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Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings,
we present a thorough analysis of the general problem of stochastic self-assembly of a fixed number
of identical particles in a finite volume. We derive the backward Kolmogorov equation (BKE) for the
cluster probability distribution. From the BKE, we study the distribution of times it takes for a single
maximal cluster to be completed, starting from any initial particle configuration. In the limits of slow
and fast self-assembly, we develop analytical approaches to calculate the mean cluster formation
time and to estimate the first assembly time distribution. We find, both analytically and numeri-
cally, that faster detachment can lead to a shorter mean time to first completion of a maximum-sized
cluster. This unexpected effect arises from a redistribution of trajectory weights such that upon in-
creasing the detachment rate, paths that take a shorter time to complete a cluster become more likely.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772598]

I. INTRODUCTION

The self-assembly of macromolecules and particles is a
fundamental process in many physical and chemical systems.
Although particle nucleation and assembly have been stud-
ied for many decades, interest in this field has recently in-
tensified due to engineering, biotechnological and imaging
advances at the nanoscale level.1–3 Aggregating atoms and
molecules can lead to the design of new materials useful for
surface coatings,4 electronics,5 drug delivery,6 and catalysis.7

Examples include the self-assembly of DNA structures8,9 into
polyhedral nanocapsules useful for transporting drugs10 or the
self-assembly of semiconducting quantum dots to be used as
quantum computing bits.11

Other important examples of molecular self-assembly
may be found in cell physiology or virology where proteins
aggregate to form ion channels, viral capsids, and plaques im-
plicated in neurological diseases. One example is the rare self-
assembly of fibrous protein aggregates such as β−amyloid
that have long been suspected to play a role in neurodegener-
ative conditions such as Alzheimer’s, Parkinson’s, and Hunt-
ington’s disease.12 In prion diseases, individual PrPC proteins
misfold into PrPSc prions which subsequently self-assemble
into fibrils. The aggregation of misfolded proteins in neurode-
generative diseases is a rare event, usually involving a very
low concentration of prions. Fibril nucleation also appears to
occur slowly; however, once a critical size of about ten pro-
teins is reached, the fibril stabilizes and the growth process
accelerates.13

Viral proteins may also self-assemble to form capsid
shells in the form of helices, icosahedral, dodecahedra, de-
pending on virus type. A typical assembly process will in-
volve several steps where dozens of dimers aggregate to
form more complex subunits which later cooperatively as-
semble into the capsid shell. Usually, capsid formation re-

quires hundreds of protein subunits that self-assemble over
a period of seconds to hours, depending on experimental
conditions.14,15

In addition to these two examples, many other biological
processes involve a fixed “maximum” cluster size – of tens
or hundreds of units – at which the process is completed or
beyond which the dynamics change.16 At times, the assembly
process may involve coagulation and fragmentation of clus-
ters as well, such as in the case of telomere aggregation in the
yeast nucleus.17 Developing a stochastic self-assembly model
with a fixed “maximum” cluster size (as shown in Fig. 1) is
thus important for our understanding of a large class of bio-
logical phenomena.

Theoretical models for self-assembly have typically de-
scribed mean-field concentrations of clusters of all possi-
ble sizes using the well-studied mass-action, Becker-Döring
equations.18–21 While master equations for the fully stochas-
tic problem have been derived, and initial analyses and sim-
ulations performed,22–24 there has been relatively less work
on the stochastic self-assembly problem. We have recently
shown that in finite systems, where the maximum cluster
size is capped, results from mass-action equations are inac-
curate and that in this case a discrete stochastic treatment is
necessary.25

In our previous examination of equilibrium cluster size
distributions derived from a discrete, stochastic model,25 we
found that a striking finite-size effect arises when the total
mass is not divisible by the maximum cluster size. In partic-
ular, we identified the discreteness of the system as the major
source of divergence between mean-field, mass action equa-
tions, and the fully stochastic model. Moreover, discrepancies
between the two approaches are most apparent in the strong
binding limit where monomer detachment is slow. Before the
system reaches equilibrium, or when the detachment is appre-
ciable, the differences between the mean-field and stochastic
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FIG. 1. Homogeneous self-assembly and growth in a closed unit volume ini-
tiated with M = 30 free monomers. At a specific intermediate time 0 < t
< t* in this depicted realization, there are six free monomers, four dimers,
four trimers, and one cluster of size four. For each realization of this process,
there will be a specific time t* at which a maximum cluster of size N = 6 in
this example is first formed (blue cluster).

results are qualitatively similar, with only modest quantitative
disparities.

In this paper, we will be interested in the distribution of
the first assembly times towards the completion of a full clus-
ter, which can only be determined through a fully stochastic
treatment. Specifically, we wish to compute the time it takes
for a system ofMmonomers to first assemble into a complete
cluster of size N, as shown in Fig. 1. We do not consider coag-
ulation and fragmentation events, but as a starting point, focus
on attachment and detachment of single monomers. Statis-
tics of the first assembly time26 may shed light on how fre-
quently fast-growing protein aggregates appear. In principle,
one may also estimate mean self-assembly times starting from
the mean-field, mass action equations, using heuristic argu-
ments. We will show, however, that these mean-field estimates
yield mean first assembly times that are quite different from
those obtained via exact, stochastic treatments.

In Sec. II, we review the Becker-Döring mass-action
equations for self-assembly and motivate the formulation of
approximate expressions for the first assembly time distri-
butions. These will be shown to be poor estimates of the
true distribution functions, leading us to consider the full
stochastic problem in Sec. III. Here, we derive the backward
Kolmogorov equation associated with the self-assembly pro-
cess and illustrate how to formally solve it through the cor-
responding eigenvalue problem. In Sec. IV, we explore three
limits of the stochastic self-assembly process and derive ana-
lytic expressions for the mean first assembly time in the strong
and weak binding limits. Results from kinetic Monte-Carlo
(KMC) simulations are presented in Sec. V and compared
with our analytical estimates. Finally, we discuss the impli-
cations of our results and propose further extensions in the
Summary and Conclusions.

II. MASS-ACTION MODEL OF HOMOGENEOUS
NUCLEATION AND SELF-ASSEMBLY

The classic mass-action description for spontaneous,
homogeneous self-assembly is the Becker-Döring model,27

where the concentrations ck(t) of clusters of size k obey

ċ1(t) = −p1c
2
1 − c1

N−1∑
j=2

pjcj + 2q2c2 +
N∑

j=3

qj cj ,

ċ2(t) = = −p2c1c2 + p1

2
c21 − q2c2 + q3c3,

ċk(t) = −pkc1ck + pk−1c1ck−1 − qkck + qk+1ck+1,

ċN (t) = pN−1c1cN−1 − qNcN, (1)

where pk and qk are the monomer attachment and detachment
rates to and from a cluster of size k. A typical initial con-
dition is ck(t = 0) = (M/V )δk,1, representing an initial state
composed only of free monomers. For simplicity we set the
volume V = 1. The above equations can be numerically in-
tegrated to find the time-dependent concentrations ck(t) for
any set of attachment and detachment rates. We have previ-
ously shown that Eqs. (1) provide a poor approximation to
the expected number of clusters when the total mass M and
the maximum cluster size N are comparable in magnitude.25

Although mass action equations provide approximations
to mean concentrations, they do not directly describe any sta-
tistical property of the modeled system. Nonetheless, one may
be able to heuristically derive estimates of quantities such
as mean first assembly times. To estimate the mean time to
completion of the first maximum cluster, we must consider a
truncated set of mass-action equations which treats maximum
clusters as “absorbing states” so that once maximum clus-
ters are formed, the process is stopped and the time recorded.
Thus, we set qN = 0 in Eqs. (1) so that once clusters of size
N are formed, no detachment is allowed. This choice ensures
that completed assembly events will not influence the dynam-
ics of any of the remaining smaller clusters.

To estimate the mean first assembly time we may invoke
the statistical concept of survival probabilities, and heuristi-
cally combine it with the deterministic solutions of Eq. (1).
Following standard notation, we denote by S(t) the probabil-
ity that the system has not yet formed a maximal cluster. This
quantity is also known as the “survival” probability. Its dy-
namics can be expressed using the probability flux JN out of
the last not fully formed maximal cluster state, or equivalently
into the maximal one, conditioned on the system still surviv-
ing so that

dS(t)

dt
≡ −JN (t | surviving up to time t). (2)

The flux JN(t| surviving up to time t) conditioned on survival
up to time t can be approximated by assuming JN(t| surviving
up to time t) ≈ JN(t)S(t), where JN(t) is the unconstrained
mean particle flux. This mean field approximation for the evo-
lution of the survival probability yields

dS(t)

dt
� −JN (t)S(t). (3)

To proceed, we may use the deterministic results for JN(t),

JN (t) � pN−1c1(t)cN−1(t), (4)

so that the survival probability can be estimated as

S(t) = exp

[
−pN−1

∫ t

0
c1(t

′)cN−1(t
′)dt ′

]
= e−cN (t). (5)

Note that while Eq. (5) satisfies S(t= 0)= 1, S(t → ∞) �→ 0,
due to cN(t→ ∞) being finite. As a consequence, the derived
first assembly time will always be infinitely large, since the
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system has a finite survival probability even for t→ ∞, mak-
ing the approximation invalid. Alternatively, we may approx-
imate Eq. (2) by setting S(t) ≈ 1 in the RHS of Eq. (3) to
find

dS(t)

dt
= −JN (t). (6)

Upon using Eq. (4), this expression also yields unphysical
results at long times. Note that both Eqs. (3) and (6) are
heuristic estimates for the survival probabilities which can be
evaluated using results from the mass-action equations (e.g.,
Eq. (4)). However, since they lead to unphysical results, they
cannot be used as valid approaches for estimating the proba-
bility that the system has not formed a maximum-sized clus-
ter up to time t. Nonetheless, a deterministic approximation
that yields physically reasonable estimates can be obtained
by finding the time at which the concentration of clusters of
size N reaches unity

cN (TN ) ≡ 1, (7)

and imposing qN = 0 in Eqs. (1). As an example, we con-
sider the case M = 7, N = 3 for pi = p = 1, qi �= 3 = q
(and q3 = 0 as illustrated above), find cN(TN) from Eqs. (1),
and plot the mean first assembly time obtained via Eq. (7) in
Fig. 2(a). For completeness we also show the exact results ob-
tained via the full stochastic treatment in Eq. (12), the deriva-
tion of which we will focus on below. What clearly arises
from Fig. 2(a) is that while the mean first assembly times
obtained stochastically and via the mean-field equations are
of the same order of magnitude, they are also quite differ-
ent and show even qualitative discrepancies. For example, the
stochastic mean first assembly time is non-monotonic in q,
while the simple mean-field estimate is an increasing function
of q. Discrepancies between the heuristic and exact stochas-
tic results exist also for the case M = 9, N = 4 shown in
Fig. 2(b). Here, most notably we can point out that for q = 0,
while the exact mean first assembly time calculated accord-
ing to our stochastic formulation diverges, it remains finite

FIG. 2. Mean first assembly times evaluated via the heuristic definition
Eq. (7) (dashed line) and as a function of the detachment rate qi = q, for
M = 7 N = 3 in panel (a) and for M = 9, N = 4 in panel (b). Here pi = p
= 1. We also show the exact results (solid line) obtained via the stochastic
formulation in Eq. (12) which we derive in Sec. III. Qualitative and quan-
titative differences between the two approaches arise, which become even
more evident for N> 3, q→ 0, as we shall later discuss. These discrepancies
underline the need for a stochastic approach.

in the heuristic derivation. We shall later see that this trend
will persist for all choices N > 3 and that the heuristic ap-
proach does not yield accurate estimates. A stochastic treat-
ment is thus necessary and is the subject of the remainder of
this paper.

III. BACKWARD KOLMOGOROV EQUATION

To formally derive first assembly times for our nucle-
ation and growth process it is necessary to develop a discrete,
stochastic treatment. We thus define P(n1, n2, . . . , nN; t|m1,
m2, . . . , mN; 0) as the probability that the system contains n1
monomers, n2 dimers, n3 trimers, etc., at time t, given that
the system started from a given initial configuration (m1, m2,
. . .mN) at t = 0. In this representation, the forward master
equation corresponding to self-assembly with exponentially
distributed monomer binding and unbinding events is given
by Ref. 25,

Ṗ ({n}; t |{m}, 0)

= −�({n})P ({n}; t |{m}, 0)

+ p1

2
(n1 + 2)(n1 + 1)W+

1 W+
1 W−

2 P ({n}; t |{m}, 0)

+ q2(n2 + 1)W+
2 W−

1 W−
1 P ({n}; t |{m}, 0)

+
N−1∑
i=2

pi(n1 + 1)(ni + 1)W+
1 W+

i W−
i+1P ({n}; t |{m}, 0)

+
N∑

i=3

qi(ni + 1)W−
1 W−

i−1W
+
i P ({n}; t |{m}, 0), (8)

where P({n}, t) = 0 if any ni < 0 and

�({n}) = p1

2
n1(n1 − 1) +

N−1∑
i=2

pin1ni +
N∑

i=2

qini,

is the total rate out of configuration {n}. Here, W±
j are the

unit raising/lowering operators on the number of clusters of
size i so that

W+
1 W+

i W−
i+1P ({n}; t |{m}; 0)

≡ P (n1 + 1, . . . , ni + 1, ni+1 − 1, . . . ; t |{m}; 0).

The master equation can be written in the form Ṗ = AP,
where P is the vector of the probabilities of all possible
configurations and A is the matrix of transition rates be-
tween them. The natural way of computing the distribution
of first assembly times is to consider the backward Kol-
mogorov equation (BKE) describing the evolution of P(n1,
n2, . . . , nN; t|m1, m2, . . . , mN; 0) as a function of local
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changes from the initial configuration {m}. The BKE can be
expressed as

Ṗ ({n}; t |{m}, 0)
= −�({m})P ({n}; t |{m}; 0)

+ p1

2
m1(m1 − 1)W+

2 W−
1 W−

1 P ({n}; t |{m}; 0)

+ q2m2W
−
2 W+

1 W+
1 P ({n}; t |{m}; 0)

+
N−1∑
i=2

pim1miW
−
1 W−

i W+
i+1P ({n}; t |{m}; 0)

+
N∑

i=3

qimiW
+
1 W+

i−1W
−
i P ({n}; t |{m}; 0), (9)

where the operators W±
i act on the initial configuration index

mi. In the vector representation, the BKE is Ṗ = A†P, where
A† is the adjoint of the transition matrix A as can be verified
by comparing Eqs. (8) and (9). The utility of using the BKE
is that Eq. (9) can be used to determine the evolution of the
survival probability, that can be naturally defined as

S({m}; t) ≡
∑

{n},nN =0

P ({n}; t |{m}; 0), (10)

where we have made explicit the dependence on the initial
configuration {m}. In Eq. (10), the sum is restricted to con-
figurations where nN = 0 so as to include only “surviving”
states that have not yet reached any of the ones where nN
≥ 1. S({m}; t) thus describes the probability that no maxi-
mum cluster has yet been formed up to time t, given that the
system started in the configuration {m} at t= 0. One can now
similarly sum Eq. (9) over all final states with fixed nN = 0
to find that S({m}; t) also obeys Eq. (9) with P({n}; t|{m}, 0)
replaced by S({m}; t), along with the definition S(m1, m2, . . . ,
mN ≥ 1; t) = 0 and the initial condition S(m1, m2, . . . , mN = 0;
0) = 1. In the vector representation where each element of S
corresponds to a particular initial configuration, the general
evolution equation for the survival probability is Ṡ = A†S,
where we consider only the subspace of A† on non-absorbing
states. Solving the matrix equation for S leads to a vector of
first assembly time distributions

G ≡ −∂S
∂t

, (11)

where each element of G represents the first assembly time
distribution starting from a different initial cluster configura-
tion. Appendix A explicitly details the calculation procedures
required to compute S, G, and the moments of the first assem-
bly times. For example, using M = 7, N = 3, pi = p, and qi
= q in Eq. (A1), we find

T3(7, 0, 0) = 1

105p2

744p3 + 487p2q + 60pq2 + 2q3

27p2 + 20pq + 2q2
, (12)

where we have assumed N = 3,M = 7, and pi = p, qi = q are
constants. The label (7, 0, 0) indicates an initial condition con-
sisting of M = 7 monomers, no dimers, and no trimers. Cor-
responding expressions for the mean first assembly time arise
for different initial conditions, such as (n1, n2, n3) = (5, 1, 0),
(3, 2, 0), or (1, 3, 0). All of these mean first assembly times

are non-monotonic in both q and p, regardless of initial condi-
tion, indicating that there are optimal q/p ratios for which the
first assembly times are smallest. We will discuss the mono-
tonicity of TN({m}) below, both in the limit of fast and slow
detachment. For simplicity, we will retain the assumption of
uniform pi = p and qi = q throughout the remainder of this
work and henceforth rescale time in units of p−1. With this
choice, q
 1 represents fast detachment, while q� 1 repre-
sents slow detachment. T3(7, 0, 0) has already been plotted in
Fig. 2(a), contrasting it against the heuristic approximation of
Eq. (7). A similar matrix approach can be used for the caseM
= 9, N = 4 yielding a cumbersome but exact expression for
T4(9, 0, 0, 0) that is plotted in Fig. 2(b).

IV. RESULTS AND ANALYSIS

In this section, we study the properties of the first assem-
bly time in the irreversible detachment limit, when q= 0, and
in the limits of slow (0 < q� 1) and fast detachment (q
 1).

A. Irreversible limit (q = 0)

First, consider N = 3 and irreversible self-assembly
where q = 0. In this case, the matrix A† is bidiagonal and the
analysis outlined in Appendix C yields the exact expression
for any starting configuration

T3(M − 2n, n, 0)

= 2

(M − 2n)(M − 1)

×
⎡
⎣1 +

[M/2]∑
j=1

j∏
k=n+1

(M − 2k + 2)(M − 2k + 1)

(M − 2k)(M − 1)

⎤
⎦ .

(13)

Note that when q = 0 the mean first assembly time is finite
whenM is odd, but is infinite ifM is even. This can be under-
stood from the exampleM = 8, N = 3 illustrated in Fig. 3(b),
where a “trapped” state arises. In this case, there is a finite
probability that the system arrives in the state (0, 4, 0) trap-
ping it there forever since the assembly process is irreversible
and detachment would be the only way out. Therefore, av-
eraging over trajectories that include these “traps,” the mean
assembly time will be infinite. For q = 0, we can show that a
trapped state exists for any M and N ≥ 4, yielding infinite as-
sembly times. A trapped state arises when all free monomers
have been depleted (n1 = 0) before a maximum cluster has
been able to assemble (nN = 0). In this case, the total mass
must be distributed according to

M =
N−1∑
j=2

jnj . (14)

It is not necessarily the case that this decomposition is possi-
ble for all M and N, but if it is, then we have a trapped state
and the first assembly time is infinite. To show that the de-
composition holds for N≥ 4 and for allM, we writeM= σ (N
− 1) + j where σ is the integer part [M/(N − 1)], so
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(8,0,0)

(6,1,0)

(4,2,0)

(2,3,0)

(5,0,1)

(3,1,1)

(1,2,1) (2,0,2)(0,4,0)

(0,1,2)

(7,0,0)

(5,1,0)

(3,2,0)

(1,3,0)

(4,0,1)

(2,1,1)

(0,2,1) (1,0,2)

(a) (b)

FIG. 3. Allowed transitions in stochastic self-assembly starting from an all-
monomer initial condition. In this simple example, the maximum cluster size
N = 3. (a) Allowed transitions for a system with M = 7. Since we are in-
terested in the first maximum cluster assembly time, states with n3 = 1 con-
stitute absorbing states. The process is stopped once the system crosses the
vertical red line. (b) Allowable transitions whenM= 8. Note that if monomer
detachment is prohibited (q = 0), the configuration (0, 4, 0) (yellow) is a
trapped state. Since a finite number of trajectories will arrive at this trapped
state and never reach a state where n3 = 1, the mean first assembly time T3(8,
0, 0) → ∞ when q = 0.

that 1 ≤ j ≤ N − 2. Now, if j �= 1, then the decom-
position is achieved with nN−1 = σ , nj = 1, and all
other nk = 0 for k �= j, (N − 1). We have thus con-
structed a possible trapped state. If instead j = 1, then
we can rewrite M = (σ − 1)(N − 1) + (N − 2)
+ 2 so that the decomposed state is defined by nN−1 = σ − 1,
nN−2 = 1, and n2 = 1 with all other values of nk = 0. This
proves that for allM, N there are trapped states for q= 0. The
only exception is when N = 3, where the last decomposition
does not hold, since N − 2 = 1 and by definition, monomers
are not allowed in trapped states. Indeed, for N = 3, Eq. (14)
gives M = 2n2 as the only trapped state, which is possible
only for M even. The case M = 7 and N = 3 is shown in
Fig. 3(a).

According to our stochastic treatment, the possibility of
trajectories reaching trapped states for q = 0 exists for any
value of M, N ≥ 4, giving rise to infinite mean first assem-
bly times. This behavior is not mirrored in the mean-field ap-
proach for q = 0, where cN(TN) = 1 for finite TN depending
on initial conditions, if M is large enough, as can be seen in
Fig. 2(b). For N = 4, M = 9, indeed T4(9, 0, 0, 0)
can be evaluated from Eqs. (1) as c4(1.7527) = 1. In
the irreversible binding limit, we may thus find instances
where the exact stochastic treatment yields infinite first
assembly times due to the presence of traps, while in
the mean-field, mass action case, the mean first assem-
bly time is finite. This leads us to expect that mean-field
approximation to the first assembly time will be inaccu-
rate when q is small but non-zero. In this small q limit,
the system will remain in “trapped” states (defined when
q = 0) for a long time.

Since infinite mean first assembly times are a conse-
quence of the existence of trapped states one may ask what
is the mean first assembly time conditioned on traps not being

visited. As shown in Appendix B, we can explicitly enumer-
ate all paths towards the absorbed states and average the mean
first assembly times only over those that avoid such traps.29,30

B. Slow detachment limit (0 < q � 1)

Although mean assembly times are infinite in an irre-
versible process (except when M is odd and N = 3), they are
finite when q> 0. For general values ofM and N and for small
q > 0, we can find the leading behavior of the mean first as-
sembly time TN(M, 0, . . . , 0) perturbatively by considering the
trajectories from nearly trapped states into an absorbing state
with at least one completed cluster.

Since the mean arrival time to an absorbing state is the
sum of the probabilities of each pathway, weighted by the
time taken along each of them, we expect that the dominant
contribution to the mean assembly time in the small q limit
can be approximated by the shortest mean time to transition
from a trapped state to an absorbing state. This assumption is
based on the fact that the largest contribution to the mean as-
sembly time will arise from the waiting time to exit a trap, of
the order of ∼1/q, since detachment is the only possible path
out of the otherwise trapped state. The time to exit any other
state will be of order 1 since monomer attachment is allowed.
For sufficiently small detachment rates q, we thus expect that
the dominant contribution to the mean assembly time comes
from the trajectories that sample nearly trapped states and that
TN(M, 0, . . . , 0) ∼ 1/q.

Again, first consider the tractable case N= 3 andM even,
where it is clear that the sole trapped state is (0, M/2, 0) and
the “nearest” absorbing state is (1, M/2 − 2, 1). Since the
largest contribution to the first assembly time occurs along
the path out of the trap and into the absorbed state, we posit

T3(M, 0, 0) � P ∗
(
0,

M

2
, 0

)
T3

(
0,

M

2
, 0

)
,

where P*(0, M/2, 0) is the probability of populating the trap,
starting from the (M, 0, 0) initial configuration for q= 0. This
quantity can be evaluated by considering the different weights
of each path leading to the trapped state. An explicit recursion
formula has been derived in our previous work in Sec. IV and
Eq. (A12) of Ref. 25. In the N= 3 case however, the paths are
simple, since only dimers or trimers are formed, leading to

P ∗
(
0,

M

2
, 0

)
= (M − 3)!!

(M − 1)
M
2 −1M

, (15)

which is the same as what was derived in Eq. (B3). The first
assembly time T(0, M/2, 0) starting from state (0, M/2, 0) is

T3

(
0,

M

2
, 0

)
= 1

M
2 q

+ T3

(
2,

M

2
− 1, 0

)
. (16)

Here, the first term is the total exit time from the trap, given by
the inverse of the detachment rate q multiplied by the number
of dimers. The second term is the first assembly time of the
nearest and sole state accessible to the trap. This quantity can
be evaluated, to leading order in 1/q, as

T3

(
2,

M

2
− 1, 0

)
� 1

2
(

M
2 − 1

) + 1
T3

(
0,

M

2
, 0

)
, (17)
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where we consider that the trap will be revisited upon exiting
the state (2, M/2 − 1, 0) with probability 1/(2(M

2 − 1) + 1).
In principle, Eq. (17) should also contain another term repre-
senting the possibility of reaching state (4, M/2 − 2, 0) via
detachment from state (2, M/2 − 1, 0) and its contribution to
the first assembly time. However, the magnitude of this term
would be much smaller than 1/q, since detachment rates are of
order O(q) � O(1/q). Another term that should be included
in Eq. (17) is the possibility of reaching the absorbing state
(1,M/2 − 2, 1). This term however, yields a zero contribution
to the first assembly time. Upon combining Eqs. (16) and (17)
we find that as q→ 0,

T3

(
0,

M

2
, 0

)
� 2(M − 1)

M(M − 2)

1

q
.

Finally, T3(M, 0, 0) can be derived by multiplying the above
result by Eq. (15). We can generalize this procedure to find
the dominant term for the mean assembly time starting from
any initial state (M − 2n, n, 0) in the limit of small q, N = 3
and for M even

T3(M, 0, 0) � T3(M − 2, 1, 0)

� 2(M − 3)!!

M(M − 2)(M − 1)M/2−2

1

q
, (18)

T3(M − 2n, n, 0) � 2(M − 2n − 1)!!

M(M − 2)(M − 1)M/2−n−1

1

q

× 2 ≤ n < M/2, (19)

T3(0,M/2, 0) � 2(M − 1)

M(M − 2)

1

q
. (20)

The next correction terms do not have an obvious closed-form
expression, but are independent of q. Note that when q is small
and increasing, the mean first assembly times decrease. This
is also true for odd M. A larger q leads to a more rapid disso-
ciation, which may lead one to expect a longer assembly time.
However, due to the multiple pathways to cluster completion
in our problem, increasing q actually allows for more mixing
among them, so that at times, upon detachment, one can “re-
turn” to more favorable paths, where the first assembly time
is actually shorter. This effect is clearly understood by con-
sidering the case of q = 0 when, due to the presence of traps,
the first assembly time is infinite. We have already shown that
upon raising the detachment rate q to a non-zero value, the
first assembly time becomes finite. Here, detachment allows
for visiting paths that lead to absorbed states, which would
otherwise not be accessible. This same phenomenon persists
for small enough q and for all M, N values. The expectation
of assembly times increasing with q is confirmed for large q
values, as we shall see in Sec. IV C. Taken together, these
trends indicate the presence of a minimum in the mean first
assembly time that occurs at an intermediate value of the de-
tachment rate q.

We can generalize our estimate of the leading 1/q term
for the first assembly time to larger values of N via

TN (M, 0, . . . , 0) =
∑
{μ}

P ∗({μ})TN ({μ}), (21)

where {μ} are trapped state configurations for q = 0. The
values of P*({μ}) can be calculated as described above us-
ing the recursion formula presented in Ref. 25. Approximate
mean first assembly times TN({μ}) from traps {μ} may be
found by considering equations for the shortest sub-paths that
link traps to each other. For instance, in the case of M = 9, N
= 4 the only trapped states are (0, 3, 1, 0) and (0, 0, 3, 0), with
associated probabilities P*(0, 0, 3, 0) = 921/5488 and P*(0,
3, 1, 0) = 2873/24696, respectively. The shortest path linking
the two traps is (0, 3, 1, 0) → (2, 2, 1, 0) → (1, 1, 2, 0) → (0,
0, 3, 0), which yields, to first order, T(0, 1, 3, 0) = T(0, 0, 3,
0) = 1/(2q). Finally, from Eq. (21) we find that T(9, 0, 0, 0)
= 2005/(14112q) which can be verified by constructing the
corresponding D(9, 4) = 12 dimensional transition matrix A†
and solving the linear eigenvalue problem. Enumerating tra-
jectories that intersect nearly trapped states become increas-
ingly complex as M and N increase since more traps arise,
leading to the identification of more entangled sub-paths con-
necting them.

C. Fast detachment limit (q → ∞)

We now consider the case where detachment is much
faster than attachment and q 
 M. In this limit, we expect
the full assembly of a cluster to be a rare event in the large
q limit, and that the mean assembly time will increase mono-
tonically with q.

1. Dominant path approximation

For q → ∞ the dominant configurations are those with
the most monomers (the higher states in each column of
Fig. 3). Thus, the dominant trajectories will be the ones that
most directly arrive at the absorbing state with one full clus-
ter. For N = 3, the overwhelmingly dominant paths are:
(M, 0, 0) ⇀↽ (M − 2, 1, 0) ⇀↽ (M − 3, 0, 1). The dynamics
of the probabilities of the two “surviving” states with n3
= 0 can be represented by a linear 2 × 2 system that is easily
solved to yield, in the q→ ∞ limit,

T3(M, 0, 0) � T3(M − 2, 1, 0) � 2q

M(M − 1)(M − 2)
.

The dominant path method can be generalized to any M ≥ N
for q
 M as follows:

(M, 0, 0, . . . , 0) ⇀↽ (M − 2, 1, 0 . . . , 0) ⇀↽ · · ·
⇀↽ (M − r, 0 . . . , 1, . . . , 0) ⇀↽ · · · ⇀↽ (M − N, 0, . . . 0, 1).

(22)

Here, the corresponding transition matrix R† is tridi-
agonal and of dimension (N − 1) with elements
r
†
1,1 = −r

†
1,2 = −M(M − 1)/2 and r

†
k,k−1 = q, r

†
k,k = −q

− (M − k), r†k,k+1 = (M − k) for 2 ≤ k ≤ (N − 1). The
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inverse of R† can be computed by a three-term recurrence
formula.32 After some algebraic manipulation, we can write

the first assembly time along the path in Eq. (22) for any M
≥ N and for q ≥M as

TN (M, 0, . . . , 0) = 2qN−2∏N−1
i=0 (M − i)

[
N−2∑
k=0

k∏
	=1

(M − (N − 	))q−k

+ M(M − 1)

2

N−2∑
j=2

j−1∏
	=2

(M − 	)
N−j−1∑

k=0

k∏
l=1

(M − (N − 	))q1−j−k

⎤
⎦ . (23)

Our notation is such that products with the lower index larger
than the upper one are set to unity. In Eq. (23), the largest term
in the q→ ∞ limit is given by

TN (M, 0, . . . , 0) � 2qN−2∏N−1
i=0 (M − i)

.

The additional assumption M
 N on the other hand leads to
the approximation M − i �M so that Eq. (23) becomes

TN (M, 0, . . . , 0) � qN−1

MN

[ N−1∑
k=2

(k − 1)Mk

qk
+ 2

q

N−2∑
k=0

Mk

qk

]
.

(24)
Results for other choices of initial configurations {m} can be
obtained by following the same reasoning illustrated here. We
expect TN({m}) not to be too different from TN(M, 0, . . . , 0)
in the strong detachment q → ∞ case when any initial clus-
ters will rapidly disassemble, leading the system towards the
free monomer configuration. The distribution of first assem-
bly times can also be obtained within the dominant path ap-
proximation, as outlined in Appendix D.

We expect these results to hold for large q ≥ M, small
values of N and moderate values of M so that the most
likely trajectories follow the dominant path. However, due the
possibility of many branching paths in configuration space,
modest changes in {M, N, q} may allow sampling of sec-
ondary paths that yield different estimates of the first assem-
bly time. Indeed, as both M and N become larger, the cre-
ation of several intermediate clusters may be more favorable
than progressively adding monomers to the largest one. In
Subsection IV C 2, we thus introduce a “hybrid” approach,
where the possibility of having multiple intermediate aggre-
gates is included by assuming that the first r clusters are dis-
tributed according to the Becker-Döring equilibrium distribu-
tion and the remaining N − r follow a monomer-to-largest
cluster path towards complete assembly.

2. Hybrid approximation

We now consider a different approach to the fast detach-
ment q → ∞ limit by using a “pre-equilibrium” or “quasi-
steady-state” approximation34 that partially neglects correla-
tions between some of the cluster numbers by separating time
scales between fast and slow varying quantities. In particu-

lar, we require the “fast” subsystem to be ergodic and to pos-
sess a unique equilibrium distribution. The dynamics of the
“slow” subsystem is then obtained by averaging the fast vari-
ables over their equilibrium distribution; the basic assumption
is that while slow variables evolve, the fast ones equilibrate in-
stantaneously to their average values.35 As we shall see, due
to the equilibrium hypothesis, summing Eq. (8) over the vari-
ables that constitute the fast subsystem, will lead to the van-
ishing of all terms that do not modify the slow variable, and all
remaining terms will involve averages of the fast variable.36

Just as in the deterministic case, we allow the first N − 1
cluster sizes to equilibrate amongst each other and write the
probability distribution function using a mean-field approach

P ({n}; t |{m}, 0) = Peq({n′}|nN )P (nN ; t |{m}, 0). (25)

For fixed nN, Peq({n′}|nN) represents the equilibrium distribu-
tion function for the first, fast {n′} = {n1, . . . , nN−1} cluster
sizes and

P (nN ; t |{m}, 0) =
∑
{n′}

P ({n′}, nN ; t |{m}, 0) (26)

is the probability distribution for the last, slow cluster size
nN. The sum in Eq. (26) is to be performed over all values of
{n′} such that mass conservation

∑N−1
i ini = M − NnN is

obeyed. Note that while Peq({n′}|nN) does not depend on the
initial conditions of the {n′} clusters, it does depend on nN.
Upon inserting the ansatz in Eqs. (25) and (8) and performing
the summation over all configurations {n′} with fixed nN, we
find

Ṗ (nN ; t |{m}, 0) = − (〈n1nN−1|nN 〉eq + qnN )P (nN ; t |{m}, 0)
+〈n1nN−1|nN − 1〉eqP (nN − 1; t |{m}, 0)
+ q(nN + 1)P (nN + 1; t |{m}, 0). (27)

In Eq. (27), we have used the notation

〈n1nN−1|nN 〉eq =
∑
{n′}

n1nN−1Peq({n′}|nN ) (28)

representing the equilibrium second moment 〈n1nN−1|nN〉eq,
which is an average over all fast variables with the added con-
straint that they have total mass M − NnN. Equation (27)
implies that nN follows a Markovian birth and death process
with birth rate 〈n1nN−1|nN〉eq and a death rate qnN. Starting
at nN = 0 at time t = 0, the first birth event coincides with
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the first assembly time so that the survival probability can be
written as

SN−1(t) = exp

[
−

∫ t

0
〈n1nN−1|nN = 0〉eqdt

]
≡ e−λt , (29)

where the “N − 1” indicates that all clusters of size N − 1
and smaller have been pre-equilibrated. Having defined
λ = 〈n1nN−1|nN = 0〉eq in Eq. (29), the first assembly time
distribution is exponential

GN−1({m}; t) = λe−λt , (30)

and the mean first assembly time is given by TN(M, . . . , 0)
= 1/λ. The remaining difficulty lays in determining the quan-
tity 〈n1nN−1|nN〉eq. We may resort to a very crude approxima-
tion, by simply using the Becker-Döring results

〈n1nN−1|nN 〉eq � c
eq
1 c

eq
N−1

� 1

2qN−2

(
c
eq
1

)N
. (31)

Equation (31) can now be used to estimate λ and all
other related quantities. Our work so far implies that the
first assembly time is exponentially distributed according to
Eq. (30). However, upon comparing with results from Monte-
Carlo simulations in Sec. V, we will show that the N − 1
pre-equilibration and is often not a good approximation. As
outlined in Appendix E, a less drastic approximation can be
implemented by allowing only the first r species (1 ≤ r < N)
to pre-equilibrate. This more restricted pre-equilibration ap-
proximation can occasionally provide better fits to simulation
as we will see in Sec. V.

V. COMPARISON WITH SIMULATIONS

In this section, we present results derived from simula-
tions of the stochastic process associated with the probability
distribution process for various values of {M, N, q}. Specifi-
cally, we use an exact stochastic simulation algorithm (KMC)
to calculate first assembly times.40,41 For each set of {M, N,
q}, we sample at least 104 trajectories and follow the time
evolution of the cluster populations until nN = 1, when the
simulation is stopped and the first assembly time recorded.
We compare and contrast our numerical results with the ana-
lytical approximations evaluated in Secs. II–IV.

We begin with the simple case of M = 7 and N = 3 in
Fig. 4(a) where we plot the mean first assembly time T3(7, 0,
0) as a function of q obtained via our exact results Eq. (12)
and by runs of 105 KMC trajectories. Numerical and exact
analytical results are in very good agreement, in contrast to
the discrepancies between the fully stochastic and mean field
treatments observed in Fig. 2. For comparison, we also plot
in Fig. 4(b) the mean first assembly time T3(8, 0, 0) for M
= 8 and N = 3, where the presence of the trapped state (0, 4,
0) leads to a diverging first assembly time for q= 0 and to the
asymptotic behavior T3(8, 0, 0) ∼ 1/q for q→ 0, as predicted.
Note that as discussed above T3(7, 0, 0) is finite for q = 0 due
to the lack of trapped states for N = 3 and M odd. We do not
plot the first assembly time distributions as their features are
similar to ones we will later discuss.

FIG. 4. Mean first assembly times for M = 7 and N = 3 in panel (a) and M
= 8 and N = 3 in panel (b). Exact results derived in Eq. (12) are plotted as
black solid lines, while red circles are obtained by averaging over 105 KMC
trajectories. The dashed blue line shows the q→ 0 approximation in Eq. (18)
and the q→ ∞ approximation in Eq. (23).

We generalize this analysis by plotting numerical esti-
mates of T10(M, 0, . . . , 0) as a function of q for various values
of M in Fig. 5(a). As expected, for small q, the mean first as-
sembly time scales as 1/q for all values of M. Similarly, for
all values of M, the first assembly time presents a minimum,
due to the previously described increased weighting of faster
pathways upon increasing q for small enough values of q. For
larger values of q we expect the most relevant pathways to-
wards assembly to be the ones constructed along the linear
chain described in (22). Indeed, we find that in accordance

FIG. 5. Comparison of theory with simulations for N = 10, and several val-
ues of M. Symbols are derived from 104 KMC simulations for M = 50, 200,
1000. In panel (a) the dashed lines are obtained by plotting the curve T10(M,
0, . . . , 0) = A/q where A is given by imposing passage through the first point
to the left in the graph. Note that all other points align to the same curve.
Solid lines are derived from Eq. (23) in the dominant path approximation.
In panel (b) results from the hybrid approximation with r = 2 in Eq. (E2)
are superimposed on the same data. Note the much better fit in the hybrid
approximation as q→ ∞, especially as M becomes larger.
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with Eq. (24), TN(M, 0, . . . , 0) � 2qN−2/MN as q ≥ M. Small
and large q estimates using the dominant path approximation
are shown in Fig. 5(a).

As discussed earlier, the dominant path approximation
becomes less accurate as M increases, since the linear chain
pathway neglects other possible routes towards complete as-
sembly, that become relevant asM increases. In Fig. 5(b), thus
we plot the same data points, using the hybrid approximation
discussed above for large q, with r = 2. Note a much closer
fit with the simulation data, especially as M increases.

We note that the detachment parameter q is a cru-
cial determinant of the viability of KMC simulations. When
monomer attachment is slow and the formation of a full clus-
ter is a rare event, requiring longer simulations in order to
accurately sample the first assembly time distribution. This
effect is amplified by large N. Therefore, KMC simulations
may be limited by small q and/or large N, and our analytic ap-
proximations become necessary. To generate Fig. 5 required
approximately 2 days of run time on a cluster of 8 central pro-
cessing units running at 3 GHz, with most of the simulation
time devoted to very smallest values of q.

In Fig. 6(a), we plot TN(M, 0, . . . , 0) as a function of M
for q fixed and various N, while in Fig. 6(b), TN(M, 0, . . . , 0)
is plotted as a function of M for N fixed and various q. Both
Figs. 6(a) and 6(b) show that the results derived in Eq. (23)
for large q using the dominant path approximation are accu-

FIG. 6. First assembly times TN(M, 0, . . . , 0) as a function of M for q = 100
and several values of N in panel (a), and for N = 5 and several values of q
in panel (b). The black dashed lines represent the dominant path approxima-
tion for large q in Eq. (23), while the solid black line represents the hybrid
approximation in Eq. (E2) for r = 2. We chose to plot only representative
cases, not to clutter the graphics, but similar trends persist in panel (a) for
N = 4, 6, 8 and in panel (b) for q = 10, 100. Note that the dominant path
approximation ceases to be accurate for very large values of M and that the
hybrid approximation provides a better fit as q→ ∞.

rate provided M is not too large compared to N. As shown by
the black solid lines, in this case TN(M, 0, . . . , 0) � 2qN−2/MN.
For larger values of M, the dominant path approximation be-
comes inaccurate: numerical results indicate that TN(M, 0, . . . ,
0) � 1/Mν with ν ∼ 1 as q → ∞. In this regime, the hybrid
approximation with r = 3 yields a better fit, as shown by the
solid lines in Figs. 6(a) and 6(b).

Finally, in Figs. 7–9, we plot the distribution function
G({M, 0, . . . , 0}, t) of the first assembly times for several
representative choices of {M, N, q}. As illustrated in the fig-
ure captions, analytical estimates were calculated either by
inverse Laplace transforming Eq. (D1) after having numer-
ically found its poles, or via the hybrid approximation in
Eq. (E2) with specific values of r. From Fig. 7 note upon in-
creasing q, G({M, 0, . . . , 0}, t) gradually shifts from having a
log-normal shape towards an exponential distribution charac-
terized by the decay rate evaluated in Eq. (D3). Some com-
binations of M and N, such as M = 200 and N = 8 in Fig. 8
yield a bimodal distribution for small q. This can be explained
by noting that while fast routes towards nucleation may exist,
other pathways lead the system to the previously described
trapped states where n1 = nN = 0. Exit from these traps is
unlikely for small q, yielding larger first assembly times. The
emergence of a bimodal distribution should be more appar-
ent for larger values of N when there is a longer pathway to-
wards assembly and more potential traps. Indeed, although
not shown in Fig. 7 for M = 50 and N = 4, a few trajecto-
ries populate the region t ∼ 1/q, indicating passage through
at least one of the nine possible trapped states. However, the
weights of these possible paths are very small (only about 10
or so out of 104 runs incurred into a trapped state), so we
do not include them in Fig. 7 which is truncated at t � 1/q,
when q → 0. This occurs also for M = 8 and N = 3, where
a minor spread due to the (0, 4, 0) trap and centered around
t∼ 1/q arises in the distribution tail, and which is absent from
the trap-free case of M = 7 and N = 3.

Note that although few paths may populate the region
t∼ 1/q their contribution to the mean first assembly time may
be significant. In Fig. 8, we also include analytical estimates
of the first assembly times: the dashed red curves are derived
from the dominant path approximation in Eq. (D1) and the
solid blue ones from the hybrid approximation in Eq. (E2) us-
ing r= 3. As noted above, for very large q, the dominant path
approximation fails and the hybrid approximation provides a
closer fit to our numerical results.

In Fig. 9, we plot the first assembly time distribution for
fixed q = 100 and N = 8 and varying M. As expected, for
q ≥ M, G({M, 0, . . . , 0}, t) is well approximated by the ex-
ponential distribution in Eq. (D4). As M increases the dis-
tribution acquires a log-normal shape. In this case, we find
the hybrid approximation to fail regardless of r. Indeed, our
numerical results show that there is no specific criterion to
ensure that the hybrid approximation will yield even qual-
itatively valid estimates for the first assembly distributions
as M → ∞. Empirically, we find that while mean first as-
sembly times predictions are quite accurate within the hy-
brid approximation, the first assembly distribution estimates
are more likely to be accurate when they are exponentially
distributed.
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FIG. 7. Probability distributions for the first assembly time for N= 4 andM= 50 and for various values of q (a)–(f). The black bars are obtained as a normalized
histogram of 104 KMC simulations. The dashed red and solid blue lines are the probability density functions estimated via the dominant path approximation in
Eq. (D1) and via the hybrid approximation with r = 3 in Eq. (E2), respectively. The detachment rate q increases as indicated in each subplot. Note that initially
the distribution has a log-normal shape and later turns into an exponential. As predicted, the analytical estimate given by Eq. (D1) becomes accurate for q ≥M.
Also note the change in scale and the broadening of the distribution as q increases.

FIG. 8. First assembly time distributions for N = 8 and M = 200 for various values of q (a)–(f). The black bars are obtained as a normalized histogram of 104

KMC simulations. The dashed red and solid blue lines are the probability density functions estimated via the dominant path approximation in Eq. (D1) and via
the hybrid approximation with r = 3 in Eq. (E2) respectively. The detachment rate q is successively increased in each subplot. Note that the distribution begins
as a bimodal curve and acquires a log-normal shape, before turning to an exponential for larger q. As in Fig. 7, the hybrid approximation becomes increasingly
accurate as q increases.
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FIG. 9. First assembly time distributions for N = 8 and q = 100 for various values of the total mass M (a)–(f). The black bars are obtained as a normalized
histogram of 105 KMC simulations. The dashed red and solid blue lines are the probability density functions estimated via the dominant path approximation in
Eq. (D1) and via the hybrid approximation with r = 3 in Eq. (E2), respectively. Total mass M increases as indicated in each subplot. Note that the distribution
evolves from an exponential with decay rate given by Eq. (D3), valid for q ≥M, towards a more log-normal shape. In this case, for very largeM both dominant
path and hybrid approximations fail.

VI. SUMMARY AND CONCLUSIONS

We have studied the problem of determining the first as-
sembly time of a cluster of a pre-determined size N to form
from an initial pool of M independent monomers character-
ized by uniform attachment and detachment rates p= 1 and q,
respectively. We have shown that while heuristic approaches
using the traditional Becker-Döring equations can be devel-
oped, these fail to capture relevant qualitative features, such
as divergences and non-monotonic behavior. A full stochastic
approach, based on the backward Kolmogorov equation, was
investigated.

We developed our stochastic model and were able to find
exact results for the first assembly time in systems where
M, N are small enough for analytical treatments to be fea-
sible. For general M, N we were able to estimate general
trends and behaviors for both large and small q. In particu-
lar, we find that in the absence of detachment, when q = 0,
trapped states arise from which the system is never able to
escape, leading to infinitely large first assembly times. Fur-
thermore, we showed that these traps arise for all values of
N > 3, regardless of M. The possibility of a trap, and of di-
verging first assembly times is not captured by the heuris-
tic approach, and is confirmed by our KMC simulations. We
are also able to show that for small q, the divergence in the
first assembly time scales as 1/q. The latter result may ap-
pear counter-intuitive, since larger detachment rates should
intuitively hinder the assembly process, leading to the expec-

tation that larger q implies larger first assembly times. While
this is true in the q→ ∞ limit, in the case of q→ 0 an oppo-
site trend arises: the increased accessibility of potential paths
in configuration space that lead to more rapid first assembly
times. As q increases, these new paths become increasingly
populated, yielding an overall decrease in the first assem-
bly time. Finally, for larger values of q we identify the most
likely path to be traveled in phase space towards the first as-
sembly of an N-cluster and derive estimates for the associated
first assembly time and probability distribution functions. For
q
 1, we also considered a “hybrid” approach where the first
few clusters were allowed to equilibrate, while the larger ones
were still evolving stochastically. In certain cases, we were
able to find better agreement with numerical data, while for
other combinations of {M, N, q} the hybrid approach fails.
The collection of analytic approaches for the limits q = 0,
0 < q � 1, and q 
 1 are outlined in Secs. IV A–IV C,
respectively.

All of our analytical results were confirmed by our KMC
simulations, from which we obtained first assembly times and
related probability distribution functions. For certain choices
of {M, N, q}, the presence of traps could be indirectly in-
ferred by the emergence of bimodal distributions with very
large first assembly times (on paths where traps were encoun-
tered) and very short ones (on others that were able to avoid
them). These bimodal distributions may be smeared out for
other choices of {M, N, q}.
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A number of additional stochastic properties of our self-
assembly problem can be calculated. For example, one can
derive analogous results for attachment and detachment rates
pk and qk that depend on cluster size k. In particular, if we
assume that binding and unbinding of monomers depends on
the available surface area, and that clusters are of spherical
shape, we can use the forms pk, qk ∼ k2/3. Similarly, one could
assume that stoichiometric limitations could exist so that at-
tachment of monomers becomes progressively slower as com-
pletion of the N-mer is approached so that pk ∼ (N − k) and
qk ∼ k. These extensions as well as the treatment of heteroge-
neous nucleation and first “breakup” times will be considered
in future work, as well as possible connections to experimen-
tal systems.
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APPENDIX A: CALCULATION OF SURVIVAL
PROBABILITY AND MOMENTS

To obtain expressions for moments of the first assembly
time, it is useful to Laplace transform Eq. (11) so that

G̃ = 1 − sS̃.

Here, G̃ and S̃ are Laplace transforms of G and S, respec-
tively. The vector 1 is the survival probability of any ini-
tial, non-absorbing state, and consists of 1’s in a column of
length given by the dimension of A† on the subspace of non-
absorbing states. Using this representation we may evaluate
the mean assembly time for forming the first cluster of size N
starting from the initial configuration {m},

TN ({m}) ≡ −
∫ ∞

0
t
∂S({m}; t)

∂t
dt

=
∫ ∞

0
S({m}; t)dt = S̃({m}; s = 0). (A1)

Similarly, the variance VN ({m}) of the first assembly time can
be expressed as

VN ({m}) ≡ −
∫ ∞

0
t2

∂S({m}; t)
∂t

dt − T 2
N ({m})

= 2
∫ ∞

0
tS({m}; t)dt − T 2

N ({m})

= −2
∂S̃({m}, s)

∂s

∣∣∣∣
s=0

− S̃2({m}; 0). (A2)

After Laplace-transforming Ṡ = A†S and applying the initial
condition S(t = 0) = 1, where each component of the vector
S corresponds to a different initial condition, we find sS̃ − 1
= A†S̃ and

S̃ = [sI − A†]−11, (A3)

so that

G̃ = 1 − s[sI − A†]−11.

The first assembly time starting from a specific configuration
{m} is thus

TN ({m}) = S̃({m}; 0) = −[(A†)−11]{m}, (A4)

where the subscript {m} refers to the vector element corre-
sponding to the {m}th initial configuration. Similar expres-
sions can be found for the variance and other moments.

In order to invert the matrix A† on the subspace of non-
absorbing states, we first note that its dimension D(M, N)
rapidly increases with M. In particular, we find that the num-
ber of distinguishable configurations with no maximal cluster
obeys the recursion

D(M,N + 1) =
[M/N]∑

j=0

D(M − jN,N ), (A5)

where [M/N] denotes the integer part ofM/N. For example, in
Eq. (A5),D(M, 2)= 1, and the only “surviving” configuration
not to have reached at least one cluster of size k = 2 is (M, 0).
The next term is D(M, 3) = 1 + [M/2] which, for M → ∞
yields D(M, 3) � M/2. Similarly, D(M, 4) can be written as

D(M, 4) =
[M/3]∑
j=0

D(M − 3j, 3) �
[
M

3

] [
M

2

]
� M2

6
,

where the last two approximations are valid for large M. By
induction, we find

D(M,N ) � MN−2

(N − 1)!
.

From these estimates, it is clear that the complexity of the
eigenvalue problem in Eq. (A4) increases dramatically for
largeM. This enumeration of states and the associated matrix
method for computing first assembly times is analogous to the
study of first passage times on a network.28 However, rather
than considering statistical properties of a scale free network,
we are concerned with a probability flux across a specific re-
alization of a state space network.

As an example, consider the N= 3 case where instructive
explicit solutions can be derived for the mean assembly times.
In this case, the eigenvalue problem for the vector of survival
probabilities S ≡ (S(M, 0, 0; t), S(M − 2, 1, 0; t), S(M − 4, 2,
0; t), . . . ) can be written using a tridiagonal transition matrix
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A† whose elements a
†
i,j = aj,i take the form

a
†
k,k−1 = (k − 1)q2, 2 ≤ k ≤ 1 +

[
M

2

]
,

a
†
k,k = − (M − 2k + 2)(M − 2k + 1)

2
p1 − (k − 1)q2

−(k − 1)(M − 2k + 2)p2, 1 ≤ k ≤ 1 +
[
M

2

]
,

a
†
k,k+1 = (M−2k+2)(M− 2k+1)

2
p1, 2 ≤ k ≤ 1+

[
M

2

]
,

where the first (second) index denotes the column (row) of the
matrix. Using the above form for A†, we can now symbol-
ically or numerically solve for the Laplace-transformed sur-
vival probability S̃({m}; s) and the mean self-assembly time
S̃({m}; s = 0).

APPENDIX B: MEAN ASSEMBLY TIMES EXCLUDING
TRAPPED STATES

Since the q = 0 case prevents detachment and gives rise
to diverging mean assembly times, we can define assembly
times excluding trajectories that end in a trapped state. To be
more concrete, we first consider the case N= 3. Here, in order
to reach the absorbing state where n3 = 1, one or more dimers
must have formed. Let us thus consider the specific case
1 ≤ n2 ≤ [

M−1
2

]
. Here, the second bound arises because af-

ter n2 dimers have formed, at least one free monomer must
remain in order to attach to one of the n2 dimers to form the
first trimer. Since at every iteration both the formation of a
dimer and of a trimer can occur, the probability of a path that
leads to a configuration of exactly n2 dimers is given by

n2−1∏
k=0

(M − 2k)(M − 2k − 1)

(M − 2k)(M − 2k − 1) + 2(M − 2k)k
. (B1)

The above quantity must be multiplied by the probability that
after n2 dimerizations, a trimer is formed, which occurs with
probability

2n2(M − 2n2)

(M − 2n2)(M − 2n2 − 1) + 2(M − 2n2)n2
. (B2)

Upon simplifying the product of the two probabilities in
Eqs. (B1) and (B2), we find that the probability Wn2 for a
path where n2 dimers are created before the final trimer is as-
sembled is given by

Wn2 = 2n2

(M − 1)n2+1

n2−1∏
k=0

(M − 2k − 1).

Note that ifM is even, we must discard paths where 2n2 =M,
since, as described above, this case represents a trap with no
monomers to allow for the creation of a trimer. According to
Eq. (B1), the realization 2n2 =M occurs with probability

WM
2

= (M − 3)!!

(M − 1)
M
2 −1M

. (B3)

Thus for M even, WM
2
represents the probability the system

will end in a trap. We must now evaluate the time the system
spends on each of the trap-free paths. Note that the exit time
from a given dimer configuration (M − 2k, k, 0) is a random
variable taken from an exponential distribution with rate pa-
rameter given by the dimerization rate, λd, k = (M − 2k)(M
− 2k− 1)/2. However, the formation of a trimer is also a pos-
sible way out of the dimer configuration, with rate λt, k = (M
− 2k)k. The time to exit configuration (M − 2k, k, 0) thus is
itself an exponentially distributed random variable with rate
λk given by the sum of the two rates31

λk = λd,k + λt,k = (M − 2k)(M − 1)

2
.

The typical time out of configuration (M − 2k, k, 0) is thus
given by 1/λk. Upon summing over all possible values 0 ≤ k
≤ n2, we find the typical time for the system to go through n2
dimerizations

Tn2 =
n2∑

k=0

1

λk

=
n2∑

k=0

2

(M − 2k)(M − 1)
.

Finally, we can write the mean first assembly time as

T3(M, 0, 0) =
[M−1

2 ]∑
n2=1

Wn2Tn2 . (B4)

It can be verified that for M odd, Eq. (B4) is the same as
Eq. (13), since the integer part that appears in the sum in
Eq. (B4) is the same as its argument, thus including all paths.
For M even, paths with 2n2 = M are discarded, yielding a
mean first assembly time averaged over trap-free configura-
tions.

Similar calculations can be carried out for larger N; how-
ever, keeping track of all possible configurations before any
absorbed state can be reached becomes quickly intractable.
For example, when N = 4 one would need to consider paths
with a specific sequence of n2, k dimers formed between the
creation of k and k + 1 trimers until n3 trimers are formed.
The path would be completed by the formation of a cluster
of size N = 4. We would then need to consider all possible
choices for 1 ≤ n3 ≤ [

M−1
3

]
such that traps are avoided and

evaluate the typical time spent on each viable path. Because
of the many branching possibilities, it is clear that the enumer-
ation becomes more and more complicated as N increases.

APPENDIX C: CALCULATION PROCEDURE FOR
IRREVERSIBLE LIMIT q = 0

When q = 0, the matrix A† now becomes bidiagonal and
a two-term recursion can be used to solve for the survival
probability S̃(M − 2n, n, 0; s) as follows. If the entries of the
bidiagonal matrix A† are denoted a

†
ij , then the elements bi, j
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of the inverse matrix B = [sI − A†]−1 are given by

bi,i = 1

s − a
†
i,i

,

bi,j = 0 if i > j, (C1)

bi,j =
∏j−1

k=i a
†
k,k+1∏j

k=i(s − a
†
k,k)

if i < j.

The Laplace-transformed survival probability, according
to Eq. (A3) is the sum of entries of each row of [sI − A†]−1,

S̃(M − 2n, n, 0; s) = 1

s − a
†
i,i

+
[M/2]+1∑
j=i+1

∏j−1
k=i a

†
k,k+1∏j

k=i(s − a
†
k,k)

,

(C2)
where i = n + 1 is the (n + 1)st row of [sI − A†]−1. Upon
performing the inverse Laplace transform of Eq. (C2), we can
write the survival probability S(M − 2n, n, 0; t) as a sum
of exponentials and derive the full first assembly time dis-
tribution −∂S(M − 2n, n, 0; t)/∂t. Similarly, the mean first
assembly time, according to Eq. (A4), is T3(M − 2n, n, 0)
= S̃(M − 2n, n, 0; s = 0). In particular, from Eq. (C2) we
find

a
†
k,k+1

a
†
k+1,k+1

= − (M − 2k + 2)(M − 2k + 1)

(M − 2k)(M − 1)
,

which, when inserted into Eq. (C2) with s = 0 leads
to Eq. (13).

APPENDIX D: CALCULATION PROCEDURE FOR FAST
DETACHMENT q � 1

An estimate for the first assembly time distribution can
be obtained within the dominant path assumption (Eq. (22)).
By using the symmetry properties of the associated matrix R†

we can find the Laplace transform of the first assembly time
distribution G({M, 0, . . . , 0}; s)33 in the q ≥M limit

G̃({M, 0, . . . , 0}; s) =
1
2

∏N−1
i=0 (M − i)

dN−1(s)
, (D1)

where dN−1(s) is a unitary polynomial of degree N − 1, given
by the following recurrence:

d1 = s + M(M − 1)

2
,

d2 = (s + (M − 2) + q)d1 − q
M(M − 1)

2
, (D2)

di = (s + (M − i) + q)di−1 − q(M − (i − 1))di−2,

for i > 2.

Thus, dN−1(s) = sN−1 + · · · + βs2 + αs + 1
2

∏N−1
i=0 (M − i).

Note that the first assembly time is given by

TN (M, 0, . . . , 0) = lim
s→0

1 − G̃({M, 0, . . . , 0}; s)
s

.

By comparing Eq. (D1) with Eq. (23) we note that the term α

that appears in the above expansion for dN−1(s), corresponds

to the quantity in the square brackets in Eq. (23) so that

TN (M, 0, . . . , 0) = 2α∏N−1
i=0 (M − i)

and α = qN−2 + h.o.t. One can also calculate the variance of
the first assembly time distribution to obtain

VN (M, 0, . . . , 0) = α2∏N−1
i=0 (M − i)2

− 2β∏N−1
i=0 (M − i)

,

and similarly all other moments of the distribution. Finally,
we can also estimate the first assembly time distribution
G({M, 0. . . , 0}, t) by considering the inverse Laplace trans-
form of Eq. (D1), specifically by evaluating the dominant
poles associated with dN−1(s). In the large q limit, dN−1(s) as
evaluated via the recursion relations Eqs. (D2) can be approx-
imated as

dN−1(s) � qN−2s + 1

2

N−1∏
i=0

(M − i),

yielding the slowest decaying root λN,

λN = − 1

2qN−2

N−1∏
i=0

(M − i). (D3)

The above estimate allows us to write G({M, 0, . . . , 0}; t) in
the large q limit as an exponential distribution with rate pa-
rameter λN,

G({M, 0, . . . , 0}; t) � eλN t

2qN−2

N−1∏
i=0

(M − i). (D4)

APPENDIX E: HYBRID APPROXIMATION FOR q � 1
AND r < N − 1

A more general hybrid approximation can be imple-
mented by assuming that only clusters of size r and smaller
pre-equilibrate.42, 43 We integrate Eq. (8) over all configura-
tions but with nr+1, . . . nN fixed and obtain a reaction network
for the remaining N − r clusters

nr

〈n1nr |{nr+1}〉eq−−−−−−−−⇀↽−−−−−−−−
qnr+1

nr+1

〈n1|{nr+1}〉eqnr+1−−−−−−−−−⇀↽−−−−−−−−−
qnr+2

nr+2 · · ·

〈n1|{nr+1}〉eqnN−1−−−−−−−−−−→ nN, (E1)

where {nr+1} = {nr+1, . . . , nN} so that 〈n1nr|{nr+1}〉eq
and 〈n1|{nr+1}〉eq depend on the slowly varying mass,
M − ∑N

r+1 ini , just as above for the choice r = N − 1.
In the reaction chain (E1), the last cluster size nN is

treated as an absorbing state since we are only interested in the
first assembly time, when nN = 1. The question still remains
of properly evaluating 〈n1nN−1|{nr+1}〉eq and 〈n1|{nr+1}〉eq.
For q→ ∞, it is reasonable to argue that most of the mass is
distributed among the fast clusters n1, . . . nr. Indeed, if we now
assume that all the mass is contained in the fast cluster sizes,
〈n1|{nr+1}〉eq and 〈n1nr|{nr+1}〉eq may be obtained via a dis-
tribution of r clusters with total mass M − ∑N

i=r+1 ini � M .
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The rates in (E1) become independent of ni, for i > r. We
can also drop the slow cluster size condition on the averaged
quantities, and simply use 〈n1〉M and 〈n1nr〉M.

The cluster network in (E1) is a so-called linear Jackson
queueing network.37 Entry of particles in queue nr+1 occurs at
rate 〈n1nr〉M, each of them moving independently according
to the forward 〈n1〉M and backward q transition rates. Starting
with no particles in the queue at t = 0, the time-dependent
probability distribution for this queueing network is well
known.37 In particular, the number of particles in the last
queue follows a Poisson distribution with mean

μ(t) = 〈n1nr〉M
∫ t

0
PN−r (s)ds,

where Pi(t) is the probability that a single particle is in the ith
queue at time t after its entry in the system. Because the last
queue is absorbing, and from the definition of the first assem-
bly time, the survival probability of our clustering process can
be identified with the probability of having no particles in the
last queue so that

S(t) = Prob{nN = 0}

= exp

[
−〈n1nr〉M

∫ t

0
PN−r (s) ds

]
. (E2)

Finally, note the probability Pi(t), for 1 ≤ i ≤ N − r satisfies
the master equation Ṗi = AijPj with Pi(0) = δ1i and

Aij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−q − 〈n1〉M q 0

〈n1〉M −q − 〈n1〉M q 0

. . .
. . .

. . . 0

〈n1〉M −q − 〈n1〉M 0

0 〈n1〉M 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The first assembly time and the variance can now be de-
rived according to standard formulae in Eqs. (A1) and (A2).

As before, this technique requires an estimation of the
first and second moments 〈n1〉M and 〈n1nr〉M from the equi-
librium distribution for clusters up to size r with total mass
M. A first crude way of approximating these asymptotic mo-
ments is to use the mean-field results

〈n1〉M � c
eq
1 , 〈n1nN−1〉M � c

eq
1 c

eq
N−1.

We can also derive moment equations for 〈n1〉M and 〈n1nr〉M
directly from Eq. (8). Here, due to nonlinear couplings be-
tween cluster sizes, the lower order moments will necessarily
be described in terms of higher order ones. For instance, to
determine the first and second moments we are interested in,
we would need an expression for the third moment. To close
moment equations, one usually assumes that the probability
distribution for all cluster sizes obeys a certain form—either
Gaussian, log-normal, or negative binomial which are among
the most standard. The third moment may then be written as a
function of the first two, thus closing the system. The closed
equations of the first two moments become nonlinear and a
numerical solver is typically used to solve them.39 The case
r = 2 has been extensively analyzed in Cao, Gillespie, and
Petzold.38 In this paper, we follow the same approach, us-
ing a Gaussian distribution to approximate higher moments,
thus deriving a closed system of r equations for 〈ni〉M and r(r
+ 1)/2 equations for 〈ninj〉M, where 1 ≤ i, j ≤ r.

Finally, note that the hybrid approach described above is
based on the assumption that all mass is initially contained
within the first r clusters and are distributed according to the
Becker-Döring equilibrium distribution. We expect this ap-
proach to be valid for moderate and large values of M and N,
with q ≥ M in order for the production of small clusters to be

faster than the production of larger ones. How to choose the
optimal cutoff value r is a delicate issue and depends on the
specific parameters {M, N, q}, although in general we find
that all values of 2 ≤ r ≤ N − 2 give qualitatively similar
results.
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