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Reconstruction of a persistent random walk from exit time distributions
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In this paper, we study the inverse problem of reconstructing the spatially dependent transition rate F(x)
of a 1D Broadwell process from exit time distributions. In such a process, an advecting particle is assumed
to undergo transitions between states with constant positive (+v) and negative (−v) velocities. The goal
is to reconstruct the transition rate function F(x) from the exit time distributions out of a finite interval.
Using the associated backward equation, we compute the distribution of exit times and its Laplace trans-
form, given a fixed starting position and velocity. We propose two methods (called ‘t’ and ‘s’) for finding
F(x). In both methods, we represent F(x) as a linear combination of polynomials and repeatedly solve
the backward equation to minimize the difference between its solution and given first exit time data. In
the t-method, we work in the time domain, using exit times directly and leveraging a novel series solu-
tion for the exit time distribution. In the s-method, we work with the Laplace-transformed equation and
Laplace-transformed exit times. Noisy data are generated using a custom-designed algorithm to simulate
the trajectories of a Broadwell process. In most cases, we can find four coefficients to within O(10−1)

accuracy from O(104) exit times, with the t-method slightly outperforming the s-method. We also explore
the effectiveness of our algorithms for a fixed number of exit times under different advection speeds and
find that optimal reconstruction occurs when v=O(1).

Keywords: random walk; inverse problem; Broadwell process; telegrapher’s equation.

1. Introduction

Inverse problems arise in many applications such as medical imaging (Arridge, 1999), high-energy par-
ticle physics (Novikov, 1994) and seismology (de Hoop et al., 2009). Most of these applications involve
measurement of waves at the boundary of a domain; from this boundary data, one may wish to recon-
struct spatially dependent properties within the domain such as the density and/or wave speed. However,
there have been fewer successful applications where the underlying physics involves an intrinsic ran-
dom process. The corresponding ‘boundary data’ for stochastic inverse problems are probability fluxes
or exit time distributions. The types of stochastic inverse problems we are concerned with in this paper
involve inferring the parameters of a stochastic process from such a distribution.

One example of such a stochastic inverse problem arises in the reconstruction of bond potentials
from rupture time distributions (Dudko, 2009; Freund, 2009; Hummer & Szabo, 2003). In force spec-
troscopy experiments, an increasing force is applied across a macromolecular bond until it ruptures.
Because of thermal fluctuations, the rupture force is a random variable; thus, the goal is to infer
properties of the bond potential from the distribution of rupture forces. Stochastic inverse problems
also commonly arise in diffuse optical tomography (Arridge, 1999; Arridge & Hebden, 1997). In all
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these applications, the exit time distribution of a Brownian motion leaving a finite interval is measured,
and one wishes to reconstruct the drift and/or diffusion function.

While Brownian motion is a canonical stochastic model, the inverse problem associated with Brow-
nian motion is ill-posed (Bal & Chou, 2003; Fok & Chou, 2010) and motivates the study of stochastic
exit time problems based on other types of random walks. Ill-posedness is a trademark of many inverse
problems. A problem is well-posed if a solution exists, is unique and depends continuously on the data.
Otherwise the problem is ill-posed. At present, issues of existence and uniqueness of spatially depen-
dent parameters for random walks are generally not well established, although some important results
for Brownian motions can be found in Bal & Chou (2003).

In this paper, we generalize the study of Brownian inverse problems by focusing on a class of
persistent random walk models called Broadwell processes (Broadwell, 1964a,b; Christlieb et al., 2004;
Goldstein, 1951; Masoliver & Weiss, 1994). In a Broadwell process, a particle randomly interconverts
(‘flips’) between multiple states, with each state associated with a particular velocity. The Broadwell
process has the desirable property that it interpolates between a ballistic and diffusive motion (Bicout,
1997; Fok et al., 2008): the time between transitions decreases as the flip rate increases, but increases
as the flip rate decreases. The Broadwell model opens the analysis of the inverse problem for these
two types of limiting processes; studying the inverse Broadwell problem may therefore provide insight
into the important, strictly diffusive problem. We shall focus on the constant speed Broadwell process,
assuming that transition probabilities that are spatially dependent and that the particle takes only two
states associated with a positive and negative velocity. From the distribution of exit times out of a finite
interval, our goal is to find the transition probability (‘flip-rate’) function.

Accurately simulating the exit times of a Brownian motion can be quite involved although reliable
methods do exist; see Giraudo & Sacerdote (1999), Giraudo et al. (2001), Mannella & Palleschi (1989)
and Taillefumier & Magnasco (2010), for example. Nevertheless, one important advantage of studying
the Broadwell model is the ease with which it can be simulated. Accurate simulations are critical for
comparisons between reconstructed flip-rate functions and the underlying target functions that produced
the exit data. When generating the exit time distribution from our simulations, the only source of error
(besides round-off) stems from using a finite number of realizations.

The outline of this paper is as follows. In Section 1.1, we present the backward Kolmogorov equation
(BKE) for the two-state Broadwell problem parametrized by a spatially dependent (but state-symmetric)
transition rate and a constant speed. We also state the inverse problem of reconstructing the flip-rate
function from the exit time distributions. The associated optimization problem involves minimizing the
distance between the solution of the BKE and the exit time data (derived from simulations or from the
solution of the BKE with a given flip rate function). In Section 2, we discuss the numerical aspects of our
work. In particular, we present two reconstruction methods. The first involves minimizing the difference
between the solution to the BKE and the target data in the time domain. The second involves minimizing
the difference between the Laplace-transformed solution of the BKE and transformed exit time data.
We also explain the simulation of Broadwell random walkers to test our reconstruction protocols. In
Section 3, we present the results of our reconstruction using noisy data and compare the two methods.
We show that, for a finite number of exit times, the most reliable reconstruction of the flip rate occurs
at an intermediate advection speed, no matter which method is used. In Section 4, we discuss general
implications of our results and summarize our findings.

1.1 Two-state model and statement of inverse problem

A two-state Broadwell model describes a particle that can take one of two states. Initially, the particle is
at position x and in state i ∈ {1, 2}. The particle advects within an interval (−L/2, L/2) with velocity+v
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RECONSTRUCTION OF A PERSISTENT RANDOM WALK 3

if i= 1 and −v if i= 2. While advecting, the particle may change state with probability F(y)dt within
time interval (t, t + dt), where y is the current particle position.

Let w(t | x, 1, 0)≡w1(x, t) and w(t | x, 2, 0)=w2(x, t) be the exit time distributions conditioned
on the particle initially being at position x and having a positive (+v) and negative (−v) velocity,
respectively. Then, the exit time distributions satisfy

∂w1

∂t
= v

∂w1

∂x
+ F(x)(w2 − w1), (1)

∂w2

∂t
=−v

∂w2

∂x
+ F(x)(w1 − w2), (2)

subject to initial conditions

w1(x, 0)= 0, w2(x, 0)= 0, (3)

and boundary conditions

w1(x= L/2, t)= δ(t), w2(x=−L/2, t)= δ(t). (4)

A full derivation of the backward equation for the exit time distribution for a general K-state Broadwell
process (of which (1–4) are a special case) can be found in Appendix A.

Given F(x), one can solve (1–4) (the ‘forward problem’) to find w1(x, t) and w2(x, t) for all
−L/2 < x < L/2 and t > 0. Note that (1) and (2) constitute Kolmogorov’s backward equations for the
exit time distributions, and that solving this backward equation defines the forward problem for com-
puting w1(x, t), w2(x, t) from a known F(x). However, in this paper we are interested in the inverse
problem.

Problem statement: Consider (1–4). Given a known, fixed−L/2 < x0 < L/2, a known velocity v > 0
and exit time distributions w1(x0, t) and w2(x0, t) for t > 0, find F(x) ∈C(−L/2, L/2).

In practice, the exit time distributions could come from directly simulating a Broadwell process or
from a single solution of the forward problem. For particles that initially advect with velocities +v and
−v, we refer to associated exit time distributions w1,data(x0, t) and w2,data(x0, t), respectively; note that
w1,data(x0, t) and w2,data(x0, t) may or may not be noisy. We give details on how w1,data and w1,data are
computed in Section 2.2.

Unfortunately, (1–4) are not useful in practice for inferring F(x) because the solutions are highly
singular. Related quantities that are more regular and whose governing equations are more amenable to
numerical methods are the cumulative density functions (CDFs) and Laplace-transformed probability
density functions (PDFs). We now give explicit forms for these equations since we make frequent use
of them later on.

The CDFs are related to the PDFs by W1,2(x, t)= ∫ t
0 w1,2(x, t′) dt′. Therefore, upon integrating (1)

and (2) in time, we find

∂W1

∂t
− v

∂W1

∂x
= F(x)(W2 −W1), (5)

∂W2

∂t
+ v

∂W2

∂x
= F(x)(W1 −W2), (6)
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subject to the boundary conditions

W1(L/2, t)=H(t), W2(−L/2, t)=H(t), (7)

and initial conditions

W1(x, 0)= 0, W2(x, 0)= 0. (8)

In (7), H(t) is the Heaviside step function satisfying H(t)= 1 if t > 0 and H(t)= 0 if t � 0. The corre-
sponding inverse problem is to find F(x) ∈C(−L/2, L/2) given −L/2 < x0 < L/2, v and Wj,data(x0, t)=∫ t

0 wj,data(x0, t′) dt′ for t > 0 and j= 1, 2. Alternatively, we can also take Laplace transforms of (1) and
(2) to find

sw̃1(x, s)= v
∂w̃1

∂x
+ F(x)(w̃2 − w̃1), (9)

sw̃2(x, s)=−v
∂w̃2

∂x
+ F(x)(w̃1 − w̃2), (10)

subject to boundary conditions

w̃1(x= L/2, s)= 1, w̃2(x=−L/2, s)= 1. (11)

The corresponding inverse problem is to find F(x) ∈C(−L/2, L/2) given −L/2 < x0 < L/2, v and
w̃j,data(x0, s) for s > 0 and j= 1, 2.

2. Algorithms for reconstruction

This section is divided into three parts. First, we give details on solving the forward problems (9–11)
and (5–8). Then we explain how to generate noisy data by directly simulating a Broadwell process with
a spatially dependent flip rate. Finally, we discuss a projection method to solve the inverse problem.

2.1 Solution to the forward problems

Solution to (9–11): Our method for finding w̃1(x0, s) and w̃2(x0, s) from (9–11) is based on solving the
boundary value problem using a pseudospectral method (Trefethen, 2000) for different values of s � 0;
see Algorithm 1. The solutions w̃1,2(x0, s) are always infinitely differentiable, monotonically decreasing
functions in s that→ 0 as s→∞.

Algorithm 1 Algorithm for solving the forward problem (9–11).
1: Require: flip rate function F(x), velocity v > 0, interval size L, starting position −L/2 < x0 < L/2

and integer N	 1.
2: for i= 1, 2, . . . , N do
3: let ξi = (i− 1)/N and si = ξi/(1− ξi).
4: With s= si, solve (9–11) using a pseudospectral discretization (Trefethen, 2000) in x.
5: Interpolate the solution at x= x0 to find w̃1(x0, si) and w̃2(x0, si).
6: end for
7: Output: Laplace Transformed exit time distributions w̃1(x0, si) and w̃2(x0, si), i= 1, . . . , N .
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RECONSTRUCTION OF A PERSISTENT RANDOM WALK 5

Solution to (5–8): In contrast to w̃1,2(x0, s), the solutions W1,2(x, t) contain jump discontinuities that
propagate into the domain of solution with velocity ∓v: the jump discontinuity in W1(x, t) (W2(x, t))
propagates along the characteristic line t=−x/v+ L/(2v) (t=+x/v+ L/(2v)). This behaviour in the
singularities is illustrated by the following theorem which uses an eigenfunction expansion to construct
an explicit solution to (5–8).

Theorem 1 (Series solution to the forward problem (5–8)) For 0 < t < L/v, the solution to (5–8) is

W1(x, t)= a1(x)H[t + x/v− L/(2v)]+ Z1(x, t), (12)

W2(x, t)= a2(x)H[t − x/v− L/(2v)]+ Z2(x, t), (13)

where H[·] is the Heaviside step function and Z1,2(x, t) are continuous functions given by the series

Z(x, t)=−
∞∑

m=1

um(x)

smDm
[h(1)

m (t)+ h(2)
m (t)], (14)

where

h(1)
m (t)=

∫ −L/2+vt

−L/2
p(1)∗

m (y)a2(y)F(y)(1− e(t−y/v−L/(2v))sm) dy, (15)

h(2)
m (t)=

∫ L/2

L/2−vt
p(2)∗

m (y)a1(y)F(y)(1− e(t+y/v−L/(2v))sm) dy, (16)

a1(x)= exp

[
−1

v

∫ L/2

x
F(x′) dx′

]
, (17)

a2(x)= exp

[
−1

v

∫ x

−L/2
F(x′) dx′

]
, (18)

Dm = 〈pm(x), um(x)〉 =
∫ L/2

−L/2
p∗m(x)um(x) dx. (19)

In (14), sm ∈C and um(x) ∈C
2 are the eigenvalues and eigenfunctions of A where

A
(

u1

u2

)
=

⎧⎪⎨
⎪⎩
⎡
⎢⎣v

d

dx
0

0 −v
d

dx

⎤
⎥⎦+ F(x)

[−1 1
1 −1

]⎫⎪⎬
⎪⎭
(

u1(x)
u2(x)

)
, (20)

along with the boundary conditions u1(L/2)= u2(−L/2)= 0. Here pm(x)= [p(1)
m (x), p(2)

m (x)]T are the
eigenfunctions of the adjoint operator A∗.

We now discuss the behaviour of the solutions W1,2(x, t) in light of (12–13) and defer the proof of
the theorem to the end of this section. From (12) and (13), it is clear that discontinuities in the boundary
conditions (7) propagate into the interior. In Fig. 1(a), W1 is discontinuous on the diagonal line sep-
arating A, C and B, D, while W2 is discontinuous on the line separating A, D and B, C. Because the
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(a) (b) (c)

Fig. 1. (a) Propagation of discontinuities of (1–4) in the x–t plane. The solution w1(x, t) is formally infinite on x= L/2− vt, while
w2(x, t) is infinite on x=−L/2+ vt. These singularities give rise to discontinuities in W1 and W2 that can be seen in (b, c). (b)
Numerical computation of cumulative density functions (CDFs) W1,2(x0 =−L/4, t) and auxiliary functions Z1,2(x0 =−L/4, t)
computed through (14) and Algorithm 2 using 101 Chebyshev grid points and 51 eigenfunctions u1, u2, . . . , u51. (c) Numerical
computation of CDFs W1,2(x0 = L/3, t) (solid) along with results from Monte Carlo simulations (diamond). Inset shows Laplace-
transformed probability densities w̃1,2(x0 = L/3, s). Common parameters in (b, c) are v= 1, F(y)= 1+ y and L= 1.

hyperbolic system (5–8) has a finite wave speed v > 0, region C is outside the region of influence of the
disturbances originating at (x, t)= (L/2, 0) and (−L/2, 0) and we expect that W1(x, t)=W2(x, t)= 0
in C. This behaviour is confirmed in Fig. 1(b) which shows the cumulative distribution functions
W1,2(x=−L/4, t) calculated using (12–14). The function W1(−L/4, t) has a discontinuous derivative
at t1 = L/(4v) and a jump discontinuity at t2 = 3L/(4v) while W2(−L/4, t) has a jump discontinuity
at t1 and a discontinuous derivative at t2. Figure 1(c) shows CDFs evaluated at x0 = L/3. The inset
shows associated Laplace-transformed PDFs w̃1(L/3, s) and w̃2(L/3, s), found by solving (9–11) using
Algorithm 1. CDFs from Monte Carlo simulations are superposed to validate our numerical method;
details of how these simulations are performed are described in Section 2.2.

The expansions (12–13) in Theorem 1 are commonly used to analyse seismic waves (de Hoop et al.,
2009; Sacks & Symes, 1987; Symes, 1991) and form the basis of our numerical method for the forward
problem in t; see Algorithm 2. Numerically, the CDFs W1,2 are computed by taking a finite number of
terms in (14) and adding on a step discontinuity at t=∓x/v+ L/(2v) with strength given by (17) and
(18). A pseudo-spectral collocation method on a Chebyshev grid was used to find the eigenvectors uj

and Clenshaw–Curtis quadrature (Trefethen, 2000) was used to quickly evaluate the integrals (15) and
(16) for 0 < t < L/v. The strength of this numerical method is that no integration in time is required to
find W1,2(x0, t) and the method allows quick evaluation of the CDFs at one fixed value of x= x0. Its
weakness is that many terms are usually required (� 100) in the expansion to obtain accurate results
when x0 is close to ±L/2. Furthermore, we found that when x0 =±L/2, the expansion (14) converged
to a discontinuous function, giving W1,2(x0, t) > 1 as t→∞; hence, the properties of the series (14) still
require further investigation at the domain boundaries.

Another important reason for separating out W1 and W2 into continuous and discontinuous compo-
nents is to avoid Gibbs oscillations when solving for Z(x, t) in terms of superpositions of eigenfunctions
un. These oscillations would introduce large errors into the solution to the forward problem (5–8) and
therefore hinder the solution of the inverse problem.
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Algorithm 2 Algorithm for solving the forward problem (5–8). The same symbols are used to refer to
quantities in (14–19) as well as their numerical approximations. For example, A refers to the differential
operator as well as its matrix approximation.

1: Require: A target flip rate F(x), velocity v > 0, an integer N , a starting position −L/2 < x0 < L/2
and a discretization of the interval [−L/2, L/2], {χ0, χ1, . . . , χn}.

2: Discretize the differential operators A and the adjoint A∗ where

A
(

u1

u2

)
=

⎧⎪⎨
⎪⎩
⎡
⎢⎣v

d

dx
0

0 −v
d

dx

⎤
⎥⎦+ F(x)

[−1 1
1 −1

]⎫⎪⎬
⎪⎭
(

u1(x)
u2(x)

)
,

A∗
(

p1

p2

)
=

⎧⎪⎨
⎪⎩
⎡
⎢⎣−v

d

dx
0

0 v
d

dx

⎤
⎥⎦+ F(x)

[−1 1
1 −1

]⎫⎪⎬
⎪⎭
(

p1(x)
p2(x)

)
.

Note that A must account for the boundary conditions u1(L/2)= 0 and u2(−L/2)= 0 respectively
and A∗ must account for the adjoint boundary conditions p1(−L/2)= 0 and p2(L/2)= 0.

3: Compute s1, . . . , sN , the first N complex eigenvalues of A with smallest absolute value.
4: Compute the corresponding N eigenvectors of u1, . . . , uN of A and p1, . . . , pN of A∗.
5: Compute the inner products Dm =

∫ L/2
−L/2 p∗m(x)um(x) dx for m= 1, . . . , N .

6: Compute the functions h(1)
m (t) and h(2)

m (t) in (15) and (16) for m= 1, . . . , N .
7: Compute a1(x) and a2(x) in (17) and (18).
8: Compute

Z(x0, t)=−
N∑

m=1

um(x0)

smDm
[h(1)

m (t)+ h(2)
m (t)], (21)

as the N-term approximation to (14). If x0 does not coincide with a grid point χj, use interpolation
to find um(x0).

9: Compute W1(x0, t) and W2(x0, t) by adding discontinuities of strength a1(x0) and a2(x0) at
t=−x0/v+ L/(2v) and t= x0/v+ L/(2v) respectively to Z1 and Z2: see (12) and (13).

10: Output W1(x0, t) and W2(x0, t).

Proof of Theorem 1. Upon substituting (12) and (13) into (5) and (6), we find that Z1,2(x, t) satisfy
∂Z1

∂t
− v

∂Z1

∂x
− F(x)(Z2 − Z1)= a2(x)F(x)H[t − x/v− L/(2v)], (22)

∂Z2

∂t
+ v

∂Z2

∂x
− F(x)(Z1 − Z2)= a1(x)F(x)H[t + x/v− L/(2v)], (23)

subject to the homogeneous boundary conditions Z1(L/2, t)= 0, Z2(−L/2, t)= 0 and initial conditions
Z1(x, 0)= 0, Z2(x, 0)= 0 and a1,2 are defined by (17) and (18). We now find a series representation for
Z1,2(x, t). After taking Laplace transforms of (22) and (23), we find that Z̃(x, s)= [Z̃1(x, s), Z̃2(x, s)]T

satisfies

(A− sI)Z̃(x, s)=− Ñ(x, s)

s
, (24)
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Ñ(x, s)= F(x)

[
a2(x) e−(L/(2v)+x/v)s

a1(x) e−(L/(2v)−x/v)s

]
,

with boundary conditions Z̃1(L/2, s)= 0, Z̃2(−L/2, s)= 0. Equation (24) has a solution of the form

Z̃(x, s)=
∞∑

n=1

cn(s)un(x)

s− sn
, (25)

where the vector eigenfunctions un(x) ∈C
2 satisfy Aun = snun for eigenvalues sn ∈C. As an aside,

when F(x)= F0 is a constant, one can show that the eigenfunctions are proportional to [−(α2 +
λ2

n)
1/2 sinh λn(x+ 1

2 )+ λn cosh λn(x+ 1
2 ), α sinh λn(x+ 1

2 )]T with α ≡ F0L/v, the λn ∈C satisfy the
transcendental equation −(α2 + λ2

n)
1/2 tanh λn + λn = 0 and the eigenvalues are given by sn =−α −

(α2 + λ2
n)

1/2.
Recall that if {un} are the eigenfunctions of A and {pm} are the eigenfunctions of the adjoint operator

A∗, then 〈pm, un〉 = 0 unless m= n. Substituting (25) into (24), left-multiplying both sides of by p∗m and
integrating, we find that

cn(s)= 〈pm(x), Ñ(x, s)〉
sDm

,

where Dm is defined by (19). (One cannot obtain cn by invoking orthogonality of {un} since A is not
self-adjoint.) We now take the inverse Laplace transform of (25) and switch the order of integration to
obtain the continuous parts of the CDFs:

Z(x, t)=
∞∑

m=1

um(x)

Dm

{∫ L/2

−L/2
dyp(1)∗

m (y)a2(y)F(y)
∫ γ+i∞

γ−i∞

ds

2π i

e(t−y/v−L/(2v))s

s(s− sm)

+
∫ L/2

−L/2
dyp(2)∗

m (y)a1(y)F(y)
∫ γ+i∞

γ−i∞

ds

2π i

e(t+y/v−L/(2v))s

s(s− sm)

}
, Re γ > 0,

=−
∞∑

m=1

um(x)

smDm
[h(1)

m (t)+ h(2)
m (t)],

where h(1)
m (t) and h(2)

m (t) are given by (15) and (16), respectively. �

2.2 Monte Carlo simulation using Rejection–Acceptance

We now give details of our Monte Carlo method (Algorithm 3). This method can be used to simulate a
Broadwell particle with spatially dependent velocity, even though for our inverse problem, the particles
always have constant velocity. The method is based on the Rejection–Acceptance method (Asmussen &
Glynn, 2010), a common method for drawing random variables from a PDF whose functional form is
known, but non-standard. We note four important points about the algorithm.

(1) The algorithm samples from w1(y0, t) or w2(y0, t) depending on the initial velocity; see (28).

(2) The algorithm generates random variables for the time periods in between the state transitions
θ (the ‘flip times’). For a Broadwell process with a constant transition rate, the flip times are
exponentially distributed. For a spatially dependent transition rate F(y), the flip time θ ≡ tj+1 − tj
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is distributed according to

θ ∼Q(t)≡ F[y(t)] exp[−p(t)],

p(t)=
∫ t

0
F[y(t′)] dt′,

(26)

where the position of the particle satisfies dy(t)/dt= v(y). We sample from Q(t) using a
Rejection–Acceptance method (Asmussen & Glynn, 2010): suppose that there exist constants
Fmin and Fmax satisfying 0 < Fmin � F(y) � Fmax <∞ for −L/2 < y < L/2. Then

Q(t) � CFmin exp(−Fmint)≡ P(t),

where C= Fmax/Fmin and so an exponential distribution can be used as an envelope function.

Algorithm 3 Generating exit times from a Broadwell process.
1: Require: an interval size L, a starting position −L/2 � y0 � L/2, functions F(y), v(y) ∈C(−∞,
+∞), Fmin, Fmax > 0 where Fmin � F(y) � Fmax for y ∈ [−L/2, L/2].

2: Let P(t)≡ Fmax exp(−Fmint).
3: Set j= 0 and tj = 0.
4: while −L/2 < yj < L/2 do
5: Draw θ ∼ exp(Fmin)

6: Compute p(θ) and y(θ) by numerically solving

dp(t)

dt
= F(y), (27)

dy(t)

dt
=
{

(−1)jv(y), {for positive velocity at t= 0}
(−1)j+1v(y), {for negative velocity at t= 0} (28)

on t ∈ [0, θ ], subject to initial conditions p(0)= 0 and y(0)= yj.
7: Set Q(θ)= F[y(θ)] exp[−p(θ)]
8: Draw ρ ∼U(0, 1)

9: if ρ < Q(θ)/P(θ) then
10: j← j+ 1 {acceptance}
11: Set yj = y(θ) and tj = tj−1 + θ

12: Goto 4
13: else
14: Goto 5 {rejection}
15: end if
16: end while{Particle has left interval}
17: if yj > L/2 then
18: Output the exit time as tj +

∫ L/2
yj

v−1(y) dy.
19: else
20: Output the exit time as tj +

∫ −L/2
yj

(−v−1(y)) dy.
21: end if
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Fig. 2. Simulated exit times of a Broadwell process. Although probability densities are shown here, CDFs are used to infer the
flip rate function. (a) F(x)= 10x3 + 5ex + 1, v= 1

2 , (b) F(x)= 1+ x2, v= 1. Insets show Laplace-transformed data. Solid line:
solution to (9) and (10). Diamonds: Laplace transform of histogram data. The number of realizations was N = 40, 000 in each
case.

(3) Once the flip time θ is generated, the flip position yj+1 can be found by solving
∫ yj+1

yj
v−1(y) dy=

θ . This integral could be expensive to calculate if it has to be done many times. Also, every
evaluation of Q(t) requires computing the integral p(t) in (26). Both of these issues are handled
simultaneously in our algorithm through the solution of the pair of ordinary differential equations
(27) and (28). For the special case where v is a constant, (27) and (28) should be replaced with
dp/dt= F(yj ± vt) and y(t)= yj ± vt.

(4) When solving the differential equations (27) and (28), F may have to be evaluated outside of
the interval [−L/2, L/2]. Because the form of F(y) outside [−L/2, L/2] does not affect the exit
time, we simply take F(y)= F(L/2) for y > L/2 and F(y)= F(−L/2) for y <−L/2.

Figure 2 shows the PDFs w1(0, t) generated by the algorithm for two different F(x) when v(x)=
constant. By definition, w1 is the exit time density for a particle that initially has velocity v > 0. There-
fore, the solution w1(x, t) in (1) contains delta functions that correspond to an immediate particle exit at
a time tc ≡ (L/2− x)/v. The reason is if t is the particle exit time and θ is the time before the first state
transition, then

P(t= tc)= P(θ � tc)=
∫ ∞

tc

Q(t′) dt′ > 0. (29)

Hence, the probability distribution of the exit times will always contain point masses (delta functions)
of probability located at t= tc (Masoliver & Weiss, 1994). In Fig. 2(b), a numerical approximation of
this delta function can be seen. The height of this ‘spike’ is controlled by the size of the bins used when
creating the histogram and becomes unbounded as the bin size tends to zero and the number of trials
tends to infinity. These delta distributions are always present in the exact solution but they may not
always be visible in the numerical solution if the number of trials is small or the bin size is large; see
Fig. 2(a), for example.
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RECONSTRUCTION OF A PERSISTENT RANDOM WALK 11

2.2.1 Generation of noisy distributions from a finite number of exit times We always use Algorithm
3 to generate two sets of N exit times {τ (1)

j } and {τ (2)
j }. With this notation, τ

(i)
j (1 � j � N , i= 1, 2)

is the jth exit time conditioned on the particle having initial velocity (−1)i+1v. Assuming that {τ (1)
j }

and {τ (2)
j } are sorted in ascending order, noisy cumulative densities W1,data(t) and W2,data(t) are

computed as

Wi,data(t)=

⎧⎪⎪⎨
⎪⎪⎩

0 if t < τ
(i)
1 ,

m

N
if τ

(i)
1 < t < τ

(i)
N ,

1 if t � τ
(i)
N ,

(30)

where m is the unique index satisfying τ (i)
m < t < τ

(i)
m+1.

The noisy Laplace transform of a finite number of exit times is calculated through

w̃j,data(s)=
⎧⎨
⎩
∫ ∞

0
e−st dWj,data(t)

dt
dt= sW̃j,data(s), s > 0,

1, s= 0,
(31)

where

W̃j,data(s)=
∫ ∞

0
e−stWj,data(t) dt=

∫ 1

0
e−st[η]Wj,data(t[η])

dη

(1− η)2
, (32)

where j= 1, 2 and t[η]= η/(1− η). We avoid ‘binning’ when calculating w̃j,data, since this introduces
a corresponding discretization error. The integral in (32) can be calculated using the trapezium rule on
equally spaced abscissae in η.

2.3 Projection method to solve inverse problem

We now briefly describe our algorithms for reconstructing the flip rate function F(x) from the two
distributions of exit times w1,data(t) and w2,data(t). These distributions can come from simulating the
Broadwell process directly through Algorithm 3 or through a one-time solution of the forward problems
(9–11) or (5–8). We implement two related algorithms. The first method uses the exit time data directly
(t-method) and the second method uses Laplace-transformed exit time data (s-method). Pseudocode for
the two methods is given in Algorithms 4 and 5.

In both methods, we represent the trial flip rate function FM (x) and the target flip rate function F∗(x)
as a linear combination of Legendre polynomials on [−L/2, L/2]:

FM (x)=
M−1∑
j=0

ajφj(x). (33)

For example, φ0(x)= 1, φ1(x)= 2x/L, φ2(x)= 6(x/L)2 − 1
2 .
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Algorithm 4 Reconstruction of flip rate coefficients using the t-method.
1: Require: An integer M , an interval length L, target flip rate function F∗(x), a particle speed

v > 0, a starting position −L/2 < x0 < L/2 and the first M legendre polynomials on (−L/2, L/2),
φ1, . . . , φM (see text for details).

2: Generate noisy cdfs of the exit time W1,data(x0, t) and W2,data(x0, t) for F∗(x) using Algorithm 3.
3: For a given a= (a0, a1, . . . , aM−1) ∈R

M , define FM (x)=∑M−1
j=0 ajφj(x). Let W1,2(x0, t; a) be the

solution to the forward problem (5–8) with F = FM , calculated using Algorithm 2.
4: Find a= â that minimizes

Π1(a)=
∫ L/v

0
|W1(x0, t; a)−W1,data(x0, t)|2 dt +

∫ L/v

0
|W2(x0, t; a)−W2,data(x0, t)|2 dt. (34)

Integrating through discontinuities can be avoided by noting that W1,2(x, t)= 0 when t <

min(L/(2v)− x/v, x/v+ L/(2v)). The lower limits of integration in (34) can be replaced with
(L/(2v)− x0/v)+ when 0 � x0 < L/2 and (x0/v+ L/(2v))+ when −L/2 < x0 � 0.

5: Output F̂(x)≡∑M−1
j=0 âjφj(x) as the estimate of the flip rate function for the exit time distributions

W1,data(x0, t) and W2,data(x0, t).

Algorithm 5 Reconstruction of flip rate coefficients using the s-method.
1: Require: An integer M , an interval length L, a target flip rate function F∗(x), a particle speed

v > 0, a starting position −L/2 < x0 < L/2 and the first M Legendre polynomial on (−L/2, L/2),
φ1, . . . , φM (see text for details).

2: Use F∗(x) to generate Laplace-transformed exit time pdfs w̃1,data(x0, s) and w̃2,data(x0, s) through
Algorithm 3.

3: For a given a ∈R
M , let w̃1,2(x0, s; a) be the solution to the forward problem (9–11) calculated using

Algorithm 1 with flip rate function defined by a= {a0, a2, . . . , aM−1}:

FM (x)=
M−1∑
j=0

ajφj(x).

4: Find a= â that minimizes

Π2(a)=
∫ ∞

0
|w̃1(x0, s; a)− w̃1,data(x0, s)|2 ds+

∫ ∞
0
|w̃2(x0, s; a)− w̃2,data(x0, s)|2 ds. (35)

The integral in (35) is calculated using a change of variable s[ξ ]= ξ/(1− ξ) so that

Π2 =
2∑

j=1

∫ 1

0
[w̃j(x0, s[ξ ], a)− w̃j,data(x0, s[ξ ])]2 dξ

(1− ξ)2
,

which can be computed using the trapezium rule on equally spaced abscissae on [0,1].
5: Output F̂(x)≡∑M−1

j=0 âjφj(x) as the estimate of the flip rate function for the exit time distributions
w̃1(x0, s) and w̃2(x0, s).
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RECONSTRUCTION OF A PERSISTENT RANDOM WALK 13

Our aim is to find coefficients a1, . . . , aM to minimize the objective functions for the t-method and
s-methods, Π1 and Π2, respectively. These take the form

Π1(a)=
∫ L/v

0
|W1(x0, t; a)−W1,data(x0, t)|2 dt +

∫ L/v

0
|W2(x0, t; a)−W2,data(x0, t)|2 dt,

Π2(a)=
∫ ∞

0
|w̃1(x0, s; a)− w̃1,data(x0, s)|2 ds+

∫ ∞
0
|w̃2(x0, s; a)− w̃2,data(x0, s)|2 ds.

The data sets Wj,data(x0, t) and w̃j,data(x0, s) associated with F∗(x) can be computed from individual exit
times using (30) and (31), respectively.

Minimization of Π1 and Π2 with respect to a was performed using Matlab routines fminunc.m and
lsqnonlin.m for the t and s methods, respectively, with tolerances TolFun and TolX set to 10−14.
The initial guess for the coefficients was always aj = 1 for j= 0, 1, . . . , M − 1, unless otherwise stated.
The minimizing coefficients âj then define the reconstructed flip rate through F̂(x)=∑M−1

j=0 âjφj(x).
An obvious limitation of the projection method is that the method does not converge for non-

polynomial F∗ and polynomial F∗ with degree > M . However, as we shall see in Section 3, the method
may still be used to find reasonable approximations in these cases.

3. Results and discussion

3.1 Flip rate reconstruction

We used the projection algorithm discussed in Section 2.3 to reconstruct flip rate functions from data
generated using Monte Carlo simulation (see Section 2.2). In the following discussion, let N be the
number of exit times for each initial velocity +v, −v, so that the total number of exit times is always
2N . We also take the starting position x0 = 0, interval length L= 1 and particle speed v= 1 unless
otherwise stated.

For Fig. 3, we reconstruct some ‘structurally simple’ smooth functions that have few extrema within
(−L/2, L/2) and find that the accuracy of the reconstructions improves as the noise in the data decreases.
For the ‘N =∞’ cases, artificial, noiseless data are generated by solving the forward problems (5–8)
and (9–11) with F = F∗. Panels (a–f) indicate that, for a given N , the t-method generally outperforms
the s-method since the associated errors are smaller. In (a, b), we reconstruct a cubic polynomial by
recovering M = 4 Legendre coefficients. In (c, d), we attempt to reconstruct a transcendental function
by representing F∗(x) with M = 5 coefficients. Although ‖FM − F∗‖∞� 0 as the noise decreases, we
are still able to find a reasonable approximation FM so that ‖FM − F∗‖∞ is not too large. The s-method
converges to the correct solution for perfect data but the inclusion of a small amount of noise renders
the method unstable, resulting in a large error. This kind of behaviour also occurs with the t-method
when M � 5 and is typical in many ill-posed problems (see below). In (e) and (f), we reconstruct flip
rate functions from a relatively small number of exit times by taking M = 3 basis functions; however, a
smaller M restricts the range of admissible target functions.

If we have no a priori knowledge on F∗(x) (e.g. it may be a high-degree polynomial, have many
extrema or be discontinuous), our method may not capture F∗(x) accurately. For our method to be suc-
cessful, it is important that we know beforehand that F∗(x) is smooth and structurally not too complex.
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Fig. 3. Reconstructed approximations to flip rate functions F∗(x) from noisy exit time data. (a, b) F∗(x)= 1− 0.7x− 0.3x2 + 6x3,
M = 4; (c, d) F∗(x)= x2e−x/10+ 1/10, M = 5; (e, f) F∗(x)= 1+ x+ 3x2, M = 3. The t-method was used in the left panels and
the s-method was used in the right panels. N =∞ corresponds to perfect, noiseless data, which is generated by solving the forward
problems (5–8) and (9–11).

Increasing the number of basis functions M increases the range of functions we can accurately rep-
resent. Provided F∗ is smooth enough, it can always be represented through its Taylor series and our
method strives to capture its first M coefficients. Ideally, we would like M to be as large as possible to
represent any F∗(x) ∈C∞(−L/2, L/2). However, in practice it is difficult to reliably reconstruct F∗(x)
(even polynomials) when M � 5. The reason, which is common to all projection methods (Fok & Chou,
2010; Kress, 1989), is that as the finite-dimensional approximation to F∗(x) improves with M→∞, the
method becomes more unstable due to ill-posedness. In this limit, minimizing the objective functions
(34) and (35) is prone to large errors.
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Table 1 Local condition numbers κs and κt for F∗(x)= 1+ x corresponding to the objective
functions (35) and (34), respectively; M denotes the number of basis functions used in (33)

M κt κs

2 5.3× 102 3.1× 102

3 1.0× 104 3.3× 104

4 1.4× 105 3.5× 106

5 1.0× 106 1.6× 108

Table 2 Local condition numbers for F∗(x)= 1− x+ x2; see Table 1 for details

M κt κs

3 5.0× 105 1.8× 105

4 3.5× 106 1.6× 107

5 6.7× 106 5.2× 108

3.2 Instability of the projection method

Numerically, the instability discussed above may be quantified by examining the condition number of
the objective function near its minimum. Specifically, we study the Hessian (matrix of second partial
derivatives) of the objective functions Π1 and Π2 in (34) and (35) with respect to the coefficients aj,
j= 0, . . . , M − 1:

H (1)
ij ≡

∂2Π1

∂ai∂aj

∣∣∣∣
ai=a∗i ,aj=a∗j

, H (2)
ij ≡

∂2Π2

∂ai∂aj

∣∣∣∣
ai=a∗i ,aj=a∗j

, (36)

for i, j= 0, . . . , M − 1. In (36), a∗i are the target coefficients of a polynomial flip rate function: F∗(x)=∑M−1
i=0 a∗i φi(x). The condition number of a matrix A is defined as the ratio of its largest eigenvalue to

its smallest: κ = λmax(A)/λmin(A). Since the eigenvalues represent the principle curvatures of Π1,2 at
the point a∗, they are always positive; a very large condition number indicates that Π1 or Π2 is locally
very flat at a= a∗ and finding a∗ numerically is prone to errors. On the other hand, a moderate-sized
condition number indicates only a small difference in curvatures near a∗ and so finding the minimum
numerically should not be difficult. Tables 1 and 2 show that both condition numbers for the t- and
s-methods grow exponentially as the number of basis functions M increases. For M = 5 basis functions,
the condition numbers for the t-method are consistently two orders of magnitude smaller than those for
the s-method. This suggests that fitting to the exit time data directly (as opposed to its Laplace transform)
leads to more effective algorithms and better estimates for the flip rate function. This is confirmed in
our numerical experiments since occasionally the t-method is able to recover M = 5 coefficients of a
quartic polynomial F(x), but the s-method is seldom able to do so.

3.3 Sensitivity of reconstruction to advection speed

We also explore the accuracy of our reconstruction for different advection speeds v, given a fixed number
of exit times when F∗(x) is a polynomial of degree � M − 1. In Fig. 4, we see that, for both methods,
when the velocity is either much less or much larger than unity, the associated error is large. (Although
the upper limit of the objective function (34) depends on the value of v used, we checked that the
non-monotonic behaviour in ‖FM − F∗‖∞ was not sensitive to the upper limit of integration.)
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Fig. 4. Error in the reconstructed flip rate as a function of particle velocity. Each point is an average over 10 sets of 2N =
20, 000 exit times. Target flip rate F∗(x)= 9

4 x2 − 3
4 x+ 9

16 , corresponding to target coefficients a∗ = [0.75,−0.375, 0.375, 0].
Initial guesses are (a) a= [1, 1, 1, 1], (b) a= [0.76,−0.385, 0.365, 0.01]. The same exit times were used for both (a) and (b). The
difference in the errors is shown in (c).

In practice, there are always two sources of error in the reconstruction of F∗: the first is from noise
in the data and the second stems from the minimization procedure itself:

Total error= error from noise in data+ error from minimization. (37)

If the minimization of the objective functions (34) or (35) was achieved with zero error, noisy exit times
would still produce an error in the reconstructed F. On the other hand, for noiseless data, the flat minima
and large condition numbers discussed above would produce an erroneous F from the minimization. It is
hard to separate the two types of error in (37), but some insight can be gained by comparing Fig. 4(a,b)
which differ only in the starting values for the coefficients a0, . . . , aM−1; in particular, the exit times
for each value of v for each figure are identical. When we move the initial guess for the coefficients
closer to their target values in (b), we greatly reduce the error in minimization since the accuracy of
minimization algorithms depends on the quality of the initial guess. Therefore, the error in (b) comes
mainly from noise in the data. Since the exit times were identical for (a) and (b), the difference of the
errors in (a) and (b)—shown in (c)—represents the error from minimization which is associated with
large condition numbers and flat extrema. We note that the error from minimization from the s-method
is much larger than the corresponding error from the t-method for a wide range of v values.

When the dominant error stems from noise in the data (as is the case in Fig. 4(b)), we can under-
stand why v=O(1) provides the most accurate reconstruction by analysing how well the Monte Carlo
simulations approximate the moments of the exit time distribution. We prove the following theorem.

Theorem 2 Let T (n)
1 (x) and T (n)

2 (x) be the nth moments of the exit time conditioned on the particle
starting at position x with initial velocity +v and −v, respectively. Then the moments have the asymp-
totic behaviour

T (k)
1,2 (x)=

⎧⎪⎪⎨
⎪⎪⎩

O

(
k!

v2k

)
, v� 1,

O

(
k!

vk

)
, v	 1.

(38)
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Proof. We have T (n)
1,2 (x)= (−∂/∂s)nw̃1,2(x, s)|s=0 for n � 0, and from (9) and (10), these moments

satisfy the coupled equations

−v
dT (n)

1

dx
− F(x)(T (n)

2 − T (n)
1 )= nT (n−1)

1 ,

v
dT (n)

2

dx
− F(x)(T (n)

1 − T (n)
2 )= nT (n−1)

2 ,

subject to the boundary conditions T (n)
1 (L/2)= 0 and T (n)

2 (−L/2)= 0 where n � 1 and T (0)
1,2 (x)= 1. After

some algebra, we find expressions for the moments in terms of indefinite integrals:

T (n)
1 (x)=− n

v2

∫
dxF(x)

∫
dx[T (n−1)

1 (x)+ T (n−1)
2 (x)]− n

v

∫
dxT (n−1)

1 (x), (39)

T (n)
2 (x)=− n

v2

∫
dxF(x)

∫
dx[T (n−1)

1 (x)+ T (n−1)
2 (x)]+ n

v

∫
dxT (n−1)

2 (x). (40)

When v� 1, we retain the first integral in each of (39) and (40) to find T (k)
1,2 =O(k!/v2k). If v	 1, we

retain the second integrals to find T (k)
1,2 =O(k!/vk). �

In (38), we see that the moments have a different asymptotic form depending on whether v is small
or large. When v� 1, the random walker is in the diffusive limit where all the moments (except for the
zeroth moment) diverge. On the other hand, when v	 1, the particle is in the ballistic limit: all moments
except for the zeroth moment are asymptotically small and, to leading order, independent of F(x).

Now consider approximating w1(x0, t) or w2(x0, t) with their noisy counterparts generated by the
Monte Carlo simulations. How well are the w1,2(x0, t) approximated? One way to quantify the accuracy
is by calculating the error in the moments of the noisy distribution. Given an initial velocity +v, let
{τj}, 1 � j � N be the N generated exit times (the following argument with initial velocity −v is almost
identical). Then, by the central limit theorem, the kth moment is approximately distributed according to

1

N

N∑
j=1

τ k
j ∼N

(
T (k)

1 ,
Var(τ k

j )

N

)
,

where N (μ, ν) is a normal distribution with mean μ and variance ν. Therefore, a measure of the error
incurred when calculating the kth sample moment is

N−1/2
√

Var(τ k
j )=N−1/2

√
T (2k)

1 − T (k)
1

2 =
{

O(N−1/2v−2k), v� 1,

O(N−1/2v−k), v	 1,
(41)

using (38) and Var(τ k
j )= E[(τ k

j − T (k)
1 )2]. Therefore, from (41), a quick rule of thumb for the accuracy

of the Monte Carlo generated exit time distribution is that the error scales as N−1/2, where N is the
number of trials.

It is evident from (41) that, for a fixed number of realizations, the error in the kth moment diverges
as v−2k as v→ 0 and the underlying exit time distribution is badly approximated in the limit of small v.
On the other hand, as v→∞, although the error in the moments tends to zero, the moments themselves
also tend to zero. From (29), the probability that a Broadwell particle with initial velocity +v exits in

Downloaded from https://academic.oup.com/imamat/article-abstract/80/1/1/743652/Reconstruction-of-a-persistent-random-walk-from
by UCLA Digital Collections Services user
on 26 September 2017



18 P.-W. FOK ET AL.

           Best Fit Slope: –0.553

||F
M

(x
)–

F
* (x

)||
∞

10–2

10–1

100100

N

103 104 105

(a)               Best Fit Slope: –0.454

||F
M

(x
)–

F
* (x

)||
∞

10–2

10–1

100100

N

103 104 105

(b)

Fig. 5. Dependence of error in reconstructed flip rate function F(x) on the number of exit times per initial state N when F(x)=
1− 0.7x− 0.3x2 + 6x3 using the (a) t-method, (b) s-method. For each N , the error is calculated by performing minimizations for
10 data sets and taking the average, with each set containing 2N exit times.

time tc tends to 1 as v→∞: for large v, the generated list of exit times is populated almost exclusively
by tc (and tc→ 0 as v→∞). From a single exit time, it is very difficult to infer any information about
F(x). In both limiting cases, since the distribution of exit times is poorly captured by a finite number of
realizations, the quality of the reconstruction suffers.

Finally, we systematically explore the effect of noise on the reconstruction quality. In Fig. 5, we plot
the error of the reconstructed FM (x) against the number of exits. For a wide range of polynomials F∗(x),
using both the t- and s-methods, we find that the error in the reconstructed function scales as O(N−1/2).
In particular, we see that, for N =O(104), the error ‖FM − F∗‖∞ =O(10−1), whereas N must exceed
O(106) for the error to fall below O(10−2). These estimates are mean values: the accuracy resulting
from fitting one data set to the next will always vary because the noise in each set is different.

4. Conclusions

In this paper, we made three contributions. The first is a pair of algorithms, Algorithms 4 and 5, that can
be used to estimate the flip rate function of a 1D, constant-speed Broadwell process from the distribution
of exit times out of a finite interval. In particular, the t-method is based on a novel series solution of
the backward equation (5–8); see Theorem 1. The second is a simulation method, Algorithm 3, that is,
used in this paper to generate the exit times of a Broadwell particle. The algorithm can accommodate
spatially dependent flip rates and velocities. Our final contribution is a set of calculations and asymptotic
results that quantify the errors in approximating the exit time distribution with simulated data, and the
corresponding error in the flip rate reconstruction.

We found that polynomial transition rates could be reconstructed if the degree of the polynomial
was not too large (�4) and that fitting to the exit time distribution (t-method) directly versus fitting
to the Laplace-transformed distribution (s-method) generally allowed the reconstruction of one extra
coefficient in the representation of F(x). Providing our initial guess for the coefficients of F(x) was not
too far from the target coefficients, we were able to find F(x) to within O(10−1) using O(104) exit times.
We were also able to find good approximations to non-polynomial flip-rate functions, provided they are
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smooth and slowly varying. Finally, we experimented with reconstructions using different advection
speeds. We found that v=O(1) yielded the most accurate reconstructions because very small or large
values of v in the Monte Carlo simulations gave poor representations of the true underlying exit time
distribution.

Our results suggest that the t-method is an effective method to infer the spatially dependent flip rate
function of a two-state Broadwell process, if it is known a priori that this function is smooth and struc-
turally simple. The t-method involves explicitly solving for the CDFs (5–8), tracking the discontinuities
via (12–13) and minimizing the objective function (34). With this method, one can often find M = 4
coefficients from about 2N = 20, 000 exit times. The s-method usually reconstructs one less coefficient
than the t-method for the same number of exit times, and is more sensitive to the initial guess. However,
it is much simpler to implement and only involves solving the ordinary differential equations (9–11)
and minimizing (35).

We see two main extensions to this work. The first is to reconstruct spatially dependent advection
velocities v(x) as well as transition rates F(x). The second is to develop alternative algorithms for
reconstruction. We showed in this paper that as the number of coefficients representing the flip rate
function increases, our method becomes unstable due to the presence of flat minima in the objective
functions (see (34) and (35) and Tables 1 and 2). This instability could be alleviated by introducing a
small regularization parameter in the objective functions (34) and (35) or developing iterative algorithms
based directly on (1–4) and (5–8).
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Appendix A. Derivation of a multi-state Broadwell process

A 1D generalized Broadwell model describes a particle that can take any one of K states. Initially, the
particle is at position x and in state i. A particle in state 1 � k � K advects within an interval (−L/2, L/2)

with a velocity function vk(y) that is single signed for each k on−L/2 � y � L/2 with y being the current
position. While advecting, the particle may transition from state i to any other state j with probability
Fji(y)dt within time interval (t, t + dt). Also Fji(y) are positive functions when i |= j, but Fii(y)≡ 0. The
goal of this appendix is to find the backward equation for the exit time distribution for such a process.

If P(y, k, t | x, i, 0)dy is the probability that the particle lies between y and y+ dy and is in state k at
time t, given that it had started at position x in state i at time t= 0, the Chapman–Kolmogorov equation
(Gardiner, 1985) is

P(y, k, t + dt | x, i, 0)=
K∑

j=1

∫ V2dt

V1dt
P(y, k, t + dt | x+ ξ , j, dt)P(x+ ξ , j, dt | x, i, 0) dξ , (A.1)

where V1 =mink min−L/2<y<L/2 vk(y), V2 =maxk max−L/2<y<L/2 vk(y) and state k and position y of the
particle at time t + dt arise from accounting for all transitions from intermediate states j, j= 1, . . . , K
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Fig. A1. The transitions relevant for computing the Backward equation for the probability density of a multi-state persistent
random walk. The quantities x, x+ ξ and y represent initial, intermediate and final positions while i, j and k represent initial,
intermediate and final states.

and positions x+ ξ at time dt; see Fig. A1. Note that V1 can be negative and the integration over
V1 dt < ξ < V2 dt corresponds to all possible displacements from position x.

We will assume that the advection velocities and flip rates are explicitly time-independent so that
the process is time-homogeneous. Therefore, the probabilities are time-translationally invariant and
P(y, k, t + dt | x+ ξ , j, dt)= P(y, k, t | x+ ξ , j, 0). In the following calculations, we make frequent use
of delta distributions, so Taylor expansions and associated derivatives are to be interpreted in the weak
sense.

The probability of transition from (x, i) to (x+ ξ , j) in time dt can be decomposed into two terms
corresponding to continued particle advection when no state flips occur in time dt, or a state change
occurring within (0, dt):

P(x+ ξ , j, dt | x, i, 0)= δ(ξ − vi(x) dt)

⎛
⎜⎝1−

K∑
�=1|= i

F�i(x) dt

⎞
⎟⎠ δij + δ(ξ)Fji(x)(1− δij) dt + O(dt2).

(A.2)
The symbols δij and δ(·) denote the usual Kronecker tensor and Dirac delta function, respectively. The
first term in (A.2) represents the probability that the particle did not transition out of state i in (0, dt),
while the second term describes the transition probability from state i to state j |= i.

In (A.2), when i= j, the term proportional to Fji is zero (no state transitions have occurred) and
the probability density originally centred at x is simply advected to x+ vi(x) dt. Therefore, the prob-
ability density of being in position x+ ξ and state j= i at time dt is δ(ξ − vi(x) dt)(1−∑F�i(x) dt).
When i |= j, the term proportional to 1−∑F�i dt is zero. To O(dt), we can ignore advection and simply
assume the particle changed state in its current position.1 Therefore, the probability of being at position
x+ ξ and state j at time dt is δ(ξ)Fji(x) dt.

Upon Taylor-expanding the remaining probability densities in (A.1),

P(y, k, t + dt | x, i, 0)= P(y, k, t | x, i, 0)+ ∂P

∂t
dt + O(dt2), (A.3)

P(y, k, t | x+ ξ , j, 0)= P(y, k, t | x, j, 0)+ ∂P

∂x
ξ + O(ξ 2), (A.4)

1 If advection was included, δ(ξ)Fji dt in (A.2) would be replaced with δ(ξ + O(dt))Fji dt corresponding to an additional
displacement of O(dt) and an associated error of O(dt2).
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we find to order dt (note that ξ =O(dt)),

∂

∂t
Pki(y, t | x, 0)=

K∑
j=1

LjiPkj(y, t | x, 0), (A.5)

where

Pki(y, t | x, 0)≡ P(y, k, t | x, i, 0), Lji = δijvi(x)∂x + (1− δij)Fji − δij

K∑
�=1|= i

F�i. (A.6)

When t � 0, the particle is at y= x in state i so that

P(y, k, t | x, i, 0)= δikδ(x− y), t � 0. (A.7)

Henceforth, we consider the domain y ∈ (−L/2, L/2) with absorbing boundaries at y=±L/2 so that,
when t > 0, the appropriate boundary conditions are

P(y, k, t | x=+L/2, i, 0)= 0 ∀i : vi > 0,

P(y, k, t | x=−L/2, i, 0)= 0 ∀i : vi < 0.
(A.8)

A.1 Survival probabilities

If we do not distinguish from which boundary the particle eventually exits, we can define the survival
probability by integrating (A.5) over all positions y ∈ (−L/2,+L/2) and summing over all possible final
states. The survival probability

Si(x, t)=
K∑

k=1

∫ L/2

−L/2
P(y, k, t | x, i, 0) dy, (A.9)

describes the probability that a particle started at position x ∈ (−L/2,+L/2) in state i has not left through
either boundary up to time t. When t � 0, we have, from (A.7),

Si(x, t)= 1, −L/2 � x � L/2. (A.10)

When t > 0, the survival probability obeys

∂

∂t
Si(x, t)= vi(x)

∂

∂x
Si(x, t)+

K∑
j=1
|= i

Fji(x)Sj(x, t)−
K∑

�=1|= i

F�i(x)Si(x, t), (A.11)

with boundary conditions

Si(L/2, t)= 0 for i : vi(x) > 0,

Si(−L/2, t)= 0 for i : vi(x) < 0.
(A.12)
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A.2 Exit time distributions

The full exit time distribution is found from the usual definition w(t | x, i, 0)≡wi(x, t)=−∂Si(x, t)/∂t,
and so, differentiating (A.11), we have

∂

∂t
wi(x, t)= vi(x)

∂

∂x
wi(x, t)+

K∑
j=1
|= i

Fji(x)wj(x, t)−
K∑

�=1|= i

F�i(x)wi(x, t). (A.13)

The initial condition is found by differentiating (A.10) in time so that wi(x, t)= 0 when t � 0. In
particular,

wi(x, 0)= 0. (A.14)

From (A.11) and (A.12), we have Si(L/2, t)= Si(−L/2, t)=H(−t) for all t. Therefore, the boundary
conditions for wi(x, t) are

wi(L/2, t)= δ(t) ∀i : vi > 0,

wi(−L/2, t)= δ(t) ∀i : vi < 0.
(A.15)

When K = 2, F12(x)= F21(x)= F(x), v1(x)=−v2(x)= v (a positive constant), (A.13–A.15) reduce to
(1–4).

Downloaded from https://academic.oup.com/imamat/article-abstract/80/1/1/743652/Reconstruction-of-a-persistent-random-walk-from
by UCLA Digital Collections Services user
on 26 September 2017



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.284 790.866]
>> setpagedevice


