE
d2𝐺(𝜉 > 0)

d𝜉2
=
[

𝜇̂ + 𝐾̂𝐺(𝜉)
] d𝐺(𝜉)

d𝜉
,

d𝐺(𝜉)
d𝜉

|

|

|

|𝜉=0
= 𝑔(0) ≡ 𝑓 ∗(0), 𝐺(0) = 0.

(56)

he solution to Eq. (56) in the region (0, 𝜀) is unique and for any
olution 𝑓 of Eq. (54), 0 < 𝑓 ≤ 𝑔.

Now suppose that 𝑓1 and 𝑓2 are two solutions in the neighborhood
of 0 that solve Eq. (54). We have

𝑓𝑖(𝜉)=𝑓 ∗(𝜉)+∫

𝜉

0

(

𝜇(𝜉′) +∫

𝜉′

0
𝐾(𝜉′′, 𝜉′)𝑓𝑖(𝜉′′)d𝜉′′

)

𝑓𝑖(𝜉′)𝑑𝜉′ (57)

for 𝑖 = 1, 2. Note that
|

|

|

|

𝑓1(𝜉′)∫

𝜉′

0
𝐾(𝜉′′, 𝜉′)𝑓1(𝜉′′)d𝜉′′

− 𝑓2(𝜉′)∫

𝜉′

0
𝐾(𝜉′′, 𝜉′)𝑓2(𝜉′′)d𝜉′′

|

|

|

|

=
|

|

|

|

𝑓1(𝜉′)∫

𝜉′

0
𝐾(𝜉′′, 𝜉′)

(

𝑓1(𝜉′′) − 𝑓2(𝜉′′)
)

d𝜉′′

+
(

𝑓1(𝜉′) − 𝑓2(𝜉′)
)

∫

𝜉′

0
𝐾(𝜉′′, 𝜉′)𝑓2(𝜉′′)d𝜉′′

|

|

|

|

≤ 2𝐾̂𝜉′ sup
𝜉∈(0,𝜀)

𝑔(𝜉) sup
𝜉∈(0,𝜀)

|

|

|

𝑓1(𝜉) − 𝑓2(𝜉)
|

|

|

.

(58)

Then, using Eq. (57), we conclude that

sup
𝜉∈[0,0+𝜀]

|

|

|

𝑓1(𝜉) − 𝑓2(𝜉)
|

|

|

≤
{

𝜀𝜇̂ + 𝜀2𝐾̂ sup
𝜉∈(0,𝜀)

𝑔(𝜉)
}

sup
𝜉∈[0,0+𝜀]

|

|

|

𝑓1(𝜉) − 𝑓2(𝜉)
|

|

|

.

(59)

Since 𝜀 can be chosen sufficiently small such that
{

𝜀𝜇̂ + 𝜀2𝐾̂
sup𝜉∈(0,𝜀)𝑔(𝜉)

}

< 1, we conclude sup𝜉∈[0,0+𝜀]
|

|

|

𝑓1(𝜉) − 𝑓2(𝜉)
|

|

|

= 0, proving

the solution to Eq. (54) is unique in a neighborhood of 0. Under the
assumption that the solution to Eq. (54) exists, we can replace the point
𝜉 = 0 with 𝜉 ∈ (0, 𝑋) and conclude that the solution is unique in a small
neighborhood of 𝜉 = 𝑋 − 𝑥. Therefore, the solution is globally unique
in (0, 𝑋), and the proof of the first statement is completed.

Next, we prove the second statement by showing that the case
𝑛∗(𝑋) > 𝑚∗(𝑋) cannot not hold by first claiming that
∗ ∗ ∗ ∗
𝑛 (𝑋) > 𝑚 (𝑋) ⇒ 𝑛 (𝑥) > 𝑚 (𝑥), ∀𝑥 ≥ 0. (60) i
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We easily observe that the statement is true for 𝑥 ≥ 𝑋. Suppose for
some 𝑥0, 𝑛∗(𝑥0) ≤ 𝑚∗(𝑥0). Then let 𝑥∗ = sup𝑥≥0{𝑥 ∶ 𝑛∗(𝑥) ≤ 𝑚∗(𝑥)}. By
continuity of 𝑚∗ and 𝑛∗, we note that 𝑥∗ < 𝑋.

Within the interval (𝑥∗, 𝑋), 𝑛∗(𝑥) > 𝑚∗(𝑥). Let 𝜉 = 𝑋−𝑥, and consider
the functions 𝑚∗ and 𝑛∗ written as functions of 𝜉. The difference of
Eq. (52) satisfied by 𝑚∗ and 𝑛∗ becomes
d
d𝜉

(

𝑛∗(𝜉) − 𝑚∗(𝜉)
)

≥ 𝜇(𝜉)
(

𝑛∗(𝜉) − 𝑚∗(𝜉)
)

, ∀𝜉 ∈ (0, 𝜉∗). (61)

y integrating both sides of Eq. (61) from 0 to 𝜉∗, we conclude that
∗(𝜉∗)−𝑚∗(𝜉∗) > 0, which demonstrates the dominance relation 𝑛∗(𝑥) >
∗(𝑥), ∀𝑥 ≥ 0.

We can now exploit the equilibrium form of the Euler-Lotka equa-
ion [56,57]. Let 𝜇̃(𝑥) = 𝜇(𝑥) + ∫ ∞

𝑥 𝐾(𝑥′, 𝑥)𝑛∗(𝑥′)𝑑𝑥′ be the effective
eath rate and 𝑠(𝑥) = exp

(

− ∫ 𝑥
0 𝜇̃(𝑥′)d𝑥′

)

be the survival probability of
ny individual up to age 𝑥. The overall steady-state rate of new births
efined by

(0, 𝑡) ≡ 𝐵(𝑡) =∫

∞

0
𝛽(𝑥)𝑛(𝑥, 𝑡)d𝑥 (62)

an be formally written in terms of 𝑠(𝑥) and the form of the method of
haracteristics solution 𝑛(𝑥 < 𝑡, 𝑡) = 𝑛(0, 𝑡 − 𝑥)𝑠(𝑥) = 𝐵(𝑡 − 𝑥)𝑠(𝑥). Using
his form of 𝑛(𝑥 < 𝑡, 𝑡) in the integrand in Eq. (62), we find in the 𝑡 → ∞
imit 𝐵(𝑡) = ∫ ∞

0 𝛽(𝑥)𝐵(𝑡 − 𝑥)𝑠(𝑥)d𝑥. Since in the 𝑡 → ∞ steady state limit
ll quantities are independent of time, 𝐵(𝑡) = 𝐵 and

= ∫

∞

0
𝛽(𝑥)𝑠(𝑥)d𝑥 ≡∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇̃(𝑥′)d𝑥′d𝑥, (63)

hich means that at steady state, the population 𝑛∗(𝑥) and effective
eath rate 𝜇̃(𝑥′) settles to value such that the effective reproductive
umber 𝑅0 ≡ ∫ ∞

0 𝛽(𝑥)𝑠(𝑥)d𝑥 = 1.
Eq. (63) must be satisfied at steady state but allows us to compare

ifferent 𝜇̃s associated with different steady state solutions. For differ-
nt steady states 𝑚∗ and 𝑛∗ such that 𝑚∗ > 𝑛∗ at all ages, the effective
eath rates satisfy 𝜇̃(𝑚) ≥ 𝜇̃(𝑛). Since 𝛽 remains the same, the survival
robability satisfies 𝑠(𝑚) ≤ 𝑠(𝑛), where the inequality should hold on a
ositive measure interval. Because {𝑥 ∶ ∃𝑥′ > 𝑥 > 0, 𝐾(𝑥′, 𝑥) > 0} ∩ {𝑥 ∶
(𝑥) > 0, 𝑥 > 0} has positive measure, we will conclude

=∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇̃(𝑚)(𝑥′)d𝑥′d𝑥 <∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇̃(𝑛)(𝑥′)d𝑥′d𝑥=1. (64)

his contradiction shows that if 𝐾 is continuous and compactly sup-
orted and if {𝑥 ∶ ∃𝑥′ > 𝑥 > 0, 𝐾(𝑥′, 𝑥) > 0} ∩ {𝑥 ∶ 𝛽(𝑥) > 0, 𝑥 > 0} has
ositive measure, then Eq. (7) admits at most one positive steady state.

ppendix D. Existence of a positive steady state of Eq. (7)

If a predation kernel satisfies Eq. (13), we can also obtain the
riterion for the existence of a positive steady state, which is equivalent
o finding a positive solution 𝑛∗(𝑥) to Eqs. (9) under certain additional
ssumptions.

In Appendix C, we showed that any solution 𝑛∗(𝑥) to Eqs. (9) must
atisfy Eq. (54) with the transformed coordinate 𝜉 = 𝑋 − 𝑥 and 𝑓 (𝜉) =
∗(𝑋−𝑥). For the existence arguments, we first investigate the condition
nder which Eq. (54) has a positive solution. Formally, we pick the
nitial condition 𝑛𝑋 ∶= 𝑓 (0) > 0 as the parameter of interest, and
onsider the domain of 𝑛𝑋 such that the solution to Eq. (54) exists up
o 𝜉 = 𝑋. Define 𝑓−1(𝜉) ≡ 0 and 𝑓𝑛+1(𝜉) as solutions to the ODE

1
𝑓𝑛+1(𝜉)

d𝑓𝑛+1(𝜉)
d𝜉

= 𝜇(𝜉) +∫

𝜉

0
𝐾(𝜉′, 𝜉)𝑓𝑛(𝜉′)d𝜉′, ∀𝜉 ∈ (0, 𝑋),

𝑓𝑛+1(0) = 𝑛𝑋 ,
(65)

where 𝑛 ≥ −1. In particular, 𝑓0(𝜉) = 𝑛𝑋𝑒
∫ 𝜉
0 𝜇(𝜉′)d𝜉′ > 0 = 𝑓−1(𝜉)

or all 𝜉 ∈ (0, 𝑋). For each 𝑛, an iterative argument shows that
𝑛 is bounded, continuous, and nonnegative on [0, 𝑋]. In addition,
0(𝜉) > 𝑓−1(𝜉),∀𝜉 ∈ (0, 𝑋) implies that {𝑓𝑛(𝜉)} is a monotonically

ncreasing sequence in both 𝜉 and 𝑛. Therefore, 𝑓 (𝜉) ∶= lim𝑛→∞ 𝑓𝑛(𝜉) ∈



M. Xia et al.

s
r

v
d
l
s
f
a
c

t
l
i
s

b
o

E
d

W

E

T
L
t
𝑛
d
c
t

𝑛

w
b
s
c

𝑛

T

𝑛

b
t
m

≡
a

w
h
w
a
c
1
𝑁
𝑁
o

E

s
e
r
o
r
t

𝑁

Physica D: Nonlinear Phenomena 470 (2024) 134339 
(0,∞] exists and satisfies Eq. (54) up to the moment of blowup 𝜉∗ ≡
up {𝜉 ∈ (0, 𝑋) ∶ 𝑓 (𝜉) < ∞}, thanks to the monotone convergence theo-
em.

We also observe that 𝑓 (𝜉) depends monotonically on the initial
alue 𝑛𝑋 . For sufficiently regular 𝜇 and 𝐾, we also observe that 𝑓 (𝜉)
epends continuously on the initial condition 𝑛𝑋 . Define the upper
imit for 𝑛𝑋 by 𝑛∗𝑋 ≡ sup

{

𝑛𝑋 ∶ 𝜉∗(𝑛𝑋 ) > 𝑋
}

with the convention that
up ∅ = 0, and we find an open domain (0, 𝑛∗𝑋 ) of 𝑛𝑋 such that 𝑓 (𝜉) < ∞
or all 𝜉 ∈ [0, 𝑋] with the initial value 𝑛𝑋 . In particular, the continuity
ssumption implies lim𝑛𝑋→𝑛∗𝑋−

𝑓 (𝑋) = ∞. The marginal case 𝑛∗𝑋 = ∞ is
overed by this equation because 𝑓 (𝑋) ≥ 𝑓 (0) = 𝑛𝑋 → ∞.

Now, we recover 𝑛∗(𝑥) from 𝑓 (𝜉) and denote 𝑛∗ by 𝑛∗𝑛𝑋 to emphasize
he dependence on 𝑛𝑋 . For the sake of simplicity, we assume the upper
imit 𝑛∗𝑋 = +∞ in the following discussion. This can be achieved by
mposing proper restrictions on 𝜇 and 𝐾, such that the existence of the
olution to Eq. (56) on the interval (0, 𝑋) is guaranteed.

We proved that there is a unique solution 𝑛∗𝑛𝑋 (𝑥) to the first equation
in Eqs. (9) when 𝑛∗𝑛𝑋 (𝑋) = 𝑛𝑋 provided that 𝜇 and 𝐾 are bounded
on [0, 𝑋], there exist positive constants 𝜇0, 𝐾0 > 0 such that 𝜇 ≥
𝜇0, 𝐾 ≥ 𝐾0, and 𝐾 vanishes for 𝑥 > 𝑋. We shall show that the
solution to Eqs. (9) exists under the following two conditions: (i) in
the cannibalism-free environment (𝐾 = 0), the expected number of
offspring that an individual will give birth to is larger than 1

∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇(𝑥′)d𝑥′d𝑥 > 1, (66)

and (ii) given any d𝐺(𝜉)
d𝜉

|

|

|𝜉=0
∶= 𝑛𝑋 , the second order ODE Eq. (56) can

e solved up to 𝜉 = 𝑋, and that d𝐺(𝜉)
d𝜉 , 𝜉 ∈ (0, 𝑋) depends continuously

n the initial d𝐺(𝜉)
d𝜉 |𝜉=0.

Note that the existence of the solution to Eqs. (9) requires a proper
𝑛𝑋 such that 𝑛∗𝑛𝑋 (0) is suitable for the second equation in Eqs. (9), i.e.,
the boundary condition representing the newborn cells. So we need
to show that d𝐺(𝜉)

d𝜉
|

|

|𝜉=𝑋
= 𝑛∗𝑛𝑋 (0) satisfies the boundary condition in

qs. (9). Note that as long as 𝑛𝑋 > 0, 𝑛∗𝑛𝑋 (𝑥) > 0, ∀𝑥 ≥ 0. Let 𝜇̃𝑛𝑋
enote the effective death rate 𝜇̃𝑛𝑋 (𝑥) = 𝜇(𝑥) + ∫ ∞

𝑥 𝐾(𝑥′, 𝑥)𝑛∗𝑛𝑋 (𝑥
′)d𝑥′,

then the second equation in Eqs. (9) is equivalent to

𝑛∗𝑛𝑋 (0)
{

1 − ∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇̃𝑛𝑋 (𝑥′)d𝑥′d𝑥
}

= 0. (67)

e define the Euler-Lotka functional as

L
[

𝑛∗𝑛𝑋
]

= ∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇̃𝑛𝑋 (𝑥′)d𝑥′d𝑥, (68)

hen, the second equation in Eq. (9) is equivalent to the famous Euler-
otka equation EL

[

𝑛∗𝑛𝑋
]

= 1 for positive solutions 𝑛∗𝑛𝑋 . We have shown
hat 𝑛𝑋 < 𝑛′𝑋 ⇒ 𝜇̃𝑛𝑋 (𝑥) ≤ 𝜇̃𝑛′𝑋 (𝑥), ∀𝑥 ≥ 0. Therefore, the function
𝑋 ↦ EL

[

𝑛∗𝑛𝑋
]

is monotonically decreasing. Because 𝑛∗𝑛𝑋 (𝑥), 𝑥 ≤ 𝑋
epends continuously on 𝑛∗𝑛𝑋 , the functional Eq. (68) also depends
ontinuously on 𝑛∗𝑛𝑋 . Consequently, we conclude that the existence of
he positive steady state is equivalent to

lim
𝑛𝑋→∞∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇̃𝑛𝑋 (𝑥′)d𝑥′d𝑥 < 1;

lim
𝑋→0+∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇̃𝑛𝑋 (𝑥′)d𝑥′d𝑥 > 1.
(69)

When 𝑛𝑋 = 0, 𝑛∗𝑛𝑋 (𝑥) ≡ 0. Furthermore, for 𝑥 < 𝑋, 𝑛∗(𝑥) ≥ 𝑛∗(𝑋),
hich implies lim𝑛𝑋→∞ 𝑛∗𝑛𝑋 (𝑥) = ∞, 𝑥 < 𝑋. Since we have assumed that
oth 𝜇 and 𝐾 have positive lower bounds on their support and that the
olution 𝑛∗𝑛𝑋 is continuously dependent on the initial condition 𝑛𝑋 , we
ould conclude that

lim
𝑋→0+

𝜇̃𝑛𝑋 (𝑥) =𝜇(𝑥) +∫

∞

𝑥
𝐾(𝑥′, 𝑥)𝑛∗0(𝑥

′)d𝑥′= 𝜇(𝑥);

lim
𝑛 →∞

𝜇̃𝑛𝑋 (𝑥) =𝜇(𝑥) +∫

∞
𝐾(𝑥′, 𝑥)𝑛∗∞(𝑥′)d𝑥=

{

𝜇(𝑥) 𝑥 ≥ 𝑋
(70)
𝑋 𝑥 ∞ otherwise.

11 
he first equation in Eq. (69) is satisfied as

lim
𝑋→∞∫

∞

0
𝛽(𝑥)𝑒− ∫ 𝑥

0 𝜇̃𝑛𝑋 (𝑥′)d𝑥′d𝑥 = 0 (71)

ecause lim𝑛𝑋→∞ 𝜇̃𝑛𝑋 (𝑥) = ∞, 𝑥 ∈ (0, 𝑋). Furthermore, the second equa-
ion in Eq. (69) is satisfied by the assumption Eq. (66). Therefore, there
ust exist an 𝑛𝑋 such that EL

[

𝑛∗𝑛𝑋
]

= 1, and thus the corresponding
𝑛𝑛𝑋 (𝑥) satisfies the two equations in Eqs. (9).

Appendix E. Additional examples of overcompensation

E.1. Cannibalism-related birth rate

In the main discussion, we assumed that cannibalism only modifies
the death rate. Here, we provide a numerical example in which preying
on juveniles can increase birth rates. This limit may arise when food is
not abundant and cannibalism provides nourishment for reproduction.
In this case the birth rate can be a function of the amount of cannibal-
ism measured by ∫ ∞

0 𝐾(𝑥, 𝑥′)𝑛(𝑥′, 𝑡)d𝑥′ ≡ 𝜙[𝑛; 𝑥], which is a functional
of 𝑛(𝑥). We will assume that 𝛽(𝑥, 𝜙[𝑛; 𝑥]) takes the form

𝛽(𝑥, 𝜙[𝑛; 𝑥]) = 𝛽0 +
1
4𝜙[𝑛; 𝑥]

= 𝛽0 +
1
4∫

∞

0
𝐾(𝑥, 𝑥′)𝑛(𝑥′, 𝑡)d𝑥′,

(72)

where 𝛽0, 𝜇 are constants. Using Eq. (72) along with 𝐾(𝑥′, 𝑥) = 𝐾1(𝑥′, 𝑥)
𝜃(𝑥′ −2)𝜃(2 − 𝑥) in Eq. (7), we compute and plot the total population

t steady-state as a function of 𝛽0 and 𝜇 in Fig. 3(b). When 𝛽0 is fixed,
the total population is found to first increase with the death rate 𝜇
until 𝜇 → 𝛽+0 when the population starts to diminish. This implies
that for the cannibalism-rate-dependent birth rate 𝛽 defined in Eq. (72),
overcompensation can arise.

E.2. Harvesting-induced overcompensation

Populations can also overcompensate selective harvesting [8–10]
which we can model by incorporating, as shown by Eq. (16), an age-
dependent harvesting term ℎ(𝑛; 𝑥, 𝑡) that can be a nonlinear function of
𝑛 [58].

We explore age-dependent harvesting ℎ(𝑛; 𝑥, 𝑡) that preferentially re-
moves older populations and show numerically that overcompensation
can arise for the two forms of harvesting

ℎ1 =min{𝑛(𝑥, 𝑡), ℎ}𝜃(𝑥 − 2),

ℎ2 =
ℎ𝑛(𝑥, 𝑡)

𝑛(𝑥, 𝑡) + 𝑛1∕2
𝜃(𝑥 − 2),

(73)

here ℎ is the intrinsic maximum harvesting rate and 𝑛1∕2 is a constant
alf-saturation density. Both effective harvesting rates ℎ1 and ℎ2 vanish
ith the population densities 𝑛(𝑥, 𝑡), saturate to ℎ when 𝑛(𝑥, 𝑡) ≫ 𝑛1∕2,
nd increase with the parameter ℎ. We set all other dimensionless
oefficients in Eq. (16) to 𝐾(𝑥′, 𝑥) = 𝐾4(𝑥′, 𝑥) = (𝑥′ − 𝑥)𝜃(𝑥′ − 𝑥), 𝛽 =
, 𝜇 = 0.5, 𝑛1∕2 = 1. In Fig. 3(a), we plot the plot steady-state population
∗ for scenarios ℎ1 and ℎ2 as a function of ℎ. The total population
∗ is seen to increase with ℎ for both harvesting strategies, indicating

vercompensation in response to increased harvesting rate.

.3. Overcompensation following changes in birth rate

The usual ‘‘hydra effect’’ overcompensation is described by a steady
tate total population that increases with the death rate. In all of our
xamples, the total population at the steady-state increased with birth
ate 𝛽. One can show that if 𝐾(𝑥′, 𝑥) ≥ 0 and 𝐾(𝑥′, 𝑥) = 0 for 𝑥 > 𝑋
r 𝑥′ ≤ 𝑥, the steady-state solutions to Eq. (9) that correspond to birth
ates 𝛽1(𝑥) > 𝛽2(𝑥), 𝑛∗𝛽1 (𝑥) and 𝑛∗𝛽2 (𝑥), are such that the total steady-state
otal populations

∗ ∶=
∞
𝑛∗ (𝑥)d𝑥 > 𝑁∗ ∶=

∞
𝑛∗ (𝑥)d𝑥. (74)
𝛽1 ∫0 𝛽1 𝛽2 ∫0 𝛽2
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Fig. 3. (a) The steady-state total population 𝑁∗(𝛽(𝑥, 𝜙[𝑛; 𝑥])) that displays overcompensation with a constant death rate for the cannibalism-dependent birth rate Eq. (72), where
cannibalism has a positive effect on the birth rate. (b) The difference in the steady-state population 𝑁∗(𝛽(𝑥, 𝜙[𝑛; 𝑥])) −𝑁∗(𝛽0), where 𝑁∗(𝛽(𝑥, 𝑡)) is the steady-state total population
with a constant birth rate 𝛽 ∶= 𝛽0. Because 𝛽(𝑥, 𝜙[𝑛; 𝑥]) > 𝛽0 for 𝑛∗, the difference is always positive. Furthermore, for some fixed 𝛽0, the difference 𝑁∗(𝛽(𝑥, 𝜙[𝑛; 𝑥])) −𝑁∗(𝛽0) also
‘‘overcompensates’’ by first increase then decrease with 𝜇 ∶= 𝜇0. (c) The steady-state total population for ℎ1 , ℎ2 in Eq. (73) for the harvesting model Eq. (16). Overcompensation is
observed with increasing harvesting rates. Furthermore, since ℎ1 > ℎ2 if ℎ is the same, for a fixed ℎ, the total population under the harvesting rate ℎ1 is greater than that under
ℎ2.
In fact, steady-state solution 𝑛∗(𝑥), 𝑥 ≥ 0 to Eq. (9) can be expressed in
terms of 𝑛∗(𝑋)

𝑛∗(𝑥 ≤ 𝑋) =𝑛∗(𝑋)𝑒∫
𝑋
𝑥 𝜇(𝑥′)d𝑥′𝑒∫

𝑋
𝑥 ∫ ∞

𝑥′ 𝐾(𝑦,𝑥′)𝑛∗(𝑦)d𝑦d𝑥′ ,

𝑛∗(𝑥 ≥ 𝑋) =𝑛∗(𝑋)𝑒− ∫ 𝑥
𝑋 𝜇(𝑥′)d𝑥′ .

(75)

We conclude from Eq. (75) that if 𝑛∗𝛽1 (𝑋) > 𝑛∗𝛽2 (𝑋) then 𝑛∗𝛽1 (𝑥) >

𝑛∗𝛽2 (𝑥), 𝑥 ≥ 0 and therefore Eq. (74) still holds.
On the other hand, if 𝑛∗𝛽1 (𝑋) ≤ 𝑛∗𝛽2 (𝑋), we conclude from Eq. (75)

that 𝑛∗𝛽1 (𝑥) ≤ 𝑛∗𝛽2 (𝑥), 𝑥 ≥ 0. However, from Eq. (63), we have

∫

∞

0
𝛽𝑖(𝑥)𝑒− ∫ 𝑥

0 𝜇̃𝑖(𝑥′)d𝑥′d𝑥 = 1, 𝑖 = 1, 2 (76)

where

𝜇̃1(𝑥) = 𝜇(𝑥) +∫

∞

𝑥
𝐾(𝑥′, 𝑥)𝑛∗𝛽1 (𝑥

′)d𝑥′ ≤ 𝜇̃2(𝑥)

= 𝜇(𝑥) +∫

∞

𝑥
𝐾(𝑥′, 𝑥)𝑛∗𝛽2 (𝑥

′)d𝑥′.
(77)

Therefore,

1 = ∫

∞

0
𝛽1(𝑥)𝑒− ∫ 𝑥

0 𝜇̃1(𝑎)d𝑎d𝑥

> ∫

∞

0
𝛽2(𝑥)𝑒− ∫ 𝑥

0 𝜇̃2(𝑎)d𝑎d𝑥 = 1
(78)

is a contradiction, which implies that the steady-state population
density 𝑛∗𝛽1 (𝑥) > 𝑛∗𝛽2 (𝑥) and that the total steady-state population
∫ ∞
0 𝑛∗𝛽1 (𝑥)d𝑥 > ∫ ∞

0 𝑛∗𝛽2 (𝑥)d𝑥 always increases with birth rate when 𝐾 ≥ 0
and the predation is unidirectional (old-eat-young).

In scenarios in which the younger population can prey on the
older population, and 𝐾 can be negative, steady-state total populations
can decrease with the birth rate, i.e., the steady-state total population
‘‘overcompensates’’ as the birth rate decreases. As an example, we
assume a dimensionless predation rate of the form

𝐾̃(𝑥′, 𝑥) ≡ 2𝜃(𝑋 − 𝑥′) − 1, (79)

set 𝑋, 𝜇, and 𝛽 to be dimensionless constants, and investigate how the
population varies with 𝛽. Here, the young population 𝑥′ < 𝑋 suppresses
the whole population as 𝐾̃(𝑥′, 𝑥) = 1 > 0, 𝑥′ < 𝑋, while the old
population 𝑥′ ≥ 𝑋 has a positive effect on the whole population since
𝐾̃(𝑥′, 𝑥) = −1, 𝑥′ ≥ 𝑋, possibly through intraspecific collaboration. The
explicit solution for the steady-state population is

𝑛∗(𝑥) =
𝛽(𝛽 − 𝜇)𝑒−𝛽𝑥
(

1 − 2𝑒−𝛽𝑋
) ,

𝑁∗ =
∞
𝑛∗(𝑥)d𝑥 =

(𝛽 − 𝜇)
(

−𝛽𝑋
) .

(80)
∫0 1 − 2𝑒
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Upon taking the derivative 𝜕𝛽𝑁∗, we find

𝜕𝑁∗

𝜕𝛽
=

1 − 2𝑒−𝛽𝑋 − 2(𝛽 − 𝜇)𝑋𝑒−𝛽𝑋
(

1 − 2𝑒−𝛽𝑋
)2

, (81)

and specifically,
(

𝜕𝑁∗∕𝜕𝛽
)

< 0 if 2 + 2(𝛽 − 𝜇)𝑋 > 𝑒𝛽𝑋 . Therefore, if the
interspecific interaction 𝐾 allows younger individuals to suppress the
overall population, the steady-state population can overcompensate by
decreasing as the birth rate 𝛽 is increased.

Appendix F. Analysis of the discretized ODE system Eq. (20)

F.1. Uniqueness of the positive equilibrium of the ODE Eq. (20)

We shall first show that there is at most one positive steady-state
solution {𝑛∗𝑖 } of the discretized ODE Eq. (20). We will prove by con-
tradiction and assuming two distinct positive equilibria. The positive
steady-state solution to Eq. (20), if it exists, satisfies the backward
difference equation

𝑛∗𝑖−1 =
(

1 + 𝛥𝑥𝜇𝑖 + 𝛥𝑥
∑

𝑗≥𝑖
𝐾𝑗,𝑖𝑛

∗
𝑗

)

𝑛∗𝑖 , 1 < 𝑖 ≤ 𝐿 − 1 (82)

𝑛∗𝐿−1 =𝛥𝑥
(

𝜇𝐿 +𝐾𝐿,𝐿𝑛
∗
𝐿
)

𝑛∗𝐿 (83)
𝐿
∑

𝑖=1
𝛽𝑖𝑛

∗
𝑖 =𝜇0𝑛∗0 + 𝑛∗0

𝐿
∑

𝑗=0
𝐾𝑗,𝑖𝑛

∗
𝑗 +

𝑛∗0
𝛥𝑥

. (84)

We proceed by showing that if {𝑚∗
𝑖 } and {𝑛∗𝑖 } are two positive steady

states, then 𝑚∗
𝐿 = 𝑛∗𝐿. If 𝑚∗

𝐿 = 𝑛∗𝐿, then by induction, 𝑚∗
𝑖 ≡ 𝑛∗𝑖 . If

𝑛∗𝐿 > 𝑚∗
𝐿, then 𝑛∗𝐿−1 > 𝑚∗

𝐿−1 by Eq. (83). Since 𝐾𝑖,𝑗 ≥ 0, we observe
that 𝐾𝐿−1,𝐿𝑛∗𝐿 ≥ 𝐾𝐿−1,𝐿𝑚∗

𝐿. This inequality further demonstrates that
𝑛∗𝐿−2 > 𝑚∗

𝐿−2 combined with Eq. (82). Thus, by induction, 𝑛∗𝐿 > 𝑚∗
𝐿

leads to 𝑛∗𝑖 > 𝑚∗
𝑖 for all 𝑖 ∈ {0, 1,… , 𝐿}.

Next, let 𝑛𝑖(𝑡) be solutions to Eq. (20) with the initial value equal
to the steady state 𝑛∗𝑖 . Let 𝐵(𝑡) ∶= ∑

𝑖 𝛽𝑖𝑛𝑖(𝑡) be the newborn population
at time 𝑡. Then, for any compartment 𝑖, the population 𝑛𝑖(𝑡) at time 𝑡 is
composed of two parts: the survivors from the initial 𝑡 = 0 population
and those who were born in (0, 𝑡). In order to characterize survival, we
define {𝑠𝑖,𝑗 (𝑡)}𝐿𝑖,𝑗=0 to be the solution of

d𝑠𝑖,0(𝑡)
d𝑡

= − 𝜇0𝑠𝑖,0(𝑡) − 𝑠𝑖,0(𝑡)
𝐿
∑

𝑗=0
𝐾𝑗,0𝑛𝑗 (𝑡) −

𝑠𝑖,0(𝑡)
𝛥𝑥

,

d𝑠𝑖,𝑗 (𝑡)
d𝑡

= − 𝜇𝑗𝑠𝑖,𝑗 (𝑡) − 𝑠𝑖,𝑗 (𝑡)
𝐿
∑

𝓁=𝑗
𝐾𝓁,𝑗𝑛𝓁(𝑡)

+
𝑠𝑖,𝑗−1(𝑡) − 𝑠𝑖,𝑗 (𝑡)

𝛥𝑥
, 0 < 𝑗 < 𝐿,

d𝑠𝑖,𝐿(𝑡) = − 𝜇 𝑠 (𝑡) − 𝑠 (𝑡)𝐾 𝑛 (𝑡) +
𝑠𝑖,𝐿−1(𝑡) ,

(85)
d𝑡 𝐿 𝑖,𝐿 𝑖,𝐿 𝐿,𝐿 𝐿 𝛥𝑥
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with the initial condition 𝑠𝑖,𝑗=𝑖(0) = 1 and 𝑠𝑖,𝑘≠𝑖(0) = 0.
Note that an initial condition 𝑛𝑖(0) = 𝑛∗𝑖 implies that 𝑛𝑖(𝑡) = 𝑛∗𝑖 . Since

death rates and interaction terms do not explicitly depend on time,
the survival fraction is time-translation invariant, i.e., the survival from
ompartment 𝑖 at time 𝑡 = 0 to the compartment 𝑗 at time 𝑡 = 𝑇−𝜏 is the
ame as survival from compartment 𝑖 at time 𝑡 = 𝜏 to the compartment
at time 𝑡 = 𝑇 . Therefore, the solution to Eq. (20) can be written as

𝑖(𝑡) =
𝐿
∑

𝑗=0
𝑛𝑗 (0)𝑠𝑗,𝑖(𝑡) +∫

𝑡

0
𝐵(𝜏)𝑠0,𝑖(𝑡 − 𝜏)d𝜏, (86)

here 𝐵(𝑡) ∶=
∑𝐿

𝑖=0 𝛽𝑖𝑛𝑖(𝑡) is the total birth rate at time 𝑡. Since
very individual eventually dies, we have lim𝑡→∞ 𝑠𝑖,𝑗 (𝑡) = 0 for all 𝑖, 𝑗.

Therefore, using the solution in Eq. (86) in 𝐵(𝑡), the birth rate can be
decomposed into contributions from the initial population and from the
population born within time (0, 𝑡):

𝐵(𝑡) =
𝐿
∑

𝑖,𝑗=0
𝛽𝑗𝑛𝑖(0)𝑠𝑖,𝑗 (𝑡) +∫

𝑡

0
𝐵(𝑡 − 𝜏)

𝐿
∑

𝑖=0
𝛽𝑖𝑠0,𝑖(𝜏)d𝜏. (87)

At steady state, we introduce the lower and upper bounds of 𝐵(𝑡):

∫

𝑡

0
𝐵(𝑡 − 𝜏)

𝐿
∑

𝑖=0
𝛽𝑖𝑠0,𝑖(𝜏)d𝜏 ≤ 𝐵(𝑡)

≤∫

𝑡

0
𝐵(𝑡 − 𝜏)

𝐿
∑

𝑖=0
𝛽𝑖𝑠0,𝑖(𝜏)d𝜏 +

𝐿
∑

𝑖,𝑗=0
𝑛∗𝑖 max

𝑖
{𝛽𝑖}𝑠𝑖,𝑗 (𝑡),

(88)

here the left-hand side represents the birth rate at time 𝑡 generated
y individuals born within (0, 𝑡) and the right-hand side are the birth
ate of newborns at time 𝑡 that are offspring of individuals born within
0, 𝑡), plus the maximum possible number of offspring that the initial
opulation could have given birth to up to time 𝑡. When 𝑛𝑖(0) = 𝑛∗𝑖 ,
(𝑡) ∶= 𝐵 is a constant and the limit 𝑡 → ∞ forces the lower and upper
ounds to converge yielding

= 𝐵∫

∞

0

𝐿
∑

𝑖=0
𝛽𝑖𝑠0,𝑖(𝜏)d𝜏, (89)

hich is the discrete analogue of the 𝑅0 = 1 condition of Eq. (63) where
he factor ∫ ∞

0
∑𝐿

𝑖=0 𝛽𝑖𝑠0,𝑖(𝜏)d𝜏 on the right-hand side is the expected
ffspring that one individual has during its lifetime.

Similar to the proof of uniqueness in Appendix C, it is intuitively
lear that 𝑠0,𝑖(𝑎) as well as ∫ ∞

0
∑𝐿

𝑖=0 𝛽𝑖𝑠0,𝑖(𝜏)d𝜏 monotonically decreases
ith increasing effective death rate 𝜇̃𝑖. We demonstrate this by explic-

tly computing

= ∫

∞

0

𝐿
∑

𝑖=0
𝛽𝑖𝑠0,𝑖(𝜏)d𝜏

=
𝐿−1
∑

𝑖=1

𝑖−1
∏

𝑗=0

1
(1 + 𝛥𝑥𝜇̃𝑗 ) ∫

∞

0

(

𝜇̃𝑖 +
1
𝛥𝑥

)

𝛽𝑖𝑡𝑒
−(𝜇̃𝑖+1∕𝛥𝑥)𝑡d𝑡

+
𝐿−1
∏

𝑗=0

1
(1 + 𝛥𝑥𝜇̃𝑗 ) ∫

∞

0
𝜇𝐿𝛽𝐿𝑡𝑒

−𝜇̃𝐿𝑡d𝑡,

=
𝐿−1
∑

𝑖=1

𝛽𝑖𝛥𝑥
(1 + 𝛥𝑥𝜇̃𝑖)

𝑖−1
∏

𝑗=0

1
(1 + 𝛥𝑥𝜇̃𝑗 )

+
𝛽𝐿
𝜇𝐿

𝐿−1
∏

𝑗=0

1
(1 + 𝛥𝑥𝜇̃𝑗 )

,

(90)

where 𝜇̃𝑖 ∶= 𝜇𝑖 +
∑

𝑗>𝑖 𝐾𝑗,𝑖𝑛∗𝑗 . The first term on the right-hand side of
q. (90) is the summation of the expected number of offspring that
n individual gives birth to while in the 𝑖th, 𝑖 < 𝐿 stage multiplied

by the probability that it will survive until the 𝑖th stage. The second
term on the right-hand side is the expected number of offspring that
an individual gives birth while in the 𝐿th stage multiplied by the
probability that it survives to the 𝐿th stage. If 𝑛∗𝑖 > 𝑚∗

𝑖 , 𝑖 = 0,… , 𝐿
and there exists at least one 𝐾𝑗,𝑖 > 0, then 𝜇̃𝑛

𝑖 > 𝜇̃𝑚
𝑖 and Eq. (90) cannot

∗ ∗
be satisfied by two distinct steady-state solutions {𝑚𝑖 } ≠ {𝑛𝑖 }.

13 
.2. Permanent overcompensation is precluded in two-compartment ODE
odels

In the following discussion, we will exclude the artificial self-
nhibition term 𝐾𝑖,𝑖 as a result of binning the age structure into a finite
umber of compartments. We start by considering the simplest two-
ompartment model by imposing some additional assumptions on the
oefficients. Setting 𝐿 = 1 (two compartments) in Eq. (20), we find
d𝑛0
d𝑡

= −𝜇0𝑛0 −𝐾1,0𝑛1𝑛0 + 𝛽1𝑛1 −
𝑛0
𝛥𝑥

,

d𝑛1
d𝑡

= −𝜇1𝑛1 +
𝑛0
𝛥𝑥

.
(91)

Eq. (91) admits a unique steady state at

(𝑛∗0 , 𝑛
∗
1) =

(

𝛽1 − 𝜇1 − 𝜇0𝜇1𝛥𝑥
𝐾1,0

,
𝛽1 − 𝜇1 − 𝜇0𝜇1𝛥𝑥

𝐾1,0𝜇1𝛥𝑥

)

, (92)

which, as is the total population 𝑛∗0+𝑛∗1, monotonically decreasing with
either 𝜇0 or 𝜇1, indicating that steady-state overcompensation cannot
arise. The Jacobian matrix at the fixed point is

𝐉 =

[

−𝜇0 −𝐾1,0𝑛
∗
1 −

1
𝛥𝑥 −𝐾1,0𝑛

∗
0 + 𝛽1

1
𝛥𝑥 −𝜇1

]

. (93)

which has two negative eigenvalues if the equilibrium (𝑛∗0 , 𝑛
∗
1) > 0.

herefore, the steady state is stable and we do not expect periodic
scillations in a small neighborhood around this fixed point. Addition-
lly, ∇ ⋅ (−𝜇0𝑛0 − 𝐾1,0𝑛1𝑛0 + 𝛽1𝑛1 − 𝑛0

𝛥𝑥 ,−𝜇1𝑛1 + 𝑛0
𝛥𝑥 ) < 0. Thus, from

ulac’s criterion, there does not exist a limit cycle in the first quadrant
0 > 0, 𝑛1 > 0. Note that the oscillations demonstrated for a two-
ompartment model studied in [6] arose from a different form of the
irth rate, which we keep constant.

.3. Undamped oscillations are precluded in a three-compartment model

Setting 𝐿 = 2 in Eq. (20), we obtain
d𝑛0
d𝑡

= −
𝑛0
𝛥𝑥

− 𝜇0𝑛0 −𝐾1,0𝑛1𝑛0 −𝐾2,0𝑛2𝑛0 + 𝛽1𝑛1 + 𝛽2𝑛2,

d𝑛1
d𝑡

= −
𝑛1
𝛥𝑥

+
𝑛0
𝛥𝑥

− 𝜇1𝑛1 −𝐾2,1𝑛2𝑛1,

d𝑛2
d𝑡

=
𝑛1
𝛥𝑥

− 𝜇2𝑛2.

(94)

First, we demonstrate that this three-compartment model can exhibit
overcompensation by considering a simple specific set of parameters:
𝛽2 = 𝛽′2 + 𝜇2, 𝛽′2 ≥ 0, 𝜇0 = 𝜇1 = 0, 𝐾1,0 = 𝐾2,1 = 0. Eqs. (94) then
simplify to
d𝑛0
d𝑡

= −
𝑛0
𝛥𝑥

−𝐾2,0𝑛2𝑛0 + (𝛽′2 + 𝜇2)𝑛2 + 𝛽1𝑛1,

d𝑛1
d𝑡

=
𝑛0 − 𝑛1
𝛥𝑥

,

d𝑛2
d𝑡

=
𝑛1
𝛥𝑥

− 𝜇2𝑛2

(95)

which admits the positive steady state

(𝑛∗0 , 𝑛
∗
1 , 𝑛

∗
2) =

(

𝛽1𝜇2𝛥𝑥 + 𝛽′2
𝐾2,0

,
𝛽1𝜇2𝛥𝑥 + 𝛽′2

𝐾2,0
,
𝛽1𝜇2𝛥𝑥 + 𝛽′2
𝛥𝑥𝜇2𝐾2,0

)

(96)

and the total steady-state population

𝑁(𝜇2) ∶= 𝑛∗0 + 𝑛∗1 + 𝑛∗2 = 2
𝛽1𝜇2𝛥𝑥 + 𝛽′2

𝐾2,0
+

𝛽1𝜇2𝛥𝑥 + 𝛽′2
𝛥𝑥𝜇2𝐾2,0

. (97)

Therefore, 𝜕𝑁(𝜇2)∕𝜕𝜇2 = 2𝛽1𝛥𝑥
𝐾2,0

−
𝛽′2

𝐾2,0𝜇22𝛥𝑥
indicates that the total

population at equilibrium 𝑁(𝜇2) will increase with the death rate of

he oldest population 𝜇2 if 𝜇2 >
√

𝛽′2
2𝛽1𝛥𝑥2

. So in order to observe
overcompensation, at least three compartments are needed.

Next, we show that the positive steady state of the three-

compartment model Eqs. (94), if it exists, is stable. This statement holds
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for general parameter values in Eqs. (94). The steady-state populations
𝑛∗𝑖 obey the relationships

𝑛∗1 =𝛥𝑥𝜇2𝑛∗2 ,

𝑛∗0 =
(

𝛥𝑥 + 𝜇1𝛥𝑥
2 + 𝛥𝑥2𝐾2,1𝑛

∗
2
)

𝜇2𝑛
∗
2 ,

𝑥 𝛽1𝜇2 + 𝛽2 =𝜇2
(

𝜇0 + 𝛥𝑥𝐾1,0𝜇2𝑛
∗
2 +𝐾2,0𝑛

∗
2 +

1
𝛥𝑥

)

×
(

𝛥𝑥 + 𝛥𝑥2𝜇1 + 𝛥𝑥2𝐾2,1𝑛
∗
2

)

.

(98)

Therefore, this system contains one real positive fixed point whenever
a positive root for 𝑛∗2 satisfies the last equation in (98). This occurs for
parameters values for which

𝛽1𝜇2𝛥𝑥 + 𝛽2 > 𝜇2
(

𝜇0𝛥𝑥 + 1
)(

𝜇1𝛥𝑥 + 1
)

. (99)

The Jacobian matrix at this fixed point is

𝐉 =

⎡

⎢

⎢

⎢

⎣

−𝜇0 −𝐾1,0𝑛
∗
1 −

1
𝛥𝑥

−𝐾2,0𝑛
∗
2 −𝐾1,0𝑛

∗
0 + 𝛽1 −𝐾2,0𝑛∗0 + 𝛽2

1
𝛥𝑥

− 1
𝛥𝑥

− 𝜇1 −𝐾2,1𝑛
∗
2 −𝐾2,1𝑛∗1

0 1
𝛥𝑥

−𝜇2

⎤

⎥

⎥

⎥

⎦

(100)

whose eigenpolynomial 𝑓 (𝜆) ≡ det(𝜆I − 𝐉) is

(𝜆) =
(

𝜆 + 𝜇0 +𝐾1,0𝑛
∗
1 +

1
𝛥𝑥 +𝐾2,0𝑛

∗
2
)(

𝜆 + 1
𝛥𝑥 + 𝜇1 +𝐾2,1𝑛

∗
2
)(

𝜆 + 𝜇2
)

+ 1
𝛥𝑥2

(

𝐾2,0𝑛
∗
0 − 𝛽2

)

+ 1
𝛥𝑥𝐾2,1𝑛

∗
1
(

𝜆 + 𝜇0 +𝐾1,0𝑛
∗
1 +

1
𝛥𝑥 +𝐾2,0𝑛

∗
2
)

+ 1
𝛥𝑥

(

𝜆 + 𝜇2)(𝐾1,0𝑛
∗
0 − 𝛽1

)

,

(101)

here I is the identity matrix. To simplify this expression, define the
ffective death rates to be 𝜇̃0 = 𝜇0+𝑛∗1𝐾1,0+𝑛∗2𝐾2,0 and 𝜇̃1 = 𝜇1+𝑛∗2𝐾2,1.

Then, the eigenpolynomial can be expressed as

𝑓 (𝜆) =𝜆3 + 𝐶2𝜆
2 + 𝐶1𝜆 + 𝐶0,

𝐶2 = 𝜇2 + 𝜇̃0 + 𝜇̃1 +
2
𝛥𝑥

𝐶1 = 𝐾1,0𝑛
∗
1
(

𝜇̃1 +
1
𝛥𝑥

)

+𝐾2,1𝑛
∗
2𝜇2 + 𝜇2𝐶2 +

𝛽2
𝛥𝑥2𝜇2

𝐶0 =
𝜇2
𝛥𝑥

(

𝐾1,0𝑛
∗
1𝛥𝑥𝜇̃1 +𝐾1,0𝑛

∗
1 +𝐾2,0𝑛

∗
2𝛥𝑥𝜇̃1

+𝐾2,0𝑛
∗
2 +𝐾2,1𝑛

∗
2𝛥𝑥𝜇̃0 +𝐾2,1𝑛

∗
2
)

(102)

Here, we have employed Eq. (98) to replace 𝑛∗0, 𝑛
∗
1, and 𝛽1 by simple

erms involving 𝑛∗2. Note that our parameters are all non-negative. We
ay reasonably parameterize our model such that at least one 𝐾𝑖,𝑗 > 0,

t least one 𝜇𝑖 > 0, at least one 𝛽𝑖 > 0, and all 𝑛∗𝑖 > 0. Under such
ssumptions, 𝐶0, 𝐶1, 𝐶2 > 0. We denote 𝐷0 = 𝐶1𝐶2 −𝐶0 > 0. To see that
0 > 0, we just claim that every term in 𝐶0 can be written as one term

n the product 𝐶1𝐶2. For example, the first term 𝐾1,0𝑛∗1𝜇̃1𝜇2 in 𝐶0 can
be written as the product of the 𝐾1,0𝑛∗1𝜇̃1 term from 𝐶1 and the 𝜇2 term
from 𝐶2. Also note that every term in 𝐶1 and 𝐶2 is positive. Thus, we
have 𝐷0 > 0. Then, by applying the Routh–Hurwitz criterion, the roots
of 𝑓 (𝜆) are all in the open left half-plane, and thus the positive stable
equilibrium is stable.

Combining the previous uniqueness statement and the stability
analysis, the system Eq. (94) admits at most one positive steady state
which must be stable. Therefore, a three-compartment model precludes
oscillatory solutions in a close neighborhood around the steady state in
the total population since the positive steady state is stable.

F.4. Higher-order reduced ODE models

Next, we consider ODE models with more than two compartments.
Previously, each compartment is intended to represent a stage in the
life-cycle of the animal, e.g., larva, pupa, adult. In the general case,
the birth and death rate of an individual varies across ages, which
motivates the consideration of multiple compartments with each com-
partment representing a small age window, say, one year. From a
mathematical perspective, discretization of the age structure is almost

necessary to numerically solve the PIDE model, unless other methods

14 
ike spectral methods are used. The more compartments there are, the
ore accurate the discretized approximation is.

For higher-order ODE models with 𝐿 + 1, 𝐿 ≥ 2 compartments, we
can consider the special case

d𝑛0
d𝑡

= −
𝑛0
𝛥𝑥

−𝐾𝐿,0𝑛0𝑛𝐿 + 𝛽1𝑛1 + (𝛽′𝐿 + 𝜇𝐿)𝑛𝐿,

d𝑛𝑖
d𝑡

=
𝑛𝑖−1 − 𝑛𝑖

𝛥𝑥
, 𝑖 = 1, 2..., 𝐿 − 1,

d𝑛𝐿
d𝑡

=
𝑛𝐿−1
𝛥𝑥

− 𝜇𝐿𝑛𝐿.

(103)

which has the equilibrium

𝑛∗𝑖 =
𝛽1𝜇𝐿𝛥𝑥 + 𝛽′𝐿

𝐾𝐿,0
, 𝑖 = 0,… , 𝐿 − 1;

𝑛∗𝐿 =
𝛽1𝜇𝐿𝛥𝑥 + 𝛽′𝐿
𝐾𝐿,0𝜇𝐿𝛥𝑥

.
(104)

The total population at equilibrium as a function of 𝜇𝐿 is 𝑁∗(𝜇𝐿) ∶=
∑𝐿

𝑖=0 𝑛
∗
𝑖 = 𝐿

𝛽1𝜇𝐿𝛥𝑥+𝛽′𝐿
𝐾𝐿,0

+
𝛽1𝜇𝐿𝛥𝑥+𝛽′𝐿
𝐾𝐿,0𝜇𝐿𝛥𝑥

. Therefore, d𝑁(𝜇𝐿)
d𝜇𝐿

= 𝐿𝛽1𝛥𝑥
𝐾𝐿,0

−
𝛽′𝐿

𝐾𝐿,0𝜇2𝐿𝛥𝑥
,

indicating that the total population at equilibrium is increasing with 𝜇𝐿

as long as 𝜇𝐿 >
√

𝛽′𝐿
𝐿𝛽1𝛥𝑥2

. Thus, for ODE models with larger number of
compartments, overcompensation of the total equilibrium population in
response to increases in death rate of certain subpopulations is always
possible.

The equilibrium of multi-compartment ODE models, if it exists,
could be unstable. We now switch back to the model discussed in
the main text in Section 3.5. The numerical solution of the structured
population obtained by the finite volume method, which is a 500-
compartment ODE Eq. (20) with 𝐿 = 499 displays undamped oscillatory
ehavior. We numerically analyzed the stability of the positive equilib-
ium of the PIDE Eq. (7) with the cannibalism rate 𝐾(𝑥′, 𝑥) defined by
q. (17) and the same age-independent birth rate 𝛽 and death rate 𝜇 as

used in Section 3.5. As a surrogate of the PIDE Eq. (7), we numerically
analyzed the derived ODE system Eq. (20) in Section 3.5 with d𝑥 =
0.02, 𝐿 = 499. In Eqs. (82) and (83), 𝑛∗𝑖−1 is completely determined
by

{

𝑛∗𝑗 ∶ 𝑗 ≥ 𝑖
}

. Therefore, the steady-state solution 𝑛∗𝑖 , 𝑖 = 0,… , 𝐿 − 1

can be parameterized by the value of 𝑛∗𝐿, i.e., 𝑛∗𝑖 = 𝑛∗𝑖 (𝑛
∗
𝐿). Considering

the newborn individuals, we employed the bisection method to find a
proper positive 𝑛∗𝐿 such that Eq. (84) is satisfied.

We then consider the Jacobian matrix 𝐉(𝑛∗) of the dynamical system
at the steady state and numerically find its eigenvalues. We denote
the principle eigenvalue of 𝐉(𝑛∗) with the largest real part by 𝜆0. The
eigenvector corresponding to 𝜆0 decays (grows) slowest for Re 𝜆0 < 0
(Re 𝜆0 > 0) and characterizes the long-term local dynamical behavior
of the system. Near the steady state, we found that, corresponding to
the region of oscillation described in Fig. 2(f), there is also a region of
linearly unstable steady states with Re𝜆0 > 0 shown in Fig. 4(a).

To better understand the correspondence between oscillation and
unstable steady states, we examined real and imaginary parts of 𝜆0
as a function of 𝛽 in detail, as shown in Fig. 4(b). When 𝛽 = 2.5
is fixed, the real part of the principal eigenvalue Re 𝜆0 increases as
𝜇 is decreased, vanishing at about 𝜇 ≈ 0.7. At this point 𝜆0 (and
𝜆∗0) become purely imaginary, indicative of a Hopf-type bifurcation.
As 𝜇 is further decreased, 𝜆0 and 𝜆∗0 acquire positive real parts. This
regime corresponds to the numerical result plotted in Fig. 2(c.d) where
undamped oscillations are found to arise when 𝛽 = 2.5, 𝜇 ≤ 0.7.

Generalizing to more compartments, if the Jacobian matrix 𝐉𝐿 of
the positive equilibrium (𝑛∗0 ,… , 𝑛∗𝐿) of the (𝐿+1)-compartment reduced
ODE model Eq. (20) has an unstable equilibrium, we can assume that

𝐿+1
𝐯𝐿 ∈ R , 𝐉𝐿𝐯𝐿 = 𝜆I𝐯𝐿 = (𝑣1,… , 𝑣𝐿) ≠ 0, Re𝜆 > 0. (105)
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Fig. 4. (a) Heatmap of the real part of the principle eigenvalue 𝜆0 associated with the Jacobian matrix of the discretized, 500 ODE system Eq. (20) (with 𝐿 = 499) at its fixed
point. The top left region takes positive real values. (b) Dependence of the largest eigenvalue 𝜆0 on 𝜇 for 𝛽 = 2.5. When 𝜇 is small, Re𝜆0 > 0, which indicates an unstable positive
equilibrium. In (a) and (b), 𝛽, 𝜇 are age-independent, and the cannibalism rate is derived from 𝐾3 in Eq. (17). (c) The first five eigenvalues for 𝜇 = 0.6, 0.7, 0.8 (open circle, triangle,
square, respectively). When 𝜇 = 0.6, 𝜆0 has a positive real part; when 𝜇 = 0.7, 0.8, 𝜆0 has a negative real part, implying stability of the steady state.
For 𝐿′ > 𝐿, we can consider the following ODE model

d𝑛0
d𝑡

= − 𝜇0(𝑡)𝑛0(𝑡) − 𝑛0(𝑡)
𝐿
∑

𝑗=𝑖
𝐾𝑗,0(𝑡)𝑛𝑗 (𝑡) +

𝐿
∑

𝑗=1
𝛽𝑗 (𝑡)𝑛𝑗 (𝑡) −

𝑛0(𝑡)
𝛥𝑥

,

d𝑛𝑖
d𝑡

= − 𝜇𝑖(𝑡)𝑛𝑖(𝑡) − 𝑛𝑖(𝑡)
𝐿
∑

𝑗=𝑖
𝐾𝑗,𝑖(𝑡)𝑛𝑗 (𝑡)

−
𝑛𝑖(𝑡) − 𝑛𝑖−1(𝑡)

𝛥𝑥
, 𝐿 ≥ 𝑖 > 0,

d𝑛𝑖
d𝑡

=
𝑛𝑖−1(𝑡) − 𝑛𝑖(𝑡)

𝛥𝑥
, 𝑖 > 𝐿

(106)

which has a positive equilibrium (𝑛∗0 ,… , 𝑛∗𝐿, 𝑛
∗
𝐿+1,… , 𝑛∗𝐿′ ), 𝑛∗𝑖 = 𝑛∗𝐿, 𝑖 >

𝐿. Denoting the Jacobian matrix of the equilibrium of the ODE Eq.
(106) to be 𝐉𝐿′ , it is obvious that 𝜆 is also an eigenvalue of 𝐉𝐿′ with
the corresponding eigenvector

𝐯𝐿′ =
(

𝑣1,… , 𝑣𝐿,
1

1+𝛥𝑥𝜆𝑣𝐿,… ,
( 1
1+𝛥𝑥𝜆

)𝐿′−𝐿𝑣𝐿
)

. (107)

Therefore, all reduced ODE systems with 𝐿′ > 𝐿 compartments have a
positive equilibrium whose Jacobian matrix has a positive eigenvalue
and the positive equilibrium can be unstable.
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