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Abstract
Explicit expressions for arrival times of particles moving in a one-dimensional
zero-range process (ZRP) are computed. Particles are fed into the ZRP from
an injection site and can evaporate from any site of the one-dimensional lattice.
Two dynamics are considered: bulk dynamics, where particle hopping and
decay are proportional to the number of particles at each site, and surface
dynamics, where only the top particle at each site can hop or evaporate. We
find exact solutions in the bulk dynamics case and for a single-site ZRP obeying
surface dynamics. For a multisite ZRP obeying surface dynamics, we compare
simulations with approximations obtained from the steady-state limit, where
mean interarrival times for both models are equivalent. Our results highlight the
competition between injection and evaporation in the arrival times of particles
to an absorbing site.

PACS numbers: 05.60.−k, 87.16.Ac, 05.10.Ln

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The zero-range process (ZRP) is a stochastic model to describe the dynamics of far from
equilibrium, interacting particles hopping between lattice sites [1–3]. The ZRP has been used
in many applications as a paradigm for transport processes, including traffic flows [4], shaken
granular gases [5], network dynamics [6], phase separation [7, 8], and particle condensation
and clustering [9]. Mathematical interest also arises from the fact that a simple connection
can be made between the ZRP and the totally asymmetric exclusion process (TASEP) [1]
and that in certain cases—particularly for conserved systems—exact factorizable steady-state
solutions can be derived [10].

In this paper, we compute the multiple passage times of particles obeying ZRP dynamics
to reach a final absorbing site. We treat a nonconserved system in which particles are injected at
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Figure 1. Two realisations of a zero-range process. In (a), any one of the red particles in the bulk
can hop to the right or decay, while in (b), only the surface particle (in red) in each pile can hop or
decay, the underlying particles being protected by the top particle.

the origin and evaporate as they hop toward the end site of the lattice, as shown in figure 1. This
type of dynamics may be applied to many specific microbiological systems. For example,
molecular motors may attach at one end of a microtubule, but desorb while traversing it.
The distribution of arrival times of the motors will depend on their speed, and injection and
desorption rates. Other examples include virus entry and transport to the nucleus, where the
viral cargo is transported by molecular motors while being subject to degradation [11], and
sperm entry into egg cells, where the first sperm to penetrate all layers of the cell triggers a
block for subsequent ones [12]. In all applications there is a flux of particles, or ‘immigration’,
into the first site as well as particle annihilation at every location along the microtubule or
layer within the egg cell.

Related theoretical analyses of the dynamic properties of the ZRP have been
presented; however, these studies have been restricted to the steady-state [6, 13],
hydrodynamic/asymptotic [14] or mean-field [6] limits. Moreover, most previous approaches
only consider particle conservation [14]. Unlike the first passage time (FPT) problem of a
single, conserved particle undergoing a simple random walk [15, 16], the first passage time
of a nonconserved, multiparticle problem cannot be solved by analyzing steady states. In
problems with injection and decay, the dynamics of particles reaching a specific ‘absorbing’
site are complicated by subsequent particle arrivals, as well as arrival times conditioned on
particles reaching the absorbing site. Since we will be concerned with a specific initial
configuration, and wish to understand how the ZRP first reaches another configuration, we
must find time-dependent solutions for the dynamics of the ZRP. Nonetheless, despite the
nonconserved nature of the problem, steady-state solutions can still sometimes provide useful
approximations for first passage times of the ZRP in certain limits.

We present exact solutions for arrival times in a finite-sized ZRP obeying two specific
dynamical rules. In the first case, which we denote as ‘bulk dynamics’ and which is illustrated
in figure 1(a), all particles at a site are independent and equally likely to hop to the next one.
In the second ‘surface dynamics’ case, depicted in figure 1(b), only one particle can hop to its
neighboring site. This surface dynamics case has also been described as a ‘chipping’ process
[13]. These two cases are limits of the ZRP and may serve as a model system for many
physical systems.

We begin our analysis in the following section with bulk dynamics. In this case, particles
are independent and we find exact analytic expressions for the distributions of the passage
times for the kth particle to arrive at the absorbing site N + 1. For mathematical completeness,
we present two derivations of the solution. The first involves explicit enumeration of the
number of particles injected, evaporated and having reached the absorbing site by time t. The
second involves writing down a Master equation, which is solved using generating functions
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and the method of characteristics. All results for the bulk case are exact. In the third section,
we define a ZRP with surface dynamics, where only one particle at each site, if it exists, is
allowed to hop or desorb. In this case, we can only find exact solutions for a single-site ZRP.
In the limit where desorption is neglected, the position of the rightmost occupied site can
be found by representing it by a single forward-hopping particle and tracking its dynamics.
However, in the presence of detachments, a lead particle can desorb requiring us to keep track
of mobile particles behind the lead site. Even though explicit solutions are not available in
the surface dynamics case with desorption, we approximate particle arrival times in certain
limits using a steady-state assumption, and compare our estimates with results derived from
Monte-Carlo simulations.

2. Zero-range model with bulk dynamics

In our bulk-dynamic ZRP, beginning at time t = 0, particles are injected into the first site
of an empty lattice whose positions are denoted by {1, 2, . . . , N + 1}. The injection occurs
as a Poisson process with rate α. Each particle can then hop one site to the right with rate
p or evaporate with rate μ, independently of others. The forward hopping and evaporation
processes continue until the particle reaches site N + 1 or is desorbed from the lattice. We
wish to calculate the distribution of times for the kth particle to reach site N + 1.

2.1. Explicit enumeration of particle fates

Denoting by Tk the time at which the final absorbing site N + 1 is reached for the kth time, we
consider the accumulated number of hits H(t) by time t defined by P(H(t) = k) = P(Tk �
t < Tk+1). The primary result of this section is that H(t) is Poisson distributed, with rate
parameter

λ(t) = α

(
p

μ + p

)N (
t − N

μ + p

)

− α

μ + p
e−(μ+p)t

N−1∑
�=0

(
p

μ + p

)� �∑
m=0

(
μ

p + μ

m∑
i=0

((μ + p)t)i

i!
− ((μ + p)t)m

m!

)
. (1)

From this expression we can find the survival probability Sk(t) that the final site has been hit
by k − 1 or fewer particles:

Sk(t) =
k−1∑
j=0

P(H(t) = j) = e−λ(t)

k−1∑
j=0

λ(t)j

j !
. (2)

Similarly, the distribution of Ti can be represented as the sum

P(Ti � t) =
∞∑
j=i

P (H(t) = j) = e−λ(t)

∞∑
j=i

λ(t)j

j !
. (3)

Apart from the evaluation of λ(t) in equation (1), the other main results of this section are the
full expression for S1(t) given in equation (15) and the evaluation of the first passage time in
equation (16). To derive the distribution of H(t), we begin by noting that we may break up
the event {H(t) = k} according to how many particles n were injected before time t, each with
a common probability q(t) of reaching site N + 1 by time t, before we consider the times at
which it is injected (see figure 2). The probability that exactly k of those n particles reach site
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Figure 2. Spacetime plot of ZRP bulk dynamics. In this realization, four particles are injected by
time t, and are the only ones capable of contributing to H(t). Trajectories that intersect the vertical
line have arrived at site N + 1 within time t. Trajectories that intersect with the horizontal line at
time t are those that failed to reach the absorbing site N + 1 by time t.

N + 1 is binomially distributed with parameter q(t), so that

P(H(t) = k) =
∞∑

n=k

(αt)n e−αt

n!

n!

k!(n − k)!
q(t)k(1 − q(t))n−k

= q(t)k(αt)k

k!
e−αt

∞∑
n=k

(α(1 − q(t))t)n−k

(n − k)!

= (αq(t)t)k

k!
e−αq(t)t . (4)

This implies that H(t) is Poisson-distributed with parameter

λ(t) = αq(t)t. (5)

Deriving the probability q(t) is therefore our task. The particle injected at time τ is
characterized by its decay time ζτ , which is exponentially distributed with the mean 1/μ,
and by its arrival time Xτ at the target site N + 1, excluding the possibility of decay. As this
latter random variable is the sum of exponentials, it is Gamma(N, k)-distributed [17]. The
probability q(t) of reaching site N + 1 is then given by the probability that the arrival time
precedes both the chosen time limit t or the time of decay, averaged over the possible injection
times τ . Symbolically,

q(t) = 1

t

∫ t

0
[P(Xτ � t − τ � ζτ ) + P(Xτ � ζτ � t − τ)] dτ. (6)

Since Xτ and ζτ are independent, the first probability P(Xτ � t − τ � ζτ ) = P(Xτ �
t − τ)P (ζτ � t − τ). And since ζτ is exponentially distributed with the mean μ, and Xτ is
Gamma-distributed, the first probability in the integrand of equation (6) is simply

P(Xτ � t − τ � ζτ ) = F�(t − τ ;N,p)[1 − Fζτ
(t − τ)]

= F�(t − τ ;N,p) e−μ(t−τ), (7)

where F�(s;N, β) is the Gamma distribution function. The second probability and many of
the computations to follow rely on the following equivalent representations of this function:

F�(s;N, β) = γ (N, βs)

�(N)
= 1 − e−βs

N−1∑
�=0

(βs)�

�!
. (8)
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Here γ (z,w) = ∫ w

0 t z−1 e−t dt is the lower incomplete Gamma function, and the right-hand
equality with the Erlang distribution holds because N is an integer [17]. Expression (8) leads
to the following useful identities for F�:∫ s

0
F�(u;N, β) du =

∫ s

0

(
1 − e−βu

N−1∑
�=0

(βu)�

�!

)
du = s −

N−1∑
�=0

1

�!

∫ s

0
(βu)� e−βu du

= s − 1

β

N−1∑
�=0

γ (� + 1, βs)

�(� + 1)
≡ s − 1

β

N−1∑
�=0

F�(s; � + 1, β) (9)

and∫ s

0
e−ηu F�(u;N, β) du = 1

η
(1 − e−ηs) − 1

η + β

N−1∑
�=0

(
β

η + β

)�

F�(s; � + 1, η + β). (10)

Returning to the second probability in equation (6), equation (10) yields

P(Xτ � ζτ � t − τ) =
∫ t−τ

0
μ e−μsF�(s;N,p) ds

= 1 − e−μ(t−τ) − μ

μ + p

N−1∑
�=0

(
p

μ + p

)�

F�(t − τ ; � + 1, μ + p), (11)

so that upon substituting equations (7) and (11) into equation (6), we obtain

q(t) = 1 +
1

t

∫ t

0

[
F�(t − τ,N, p) e−μ(t−τ) − e−μ(t−τ)

− μ

μ + p

N−1∑
�=0

(
p

μ + p

)�

F�(t − τ ; � + 1, p + μ)

]
dτ.

Evaluating the integral termwise using equations (9) and (10) we find

q(t) = 1 − 1

t (μ + p)

N−1∑
�=0

(
p

μ + p

)�

×
[
μt + F�(t; � + 1, μ + p) − μ

μ + p

�∑
m=0

F�(t;m + 1, μ + p)

]
.

We can now expand the distribution functions in terms of a finite sum. Performing some
algebraic simplifications yields the closed-form expression

q(t) = 1 − 1

t (μ + p)

N−1∑
�=0

(
p

μ + p

)�[
p − �μ

μ + p
+ μt

+ e−(μ+p)t

�∑
m=0

(
μ

μ + p

m∑
i=0

((μ + p)t)i

i!
− ((μ + p)t)m

m!

)]
. (12)

Upon further algebraic simplification, we finally end up with

q(t) =
(

p

μ + p

)N(
1 − N

t(μ + p)

)
− 1

t (μ + p)

× e−(μ+p)t

N−1∑
�=0

(
p

μ + p

)� �∑
m=0

(
μ

p + μ

m∑
i=0

((μ + p)t)i

i!
− ((μ + p)t)m

m!

)
, (13)

which yields equation (1).
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Figure 3. Plots of the distribution P(H(t) = k) of the number of hits H(t) that have occurred
up to time t. Parameters used were p ≡ 1, N = 10, μ = 0.2 and α = 3. The distribution is
plotted for times t = 5, 10, 20, 30, 50. Monte-Carlo simulation (filled red circles) (300 000 runs)
was used to verify the results for t = 30.

In all of our following analyses, we nondimensionalize all rates in terms of p and times
in terms of p−1. The distribution P(H(t) = k) plotted in figure 3 shows that the probability
of a finite number k of arrivals first increases with time after the start of injection, and then
decreases for long times when an excess of particles have arrived. Using 300 000 independent
Monte-Carlo simulation runs implemented with the Bortz–Kalos–Lebowitz algorithm [18],
we verified our results at time t = 30, with parameters N = 10, p = 1, μ = 0.2 and
α = 3.

From the survival probability Sk(t) found from equation (2), all moments σ of the kth
passage times can be computed:

〈
T σ

k

〉 = −
∫ ∞

0
tσ

dSk

dt
dt. (14)

The mean (σ = 1) first (k = 1) passage time to the absorbing site can be found from

S1(t) = P(H(t) = 0) = exp

[
α

(
p

μ + p

)N(
N

μ + p
− t

)
+

α

μ + p
e−(μ+p)t ×

N−1∑
�=0

(
p

μ + p

)� �∑
m=0

(
μ

μ + p

m∑
i=0

((μ + p)t)i

i!
− ((μ + p)t)m

m!

)]
(15)

and equation (14). An explicit expression can be found for a single-site ZRP (N = 1):

〈T1〉 = exx−x

μ + p
γ (x, x), N = 1, (16)

where

x ≡ αp

(μ + p)2
. (17)

Upon approximating the lower incomplete gamma function γ (x, x) ≡ �(x) − �(x, x) in the
x → 0 limit, we find

〈T1〉 = 1

μ + p

[
1

x
+ 1 + O(x)

]
, N = 1. (18)
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(a)

(b) (c)

Figure 4. Interarrival times 〈Tk〉− 〈Tk−1〉 for the ZRP obeying bulk dynamics (with p ≡ 1). Here
T0 = 0, so that for k = 1 we are simply plotting T1. (a) Interarrival times as a function of arrival k
various values of the desorption rate μ for fixed α = 3. (b) Interarrival times of the first, second,
fourth and sixth particles as a function of μ for fixed α = 4. (c) First, second, fourth and sixth
arrival times as a function of the injection rate α for μ = 0.01. All plots were evaluated using
N = 25. The curves asymptote to the interarrival time (p +μ)N/αpN . Results were verified using
Monte-Carlo simulations as depicted by the filled red circles. The plot label to the far left applies
to all three panels.

In the x → ∞ limit, we apply the method of steepest descents [19] to the integral definition
of the �-function to find

〈T1〉 = 1

μ + p

√
π

2x

[
1 +

12

x
+ O(x−2)

]
, N = 1. (19)

For N > 1, the integral in equation (14) does not have a simple representation in the non-
integral form, nor can the mean kth passage times be calculated explicitly in the N = 1 case
for k > 1. However, we can find some asymptotic results for large k in the ‘fast dynamics’
limit. If we denote by τ the characteristic time τ = N/(μ + p) for a particle just injected to
reach the final site, and consider times t such that t � τ , equation (1) may be written as

λ(t) = αeff(t − τ) + O(e−t (μ+p)), (20)

where αeff = αpN(μ + p)−N is an effective injection rate from the perspective of the final site
that takes decay into account. Because t � τ holds for all but a negligible part of the range
of the integral in equation (14), we have

〈Tk〉 = k

αeff
+ τ + O(τ 2). (21)

The assumption on t translates onto a condition on k, so that equation (21) remains valid as
long as 〈Tk〉 � τ , or k � αeffτ .

In figure 4, we plot the interarrival times 〈Tk〉 − 〈Tk−1〉 as a function of k, μ and α.1

Figure 4(a) shows that larger desorption rates μ, keeping α fixed, provide more time for
more particles to be injected before the the first one reaches the end site. Therefore, the
interarrival times approach their steady-state limit 〈Tk〉 − 〈Tk−1〉 ≈ 1/αeff at smaller k. Large
desorption rates μ decrease the number of lattice particles, increasing arrival times to the end

4 Equations (2) and (14) define T0 ≡ 0.
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site. As a consequence, the initial empty-lattice condition is ‘forgotten’ after a fewer number
of particles have reached site N + 1. In figure 4(b), we see that the mean interarrival times,
including the mean first passage time, increase exponentially for large μ. This behavior is in
contrast to the case where only a single particle is injected, in which the conditional mean first
passage time of that single particle decreases with increasing desorption μ. Because the mean
arrival time for a single particle needs to be conditioned on exiting through site N, only very fast
trajectories can survive the desorption process, leading to a mean arrival time that decreases
rapidly with increasing μ. Finally, figure 4(c) plots the mean interarrival times as a function of
injection rate α. Note that interarrival times grow only geometrically as α decreases, indicating
that the injection rate has less of an impact on them than the particle decay rate.

In the next section we rederive the same results above by solving the corresponding
master equation using generating functions. Using this approach, we not only recover the
mean passage times to site N + 1 but also the full particle occupation distribution function
P(n1, . . . , nN+1, t).

2.2. Solving the bulk dynamics via generating functions

In this section, for mathematical completeness, we rederive the survival probability using
generating function methods applied to the Master equation for describing the probability
P({n�}, t) of having {n�} particles on each of the 1 � � � N + 1 sites:

Ṗ ({n�}, t) = −α
[
P({n�}, t) − P(n1 − 1, . . . , nN+1, t)

(
1 − δn1,0

)]
− (μ + p)

N∑
j=1

nj P ({n�}, t) + μ

N∑
j=1

(nj + 1)P (n1, . . . , nj + 1, . . . , t)

+ p

N∑
j=1

(nj + 1)P (n1, . . . , nj + 1, nj+1 − 1, . . . , t)
(
1 − δnj+1,0

)
. (22)

The survival probability S1(t) is defined by the probability of having no particles in the
absorbing site

S1(t) =
∑

n1,n2···nN

P (n1, . . . , nN+1 = 0, t).

After setting nN+1 = 0 in equation (22), multiplying by z
n1
1 · · · znN

N , and summing over all
possible values of nj, 1 � j � N , we find a first-order partial differential equation for the
constrained generating function

G0(z1, . . . , zN , t) =
∞∑

n1,...,nN =0

z
n1
1 · · · znN

N P (n1, . . . , nN , nN+1 = 0, t).

Upon solving this partial differential equation using the method of characteristics [20], we
find that G0 obeys

dG0

dt
= α(z1 − 1)G0 (23)

along the trajectories defined by
dz1(t)

dt
= (μ + p)z1(t) − μ − pz2(t),

dzj (t)

dt
= (μ + p)zj (t) − μ − pzj+1(t),

dzN(t)

dt
= (μ + p)zN(t) − μ.

(24)
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The initial condition P(n1, . . . , nN , nN+1 = 0, t = 0) = δn1,0 · · · δnN ,0 gives G0(z0, . . . , zN ,

t = 0) = 1. Equations (24) can be written in the form

dZ(t)

dt
= MZ(t) − μI, (25)

where Z(t) = (z1(t), . . . , zN(t))T is the vector of trajectories, I is the N × N identity matrix
and M is a tridiagonal matrix with elements mj,j = μ + p, mj,j+1 = −p and mi,j = 0
otherwise. Upon defining the Laplace transform Z̃(s) = ∫ ∞

0 Z(t) e−st dt and the initial values
Z(t = 0) = (z1(t = 0), . . . , zN(t = 0))T , equation (25) can be written in the form

sZ̃(s) = MZ̃(s) − μ

s
I + Z(t = 0), (26)

and solved explicitly by first inverting sI−M and then calculating the inverse Laplace transform
of Z̃(s). After performing the algebra, the solution to equation (25) can be expressed as

(zj − RN−j ) =
N−j∑
k=0

(zj+k(t = 0) − RN−j−k)
(−pt)k

k!
e(μ+p)t , (27)

where

Rk ≡ 1 −
(

p

μ + p

)k+1

. (28)

Upon using z1(t) from equation (27) in equation (23), we find G0 as a function of the zj values
implicitly expressed through the starting positions zj (t = 0) of the trajectories:

G0(z1, . . . , zN , t) = exp

[
− αt

(
p

μ + p

)N

−α

N−1∑
k=0

(zk+1(t = 0) − RN−k−1)p
k

(μ + p)k+1k!
γ [k + 1,−(μ + p)t]

]
. (29)

We are thus left with explicitly determining zj (t = 0) as a function of the independent variables
zj. We do this by inverting equation (27):

(zj (t = 0) − RN−j ) =
N−j∑
k=0

(zj+k − RN−j−k)
(pt)k

k!
e−(μ+p)t . (30)

Using this result in equation (29) we find

G0(z1, . . . , zN , t) = exp

[
− αt

(
p

p + μ

)N

− α e−(μ+p)t

N−1∑
k=0

N−k−1∑
j=0

pj+kt j

(μ + p)k+1k!j !

× (zj+k+1 − RN−j−k−1)γ [k + 1,−(μ + p)t]

]
. (31)

Finally, since the survival probability is obtained by imposing z� = 1 for all �, we obtain

S1(t) = exp

[
−αt

(
p

p + μ

)N

− αpNe−(μ+p)t

(μ + p)N+1

N−1∑
j=0

N−1−j∑
�=0

t�(μ + p)�

j !�!
γ [j + 1,−(μ + p)t]

⎤
⎦ ,

which is equivalent to equation (15). We can now successively determine the dynamics of the
probability distribution function conditioned on the absorbing site containing a finite number
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of particles nN+1 � 1. For nN+1 = 1, the corresponding generating function G1(z1, . . . , zN , t)

can be obtained from the master equation for P(n1, . . . , nN+1 = 1, t):

G1(z1, . . . , zN , t) =
∞∑

n1,···nN =0

z
n1
1 · · · znN

N P (n1, . . . , nN , nN+1 = 1, t).

Upon summing equation (22) over all values of nj we find that the dynamics of G1 is given by

∂G1

∂t
= αG1(z1 − 1) +

∂G0

∂z1
, (32)

where G0 is the generating function associated with the adsorbing site having no particles,
nN+1 = 0, and where the evolution of the trajectories zj (t) are unchanged from those described
by equation (24). The solution to equation (32) can be expressed in the form

G1(z1, . . . , zN , t) = λ(t)G0(z1, . . . , zN , t), (33)

where λ(t) obeys
dλ(t)

dt
= p

G0

∂G0

∂z1
. (34)

The solution for λ(t) turns out to be precisely that given in equation (1). Similarly, it can be
found that the generating function with the constraint nN+1 = j is given by

Gj(z1, . . . , zN , t) =
∞∑

n1,···nN=0

z
n1
1 · · · znN

N P (n1, . . . , nN+1 = j, t)

= λ(t)j

j !
G0(z1, . . . , zN , t). (35)

The survival probability Sk(t) is given by Sk(t) = ∑k−1
j=0 Gj(1, . . . , 1, t) and moments of the

kth arrival times, found previously, can also be obtained using equation (14). In addition,
an advantage of the generating function approach is that the particle occupations can also be
determined. For example, the mean occupation at site � when exactly j particles have entered
site N + 1 is given by

〈n�(t |nN+1 = j)〉 =
∞∑

n1,···,nN =0

n�P (n1, . . . , nN+1 = j, t)

= λ(t)j

j !

∂G0(1, . . . , z�, . . . , 1, t)

∂z�

∣∣∣∣
z�=1

= −λ(t)j

j !
e−λ(t)αp�−1 e−(μ+p)t

�−1∑
k=0

γ [k + 1,−(μ + p)t] t�−k−1

(μ + p)k+1k!(� − k − 1)!
. (36)

Upon summing equation (36) over all j , we find that the unconditioned mean occupation
〈n�(t)〉 is given by

〈n�(t)〉 =
∞∑

n1,···,nN+1=0

n�P (n1, . . . , nN+1, t)

= −αp�−1 e−(μ+p)t

�−1∑
k=0

γ [k + 1,−(μ + p)t] t�−k−1

(μ + p)k+1k!(� − k − 1)!
. (37)

Two limits are of interest: the mean occupation conditioned on no particles hitting site N + 1,
which is given by

〈n�(t |nN+1 = 0)〉 = e−λ(t) 〈n�(t)〉,
10
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(a) (b)

Figure 5. Time dependence of the mean site occupancies. Both panels display exact values (solid
lines) from equation (37) and simulation (filled red circles) for parameter values p ≡ 1, N = 5
and μ = 0.2. Each curve and approximating points correspond to mean occupations at different
sites, with earlier site having higher occupations. In the left-hand panel α = 1 < p + μ and
particles are cleared out faster than they are injected, resulting in 〈n1〉 < 1. In the right-hand panel
α = 1.5 > p + μ, yielding the possibility of 〈n1〉 > 1.

and the average occupation of site N + 1, regardless of the occupation state of all other sites,
which is simply 〈nN+1(t)〉 = λ(t). Thus, in the long time limit, the occupation of the final site
N + 1 will scale as

〈nN+1(t)〉 ∼ αt

(
p

μ + p

)N

,

indicating that at site N + 1 particles accumulate linearly at a rate that is proportional to the
injection rate α attenuated by the evaporation probability for each of the N intervening sites.

In figure 5, we have plotted the mean occupations derived from equation (37) for N = 5
and μ = 0.2. All mean occupancies are seen to reach a steady state by t ≈ 10 and, for all
times, the mean occupancy is a monotonically decreasing function of site index due to decay.
In figure 5(a), α = 1 < p + μ, implying that particles are cleared out faster than they are
injected, resulting in 〈n1〉 approaching a value less than 1. In (b), the α = 1.5 > p + μ, and
〈n1〉 (and 〈n2〉) asymptotes to values greater than 1. Our results are verified with Monte-Carlo
simulations.

Finally, the full distribution for P(n1, . . . , nN+1 = j, t) can be found by using the Cauchy
integral [21] over equation (35):

P(n1, . . . , nN+1 = j, t) = 1

2π i

∮
C

Gj (z1, . . . , zN , t)

z
n1+1
1 , . . . , z

nN +1
N

dz1 · · · dzN, (38)

where the integral is closed along a path encircling the origin. Evaluating the residues, the
above integral can be expressed as

P(n1, . . . , nN+1 = j, t) = λ(t)j

j !

N∏
�=1

(
∂

∂z�

)n�

G0(z1, . . . , zN , t)

∣∣∣∣
z�=0

, (39)

which can be calculated explicitly to yield

P(n1, . . . , nN+1 = j, t) = λ(t)jG0(0, . . . , 0, t)

j !

×
N∏

�=1

[
−α e−(μ+p)t

�−1∑
k=0

p�−1t�−1−k

(p + μ)k+1k!
γ [k + 1,−(μ + p)t]

]n�

. (40)

11
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3. Zero-range model with surface dynamics

Surface dynamics, or ‘chipping’ processes, differ from bulk dynamics in that only the top
particle at a given site is able to hop or decay, while the ones below remain inert. Such
surface-dynamic rules generally preclude an analytic solution to the kth hitting time and
the survival probability Sk(t). In particular, we cannot use the strategy employed for bulk
dynamics because it relied essentially on particles injected before time t having independent
probabilities of reaching site N + 1 by time t. In the case of surface dynamics, only the top
particle in a pile attempts to move to a neighboring one. The difficulty arises in keeping track
of which sites are empty and which ones contain at least one particle. The main results of this
section are the first passage time in the case of one intervening site, equation (51), and the
steady-state limit of the interarrival times, equation (54) below.

Beginning with the approach of the previous sub-section, we first consider the Master
equation for the distribution of the site occupancies obeying surface dynamics

Ṗ ({n�}, t) = −α
[
P({n�}, t) − P(n1 − 1, . . . , nN+1, t)

(
1 − δn1,0

)]
−μ

N∑
j=1

[(
1 − δnj ,0

)
P({n�}, t) − P(n1, . . . , nj + 1, . . . , t)

]

−p

N∑
j=1

(
1 − δnj ,0

)
P({n�}, t)

+ p

N∑
j=1

(
1 − δnj+1,0

)
P(n1, . . . , nj + 1, nj+1 − 1, . . . , t). (41)

We now introduce the marginal probability

Pi(ni, t) =
∞∑

{nj 
=i }=0

P(n1, . . . , nN+1, t), (42)

where the sum is taken over all nj for all sites 1 � j � N + 1, except site j = i. Equation (42)
represents the probability that site i has ni particles regardless of the occupation of all other
sites. Similarly, the joint probability for sites i − 1 and i is defined as

Pi−1,i (ni−1, ni, t) =
∞∑

{nj 
=i−1,i }=0

P(n1, . . . , nN+1, t).

Upon summing equation (41) over all values of nj 
=i , we find the time evolution for the
marginal probability Pi(ni, t) as a function of the two-site probabilities Pi−1,i (ni−1, ni, t) for
1 < i � N :

Ṗi(ni, t) = p

∞∑
ni−1=1

(
1 − δni ,0

)
P(ni−1, ni − 1, t) − p

∞∑
ni−1=1

P(ni−1, ni, t)

+ (μ + p)Pi(ni + 1, t) − (μ + p)P (ni, t)
(
1 − δni ,0

)
.

Continuing in this way, the equations for the marginal occupation probabilities form a hierarchy
which is completed by the equation for the injection site i = 1:

Ṗ1(n1, t) = −α
[
P1(n1, t) − P1(n1 − 1, t)

(
1 − δn1,0

)]
− (μ + p)

[
P1(n1, t)

(
1 − δn1,0

) − P1(n1 + 1, t)
]
. (43)

12
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Note that the dynamics for site i = 1 is completely decoupled from that of the other sites
so that the marginal occupation distribution of the first site can be solved directly. We now
consider two cases where analytic results can be found.

3.1. Single-site ZRP densities and mean first passage times

Since equation (43) is decoupled from the hierarchy, we can solve it by taking its Laplace
transform and using the initial condition P(n1, 0) = δn1,0 to find

P̃1(n1 = 1, s) = s + α

μ + p
P̃1(n1 = 0, s) − 1

μ + p

P̃1(n1 + 1, s) =
(

1 +
s + α

μ + p

)
P̃1(n1, s) − α

μ + p
P̃1(n1 − 1, s).

(44)

The solution can be expressed in the form

P̃1(n1, s) =
[

1 − z1(s)

s

]
z1(s)

n1 , (45)

where

z1(s) = 1

2(μ + p)

(
(s + α + μ + p) −

√
(s + α + μ + p)2 − 4α(μ + p)

)
. (46)

Upon inverting the Laplace transform, we find

z1(t) = e−(α+μ+p)t
√

α

t
√

μ + p
I1(2

√
α(μ + p)t), (47)

where I1(t) is the first-order modified Bessel Function of the first kind. From equation (45)
and using the fact that the inverse Laplace transform of a product is a convolution in time, we
can iteratively construct P1(n1, t) starting from P1(0, t):

P1(n1 = 0, t) = 1 −
∫ t

0
z1(t

′) dt ′, (48)

where z1(t) is given by equation (47) and

P1(n1, t) =
∫ t

0
P1(n1 − 1, t ′)z1(t

′) dt ′. (49)

The integrals in equations (48) and (49) do not have simple closed forms. However, the
functions P1(n1, t) can also be obtained from differentiation using the relation

P1(n1 + 1, t) =
(

1 − δn1,0 +
α

μ + p

)
P1(n1, t)

+
Ṗ1(n1, t) − αP1(n1 − 1, t)

(
1 − δn1,0

)
μ + p

.

For instance, we may recursively write

P1(n1 = 1, t) = α

μ + p

(
1 −

∫ t

0
z1(t

′) dt ′
)

− z1(t)

μ + p
.

In the case of N = 1 we can also solve for the first (k = 1) passage times by observing that
the equation for the two-site distribution function, conditioned on n2 = 0, is also decoupled
from the hierarchy:

Ṗ (n1, 0, t) = α
[
P(n1 − 1, 0, t)

(
1 − δn1,0

) − P(n1, 0, t)
]

+ μP(n1 + 1, 0, t)

− (μ + p)P (n1, 0, t))
(
1 − δn1,0

)
,

13
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where we have dropped the subscripts on the two-site distribution function so that
P(n1, n2, t) ≡ P1,2(n1, n2, t). Using Laplace transforms, we find

P̃ (n1, n2 = 0, s) = y1(s)
n1

s + α − μy1(s)
, (50)

where

y1(s) = α + μ + p + s −
√

(α + μ + p + s)2 − 4αμ

2μ
.

From the above solution of P̃ (n1, n2 = 0, s), we can obtain the Laplace transformed
probability that site i = 2 has not been hit by a particle S̃1(s) = ∑∞

n1=0 P̃ (n1, n2 = 0, s).
Thus, in the N = 1 case, the mean first passage time is

〈T1〉 =
∞∑

n1=0

P̃ (n1, 0, s = 0) = α + μ + p +
√

(α + μ + p)2 − 4αμ

2αp
. (51)

Note that in the case of μ = 0, equation (51) simplifies to 〈T1〉 = α−1 + p−1. In surface
dynamics without desorption, the first passage time is determined by the dynamics of the lead
particle. Therefore, the mean first arrival time in the case of an N site system for μ = 0
is simply the total time it takes for the lead particle to reach site N + 1 and is given by
〈T1〉 = α−1 + Np−1.

3.2. Steady-state limit

We have not been able to find closed-form solutions of the surface dynamics ZRP for general N
and nonzero desorption rate μ > 0. However, equation (43) can be solved in the steady-state
limit by using the ansatz P1(n1) = (1 − z1) z

n1
1 . The equation supports a solution when

z1 = α(μ + p)−1, implying

P1(n1) =
(

1 − α

μ + p

) (
α

μ + p

)n1

.

The above expression is correct only for α < μ + p, so that 0 � P1(n1) � 1. Physically this
condition is simply a statement that if injection is too fast, particles continue to accumulate
without bound. Steady-state levels arise only if the injection rate α is small enough such that
hopping p and evaporation μ can keep up.

In order to solve equation (43), we need a closure relation for the two-site probability
distribution Pi−1,i (ni−1, ni). As shown in [10], the two-site probability distribution can be
factorized in the steady-state limit and expressed as Pi−1,i (ni−1, ni) = Pi−1(ni−1) Pi(ni). If
we impose that each Pj (nj ) has a power law dependence in nj, similar to what was done for
n1, it is easy to verify that the steady-state marginal probabilities are solved by

Pj (nj ) =
(

1 − αpj−1

(μ + p)j

)(
αpj−1

(μ + p)j

)nj

, α < μ + p. (52)

The resulting steady-state mean occupation at each site is

〈nj 〉 = αpj−1

(μ + p)j − αp−1
, α < μ + p.

From our steady-state results for N > 1, we can find an approximation to the passage times by a
mean-field argument in which the probability of site N+1 surviving up to k−1 particles hitting it
obeys Ṡk(t) = −J (t)Sk(t). The particle current J (t) = p

∑∞
nN =1 P(nN |Tk > t) is conditioned

on fewer than k particles having arrived at site N + 1 by time t. Since neither P(nN |Tk > t)

14
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Figure 6. Interarrival times 〈Tk〉−〈Tk−1〉 for the surface dynamics ZRP as a function of k. Results
from Monte-Carlo simulations (open symbols) for both N = 1 and N = 10 are presented. Since
fewer particle are mobile in surface dynamics, the arrival times are longer. The simulations match
the analytic results found for the N = k = 1 (equation (51), indicated by the asterisk) and large
k (equations (54) and (21)) limits. For comparison, numerical results for the bulk dynamics case
(filled symbols) are also plotted. All plots were derived using μ = 0.1 and α = 1.

nor the unconditional distribution P(nN, t) are available, we must approximate J (t) with its
steady-state, ‘mean-field’ (single site marginal distribution) value through equation (52):

J ≈ p

∞∑
nN =1

P(nN, t → ∞)

= p

∞∑
nN =1

(
1 − αpN−1

(μ + p)N

)(
αpN−1

(μ + p)N

)nN

= αpN

(μ + p)N
. (53)

In this approximation, J is independent of k and all interarrival times are approximately

〈Tk〉 − 〈Tk−1〉 =
∫ ∞

0
Sk(t) dt ≈ (μ + p)N

αpN
. (54)

As expected, this estimate is precisely that given by αeff in equation (20) for the bulk dynamics
case and is accurate in the limit of α  (μ + p) where the entry flux is slow compared to
the internal dynamics and the first passage time is dominated by the contribution given by
α−1. Fast internal dynamics allows the system to quickly reach steady state, rendering the
interarrival times equivalent for bulk and surface dynamics.

Upon taking the limit of slow injection rate α → 0 in equation (51) we find

lim
α→0

〈T1〉 = (μ + p)

αp
,

which is identical to the result in equation (54) for N = k = 1. Figure 6 plots simulated
interarrival times and compares them with those from bulk dynamics. For large k, interarrival
times for both bulk and surface dynamics approach the same value α−1

eff for each N. The only
exact result for surface dynamics is that given by equation (51) for N = k = 1 and is indicated
by the asterisk at 〈T1〉 ≈ 2.051 25.
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4. Summary and conclusions

In this paper, we have provided detailed and explicit calculations of first passage times of
an N-site, one-dimensional zero-range process. Both a Poissonian injection process at the
first site and spontaneous desorption from all sites were included. We considered both bulk
dynamic and surface dynamic (‘chipping’) rules as illustrated in figure 1.

For the ZRP obeying bulk dynamics, we computed the particle passage times using two
methods. In the first method, we explicitly enumerated the random walks of each injected
particle and evaluated their probability of reaching the final absorbing site within a time
window. The probability that the absorbing site has not absorbed more than k particles by
a certain time was constructed. The main results for the survival probabilities are given
by equations (1) and (2), with explicit expressions for the mean first passage time given by
equation (16) and its subsequent asymptotic limits.

We also derived the complete master equation for the probability distribution for a ZRP
obeying bulk dynamics, and solved its corresponding generating function using the method
of characteristics. In addition to the kth passage time distribution, this yielded the mean
conditional occupancies of each site given by equation (36), and the full probability distribution
given by equation (40).

Finally, for a single site (N = 1) ZRP obeying surface dynamics, we found exact results
for the site density distribution (equations (48) and (49)) and the mean first passage times
(equation (51)). Note that higher moments of the first passage time are readily obtained by
evaluating higher derivatives of equation (50) at s = 0. For general N, only the steady-state
particle currents and interarrival times could be found in the closed form (equation (54)).
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