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Applications of first passage times in stochastic processes arise across a
wide range of length and time scales in biological settings. After an ini-
tial technical overview, we survey representative applications and their
corresponding models. Within models that are effectively Markovian,
we discuss canonical examples of first passage problems spanning ap-
plications to molecular dissociation and self-assembly, molecular search,
transcription and translation, neuronal spiking, cellular mutation and
disease, and organismic evolution and population dynamics. In this last
application, a simple model for stem-cell aging is presented and some
results derived. Various approximation methods and the physical and
mathematical subtleties that arise in the chosen applications are also
discussed.

1. Introduction and mathematical preliminaries

Although mainly studied in physical systems, first passage problems [1]

arise in many biological contexts, including biomolecular kinetics, cellular

function, and population dynamics. First passage problems can be most

simply described as finding the distribution of times according to which a

random process first exceeds a prescribed threshold or reaches a specified

configuration, as described in Fig. 1. While expectations of moments of the

random variable are often qualitatively captured by using straightforward

approximation methods, other observable quantities such as first passage

times may not be, and stochastic approaches must be used.
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The probability distribution P (X, t) of a stochastic process X(t) may

obey a discrete master equation or a Fokker-Planck or Smoluchowski equa-

tion for continuous variables. Other approaches such as the direct analysis

of stochastic differential equations (SDEs) for the random variable X(t)
or analysis of the branching process [2, 3] describing the evolution of the

probability generating function is also often employed. If the system does

not harbour long-lived metastable configurations, simple mean-field or clo-

sure methods that approximate correlations can be used to analytically find

expected trajectories ⟨X(t)⟩ = ⨋ XP (X, t)dX that are often in qualitative

agreement with exact results or trajectories derived from approximate, de-

terministic models.

Fig. 1. Trajectories of a random variable X(t) illustrating typical first passage prob-
lems. (a) The deterministic or expected trajectory ⟨X(t)⟩ (solid black curve) crosses the
specified threshold X∗ = 0.2 at a specific time T ≈ 1.6; however, when fluctuations are ex-
plicitly included, the random variable X(t) can cross X = 0.2 at different times T ≈ 1.45
and T ≈ 1.7, as shown by the red and blue trajectories, respectively. (b) The distribution
of first passage times to X = 0.2. (c) Trajectories corresponding to a birth-death process
with carrying-capacity (see Eq. (44) in Section 6). In the deterministic model, X = 10
(the carrying-capacity in this example) is a stable fixed point while X = 0 is an unstable
one. With an initial condition X(0) > 0, the deterministic model never becomes extinct
(X∗ = 0), but in a stochastic model a random (possibly very rare) fluctuation can ex-
tinguish the system. The distribution of first extinction times is schematically shown in
(d).
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For example, consider the trajectories depicted in Fig. 1. Some deter-

ministic trajectories ⟨X(t)⟩ cross a threshold value (X∗ = 0.2 in Fig. 1(a))

at a unique time T , which then can be used as a qualitatively good es-

timate of the first passage time for the full stochastic process. However,

in other cases, the deterministic trajectory may never cross a predefined

“absorbing” threshold so that T = ∞. This is illustrated in Fig. 1(c) where

X(t) never reaches the threshold value X∗ = 0. However, in a stochastic

model, fluctuations can bring X(t) to the threshold X∗ = 0 in finite time.

For such cases, there is a clear divergence between the exit times predicted

from a deterministic model (T = ∞) and that predicted from a stochastic

one (T < ∞).

To be more concrete, consider a discrete Markov process for a system

of N states that can be described by the “forward” master equation

∂Pki

∂t
=MkjPji, (1)

where Pki is the N ×N matrix of probabilities that the system is in config-

uration k at time t, given that the system started in state i at t = 0. The

N ×N transition matrix composed of transition rates that take state j to

state k is defined by Mkj . Note that (k, j) indexes all accessible configu-

rations, including absorbing ones A from which probability density cannot

re-emerge. Transition rates out of configurations A are defined to be zero

while global probability conservation requires ∑N
k=1 Mkj = 0. As the dy-

namics evolve, the flow of probability entering absorbing states A cannot

exit. Eventually, the survival probability defined as Si(t) ≡ ∑k∉A Pki(t)
will vanish as t →∞. The survival probability Si(t) defines the probability

that the system has not reached any absorbing configuration up to time t,

given that it started in configuration i at t = 0.
Since the first passage time distribution can be derived from Si(t), it is

convenient to consider the adjoint equation that is also obeyed by Pki(t)
only if the transition matrix Mkj is time-independent:

∂Pki

∂t
= PkjMji. (2)

This “backward” equation does not operate on the final configurations k

so one can perform the sum ∑k∉A to find an equation for the survival
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probability

∂Si(t)
∂t

= Sj(t)Mji, (3)

along with the initial condition Sk(t = 0) = 1 for k ∉ A and “boundary

condition” Sk(t) = 0 for k ∈ A.
A physical interpretation of Eq. (3) can be easily obtained by considering

the lifetime distribution function which is a sum over the absorbed states:

Fi(t) ≡ ∑k∈A Pki(t) = 1 − Si(t). We can now identify the rate of change of

Fi as the probability flux into the absorbing state A, so that ∂tFi ≡ JAi (t).
Using Fj ≡ 1 − Sj , we can rewrite Eq. (3) as

∂Si(t)
∂t

= Sj(t)Mji = −JAi (t). (4)

The latter is also a statement that the probability of survival against enter-

ing absorbing configurations decreases in time according to the probability

flux into the absorbing states.

From the lifetime distribution Fi(t), one can find the probability that

the system reached any absorbing configuration between time t and t + dt
as Fi(t + dt) − Fi(t) = Si(t) − Si(t + dt). Hence, the first passage time

distribution wi(t) can be found from

wi(t)dt ≡ ∂Fi(t)
∂t

dt = −∂Si(t)
∂t

dt, (5)

allowing calculation of all moments n of the first passage time

⟨T n
i ⟩ = ∫ ∞

0
wi(t)tndt. (6)

Upon using integration by parts for n = 1, the mean first passage time is

simply ⟨Ti⟩ = ∫ ∞0 Si(t)dt. Integrating Eq. (4) directly, we find an explicit

equation for the moments of the first passage time into an absorbing state

⟨T n
j ⟩Mji = −n⟨T n−1

i ⟩, (7)

where ⟨T 0
j ⟩ ≡ 1. Equations (6) and (7) have been used to study moments

of first exit times for a random walker to hit either one or two ends of a

discrete one-dimensional lattice [4, 5].
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A commonly used approximation to Eq. (4) (see Sections 2 and 4) is to

assume

∂Si(t)
∂t

≈ −JAi (t)Si(t), (8)

which is motivated by a mass-action argument of the decay of probability of

being in the initial surviving state i. Here, JAi (t) is the probability current

from state i to A. However, the RHS of the exact relationship in Eq. (4)

contains the transition matrix Mji which mixes states i with j. Since the

approximation in Eq. (8) does not resolve the different surviving states,

Eq. (8) is exact only when there is a single surviving state i that directly

transitions into A without any intermediate states. Another limit where

Eq. (8) is accurate is if the system mixes quickly among all surviving states

well before being absorbed. In this case, the single surviving state i is a

lumped average over all the microscopic states j, and first passage can be

thought of as slow degradation of a quasi-steady-state configuration. Equa-

tion (8) and the associated assumptions have been widely used in practice,

particularly to describe bond rupturing in dynamic force spectroscopy of

biomolecules (see Section 2).

Another common representation of stochastic processes that is useful for

modeling biophysical systems is based on continuous variables. This “La-

grangian” representation is particularly suitable for tracking stochastically-

moving, identifiable particles. Starting from Eq. (1), a continuum formula-

tion can be heuristically developed by assuming that each configuration is

connected to only a few others. In this case, indices can be chosen such that

the transition matrix is banded. For example, a particle at position i on a

one-dimensional lattice is allowed to jump only to neighboring positions i±1
with probability proportional to an infinitesimal increment of time. If the

indices label lattice site positions, the transition matrix will be tridiagonal.

Furthermore, if the transition rates vary slowly from site to site, and the

system size N is large, we can take a continuum limit where the position of

a particle y = i/N and the tridiagonal transition matrix represents a stencil

of a differentiation operator.

Upon defining P ({yj}, t∣{xj},0) as the probability that all particles j

are located between yj and yj + dyj at time t given that they were at

positions {xj} at t = 0, one can Taylor-expand a discrete master equa-

tion in a “diffusion approximation” to find the governing Fokker-Planck or
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Smoluchowski equation

∂P ({yj}, t∣{xj},0)
∂t

= −∑N
k=1∇k ⋅ (VkP ) + ∑N

k=1∇2
k(D({yk})P )

≡ LP ({yj}, t∣{xj},0),
where here, N is the total number of particles, Vk is the drift velocity of the

kth particle, and the gradient ∇k is taken with respect to the coordinates

of the kth particle. The density P ({yj}, t∣{xj},0) also obeys the Backward

Kolmogorov Equation (BKE) which is simply

∂tP ({yj}, t∣{xj},0) = L†P ({yj}, t∣{xj},0), (9)

where L† = ∑N
k Vk ⋅ ∇k + ∑N

k=1D({xj})∇2
k is the operator adjoint of L.

Since L† operates on the initial positions xj , Eq. (9) can be integrated

over coordinates yj within the domain, excluding the absorbing surfaces.

The resulting equation for the survival probability analogous to Eq. (4) is

∂tS({xj}; t) = L†S({xj}; t), with S({xj}; t = 0) = 1 for all xj ≠ ∂ΩA, and
S(∀xj = ∂ΩA; t) = 0. From this survival probability, all moments of the

first times any particle hits an absorbing boundary ∂ΩA can be derived.

Namely, in analogy with Eq. (7), the mean hitting time obeys

L†⟨T n({xj})⟩ = −n⟨T n−1({xj})⟩. (10)

Both the discrete and continuum stochastic formulations are commonly

applied to physical systems; however, care should be exercised in using

a continuum description as an approximation for a discrete system where

first passage times are sought. Although the continuum diffusion approx-

imation may be accurate in describing probability densities of large dis-

crete systems, it often provides a poor approximation to first passage times

of discrete processes. Indeed, using a birth-death process with carrying-

capacity (see Section 6), Doering, Sagsyan, and Sander [6] show that the

effective potential of a discrete system and its corresponding continuum

diffusion approximation differ, leading to different mean first population

extinction times. The discrepancy is small only when the convective term

in the Fokker-Planck equation is small across all relevant population levels.

Thus, depending on the application, continuum diffusion approximations

and their numerical discretization should be applied judiciously when first

passage times are being analyzed.
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The first passage problems defined above assume that one is interested

in the distribution of times of the systems arriving at any absorbing config-

uration. However, there may well be states which are physically absorbing

(into which probability flux enters irreversibly) but that are not relevant to

the biological process. For example, one may be interested in the times it

takes for a diffusing protein to first reach a certain target site (see Section

4 below), but the protein may degrade before reaching it. Since decay is

irreversible, the system reaches an “unintended” absorbing state through

degradation of the protein. If one defines A to be only the biologically-

relevant absorbing configurations, the corresponding survival probability

Si(t) does not vanish in the t → ∞ limit because there are other “irrele-

vant” absorbing states that absorb some of the probability. In other words,

if there are other physical absorbing states competing for probability, the

integrated probability flux JAi (t) into the relevant absorbing states A obeys

∫ ∞0 JAi (t)dt < 1. Also note that since Si(t → ∞) > 0, the mean first pas-

sage time ⟨Ti⟩ = ∫ ∞0 Si(t)dt = ∞. All moments also diverge. Provided a

measurable fraction of trajectories reach the irrelevant absorbing state, the

mean time to arrive at the relevant absorbing state diverges because these

“wasted” trajectories will never reach the relevant states.

A more appropriate measure in cases with “interfering” absorbing states

is the distribution of first arrival times conditioned on arriving at the rel-

evant absorbing configurations A. In other words, we restrict ourselves to

the arrival time statistics of only those trajectories that are not absorbed by

the irrelevant states. The conditioning is a simple statement of Bayes rule:

JAi (t) = Ji(t∣A)×Prob(exiting throughA), where JAi (t) is the overall prob-
ability flux from i into A, and Ji(t∣A) is the probability flux of annihilation

counting those trajectories that annihilate through the relevant absorbing

states A. Since the probability of exiting through A is ∫ ∞0 JAi (t)dt, the
conditional first passage time distribution is

Ji(t∣A)dt ≡ wi(t∣A)dt = JAi (t)dt
∫ ∞0 JAi (t′)dt′ . (11)

Analogous expressions for the continuum representation (Eq. (9)) can be

found provided a suitable continuum expression for the probability flux

is used. As a simple example, consider a single Brownian particle with

diffusivity D in one dimension with absorbing boundaries at x = ±1. The

probability flux through the ends are
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∓D∂P (y, t∣x,0)
∂y

∣
y=±1

≡ Jx(t∣ ± 1). (12)

The first passage time distributions sampled over only those trajectories

that exit, say, y = +1 is thus

wx(t∣ + 1)dt = Jx(t∣ + 1)dt
∫ ∞0 Jx(t′∣ + 1)dt′ , (13)

which can be explicitly calculated given the solution to the diffusion equa-

tion (Eq. (9)) for P (y, t∣x,0).
The mathematical approaches presented above, along with many ex-

tensions, have been used to model a diverse set of first passage problems

arising in biological systems. In the following sections, we survey some il-

lustrative examples of such first passage problems that span length scales

ranging from the molecular, to the cellular, to that of populations.

2. Molecular rupture

The times over which molecules dissociate play an important role in chem-

ical biology. For example, ligand-receptor complexes have finite lifetimes

that are important determinants of whether signalling is initiated. Cell-

substrate and cell-cell adhesion are also mediated by molecules such as gly-

coproteins [7], and knowing the “strength” of these macromolecular bonds

can reveal insight into the biological function of macromolecules.

For a simple single-barrier free energy profile, one simple approximation

is to assume a quadratic energy profile and compute the first passage time

distribution to a particular displacement, reducing the calculation to that of

finding the first crossing time of an over-damped Ornstein-Ulhenbeck pro-

cess [8, 9]. Another more refined approximation concatenates two harmonic

potentials (one of positive curvature, one of negative curvature) together

to form an approximate potential. Upon using steepest descents, a simple

expression for the mean bond rupturing time starting from the energetic

minimum ξ0 can be found in the high barrier (rare crossing) limit:

⟨T (ξ0)⟩ ≈ e−(U(ξ
∗)−U(ξ0))

2π∣κ0κ∗∣ . (14)

Here, κ0 and κ∗ are the curvatures of the potential at the local minimum
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and at the top of the barrier, respectively. Since the barrier is high, and

dissociation is a rare event, the distribution of rupturing times can be well-

approximated by a single exponential with a dissociation rate kd ≡ 1/⟨T ⟩.
In addition to the barrier height, Eq. (14) encodes the shape of the bond

potential through the curvatures κ0 and κ∗. However, typical bonds are

sufficiently strong such that their rupture times are too large to be experi-

mentally accessible. Therefore, bonds are typically pulled by external forces

in “dynamic force spectroscopy” (DFS) experiments.

Ideally, in a DFS experiment, the applied force on the bond that is

typically linearly ramped up (in time) until the bond ruptures, and some

properties of the bond trajectories or forces sampled [10, 11]. From these

data, one may seek to reconstruct properties of the underlying pre-pulled

potential. Therefore, under an assumption of no rebinding, analysis of

DFS can be reduced to a first passage problem with a time-dependent

potential. Nearly all approaches to this problem have included the pulling

into a time-dependent free energy barrier U(ξ, t), giving rise to a time-

dependent dissociation rate kd(t), which is then used in the mean-field

equation (Eq. (8)) for the bond survival probability Ṡ(t) ≈ −kd(t)S(t). As
it stands, this rate equation does not provide information about the bond

other than the effective barrier height. In order to model finer effects of

the bond energy profiles, shape properties need to be incorporated into the

analysis. The simplest way to do this is to model how kd(t) depends on the

shape of the bond energy, while still retaining the mean-field assumption

(Eq. (8)) for the survival probability [11].

One simple approach is to assume the bond potential contains a barrier

at bond coordinate ξ∗, beyond which the bond is irreversibly dissociated.

To approximate the distribution of times for a bond to spontaneously rup-

ture, one calculates the time it takes for a random walker to reach the

“absorbing boundary” ξ∗, given that it started from an initial position ξ0.

The standard calculation proceeds by solving the Fokker-Planck equation

for the probability density P (ξ, t∣ξ0,0) and constructing the corresponding

survival probability S(ξ0; t) = ∫ ξ∗
0 P (ξ, t∣ξ0,0)dξ, or, alternatively, directly

solving the Backward Kolmogorov Equation for S(ξ0; t). The probability

density, survival probability, and rupture time distribution are all easily

solved numerically. In the over-damped limit of diffusive dynamics, the

mean bond rupturing time ⟨T ⟩ ≡ ∫ ∞0 S(ξ0; t)dt can be found in exact closed

form for any general free energy profile U(ξ) [12].
The simplest way to incorporate a time-varying applied force problem in

the one-dimensional continuum limit is to define an auxiliary time variable
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τ such that ∂tτ = 1. In the backward equation corresponding to Eq. (10),

τ is an independent variable [13]

( ∂

∂τ
+F (τ) ∂

∂ξ
+ L†) ⟨T (ξ, τ)⟩ = −1, (15)

where ξ is the initial starting coordinate of the bond and F (τ) = γτ de-

scribes a pulling force that is increased linearly with rate γ. With suitable

boundary conditions ⟨T (ξ∗, τ)⟩ = ⟨T (ξ,∞)⟩ = 0, one can find the expected

rupture time ⟨T (ξ,0)⟩ numerically.

Two analytical approximations can be made by assuming the pulling

force F is fixed. In this case, the solution to (F∂ξ +L†) ⟨T (ξ,F )⟩ = −1
is [13]

⟨T (ξ,F )⟩ = Q[exp (−U(ξ) +Fξ)] , (16)

where Q[...] is a complicated, but explicit integral functional [13]. In a first

approximation Shillcock and Seifert [13] assumed that the typical rupturing

force is determined self-consistently from F ∗ ≈ γ⟨T (ξ,F ∗)⟩.
A self-consistent approach to estimate the rupture force distribution is

to solve the mean-field equation Ṡ(t; ξ0) = −kd(t)S(t; ξ0) and use Eq. (5)

to find

w(ξ, t)dt = kd(ξ, t) exp [−∫ t

0
kd(ξ, t′)dt′]dt, (17)

where kd(ξ, t) is the time-dependent rate of dissociation. Upon using F (t) =
γt to convert this distribution to a rupture force distribution yields

w(ξ,F ∗)dF ∗ = 1

γ
kd(ξ,F ∗) exp [− 1

γ
∫ F ∗

0
kd(ξ,F )dF]dF ∗

= 1

γ
kd(ξ,F ∗) exp [− 1

γ
∫ F ∗

0

dF

Q[exp(−U(ξ) + Fξ)]]dF ∗,
(18)

where for the last equality, kd(ξ,F ) ≈ 1/⟨T (ξ,F )⟩ and Eq. (16) were used.

These and other mean-field approaches using Eq. (8) typically lead to a most

probable rupture force F ∗ that is proportional to ln γ, with proportionality

factors related to the spatial width and energetic depth of the underlying

bond. Therefore, the rupture force distribution measured as a function of
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Fig. 2. Schematic of an AFM-controlled bond-rupturing experiment. The AFM is lifted
from the rigid substrate with prescribed displacement L(t). The deflection d(t) and the
bond coordinate ξ(t) sum to the total AFM displacement: L(t) = d(t) + ξ(t). The
deflection d(t) is a measure of the bond-separating force through the relation F (t) =
ksd(t), where ks is the known spring constant of the AFM cantilever.

loading rate has been widely used as a quick measure of bond strength.

While mathematically well-defined, the analyses above neglects a phys-

ical constraint encountered in bond pulling experiments. As noted by Qian

and others [14–16], the mechanics of pulling a bond required the introduc-

tion of a mechanical spring force, whether manifested through an atomic

force microscope (AFM) tip, an optical trap, or a pulled magnetic bead.

If these devices are pulled with constant velocity V , the actual pulling po-

tential is of the form ks(ξ − V t)2/2, where ks is the spring constant of the

AFM cantilever. The experimental setup depicted in Fig. 2 shows how the

pulling force, including an estimate of the maximum force, can be measured

through the deflection d(t) of the cantilever.

This and related approximations are used in combination with specific

bond energy profiles by many authors to derive expressions for rupture

force distributions [17–24]. For example, Dudko et al. [18] treat the en-

semble where the pulling velocity V is specified. They use a mean-field

approximation for the bond survival probability (described in more detail

in Section 4) and assume that the total potential is being shifted at a con-

stant velocity V . For rather general potentials, they find a mean rupture

force ⟨F ∗⟩ ∼ (lnV )2/3, as well as an expression for the rupture force distri-

bution. These results, however, rely on the use of a soft (small ks) pulling

device. As shown in Fig. 3, a stiff puller (large ks) results in a single-well

effective potential and a distinct rupture event is precluded [14–16]. In this

case, it is not fruitful to analyze the problem within a first passage time

framework, and a more careful analysis of the force distribution measured

during the entire pulling protocol should be used.



December 16, 2013 13:26 World Scientific Review Volume - 9in x 6in 13˙review10

First passage problems in biology 317

Fig. 3. (Color online) (a) Schematics of free energies as a function of an effective, one-
dimensional bond coordinate ξ. The intrinsic molecular potential (black), harmonic
potential of the pulling device (dashed), and the total potential (brown) are shown. (b)
Only if the device potential is soft does the total potential Φ(ξ, t) form a barrier as the
device is pulled. (c) If the pulling device is stiff, then only a single translating minimum
arises, (d). Therefore, only for pulling devices with soft springs does a rupture event and

corresponding rupture force qualitatively arise.

In general, the problem, as with many inverse problems is ill-posed [25].

The reconstruction of a potential from a single rupture time (or rupture

force) distribution starting from a single bond coordinate is not unique

[25], however, additional experiments (such as multiple loading forces and

multiple starting bond positions) can give rise to multiple rupture time

distributions that allow for reconstruction of potentials defined by many

more parameters [26]. The extension of these inverse problems to those

using rupture force distributions derived from different force loading rates

could provide insight into the reconstruction of potentials more complex

than simple harmonic, Lennard-Jones, or Morse type potentials.

3. Nucleation and self-assembly

A process complementary to dissociation is self-assembly, which also arises

in many biological contexts. The polymerization of actin filaments [27–

31] and amyloid fibrils [32], the assembly of virus capsids [33–35] and of
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antimicrobial peptides into transmembrane pores [36, 37], the assembly

of ligands and receptors [38, 39], and the self-assembly of clathrin-coated

pits [40–42] are all important processes at the cellular level that can be cast

as self-assembly problems. Generally, in biological settings, there exists a

maximum cluster size which signals the completion of the assembly process.

For example, virus capsids, clathrin coated pits, and antimicrobial peptide

pores typically consist of N ∼ 100 − 1000,N ∼ 10 − 20, and N ∼ 5 − 8

molecular subunits, respectively. Furthermore, in confined spaces such as

cellular compartments, the total mass is a conserved quantity. Figure 4

depicts a homogeneous nucleation process where monomers spontaneously

bind and detach to clusters one at a time.

V= 1

Fig. 4. (Color online) Homogeneous nucleation and growth in the slow detachment
(q → 0+) limit in a closed unit volume initiated with M = 30 monomers. If the constant
monomer detachment rate q is small, monomers will be nearly exhausted in the long
time limit. In this example, we assume that N = 6 is the maximum cluster size and that
the first maximum cluster is formed at time T (depicted in blue).

The classical description of self-assembly or homogeneous nucleation

is a set of mass-action equations (such as the Becker-Döring equations)

describing the concentration ck(t) of clusters of each size k at time t:

ċ1(t) = −pc21 − pc1∑N−1
j=2 cj + 2qc2 + q∑N

j=3 cj

ċ2(t) = −pc1c2 + p
2
c21 − qc2 + qc3

ċk(t) = −pc1ck + c1ck−1 − qck + qck+1
ċN(t) = pc1cN−1 − qcN ,

(19)
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where for simplicity, we have assumed cluster size-independent attachment

and detachment rates p and q, respectively. These equations can readily be

integrated to provide a mean-field approximation to the numbers of clusters

of each possible size k [43].

Given a total number of monomers M one may be interested in the time

it takes for the system to first assemble a complete cluster of size N . To

address such a first passage problem, a stochastic model for the homoge-

neous nucleation process must be developed. Consider an N -dimensional

probability density P (n1, n2, . . . , nN ; t) for the system exhibiting at time t,

n1 free monomers, n2 dimers, n3 trimers...and nN completed clusters. The

forward master equation obeyed by P (n1, n2, . . . , nN ; t) is [43]:
Ṗ ({n}; t) = −Λ({n})P ({n}; t)+ 1

2
(n1 + 2)(n1 + 1)W +

1 W
+
1 W

−
2 P ({n}; t)

+N−1∑
i=2

(n1 + 1)(ni + 1)W +
1 W

+
i W

−
i+1P ({n}; t)

+q(n2 + 1)W +
2 W

−
1 W

−
1 P ({n}; t)

+q N∑
i=3

(ni + 1)W −
1 W

−
i−1W

+
i P ({n}; t), (20)

where we have rescaled time to p−1. Here, P ({n}, t) = 0 if any ni < 0,

Λ({n}) = 1
2
n1(n1−1)+∑N−1

i=2 n1ni+q∑N
i=2 ni is total rate out of configuration{n}, and W ±

j are the unit raising/lowering operators on the number of

clusters of size j. For example,

W +
1 W

+
i W

−
i+1P ({n}; t) ≡ P (n1 + 1, . . . , ni + 1, ni+1 − 1, . . . ; t). (21)

The process associated with this master equation has been analyzed using

Kinetic Monte-Carlo simulations as well as asymptotic approximations for

the mean cluster numbers in limits of small and large q [43, 44].

The first passage problem is to determine the distribution of times for

complete assembly of the largest cluster, nN = 0⇒ nN = 1. For the purpose
of illustration, consider a small system with M = 7 or 8, and N = 3. Since

state-space is small, we can visualize all possible configurations as shown

in Fig. 5. The first passage time to a maximum cluster, starting from the

all-monomer state (P ({ni}; t = 0) = δn1,M ∏N
i=2 δni,0) is the time the system

takes to reach any of the states highlighted in blue, to the right of the red

line.
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(a) (b)

Fig. 5. (Color online) Allowed transitions in stochastic self-assembly starting from an
all-monomer initial condition. In this simple example, the maximum cluster size N = 3.
(a) Allowed transitions for a system with M = 7. Since we are interested in the first
maximum cluster assembly time, states with n3 = 1 constitute absorbing states. The
process is stopped once the system crosses the vertical red line. (b) Allowable transitions
when M = 8. Note that if monomer detachment is prohibited (q = 0), the configuration
(0,4,0) (yellow) is a trapped state. Since a finite number of trajectories will arrive at
this trapped state and never reach a state where n3 = 1, the mean first assembly time
T3(8,0,0) → ∞ when q = 0.

In the strong binding limit, when 0 < q ≪ 1 and for M even, one can

find the dominant pathways to a largest cluster and surmise the leading

order behavior ⟨T (q ≪ 1)⟩ ∼ 1/q, with a prefactor that depends nontrivially

on M and N [44]. This diverging assembly time arises from trapped states

as highlighted in yellow in Fig. 5(b). As q is increased, the likelihood of

more paths coming out of the trapped states is higher, thereby decreasing

the expected time to cluster completion. Only for the special case of N = 3
and M odd, where no such traps exist, is ⟨T (q)⟩ a nondivergent ratio of

polynomials in q, as illustrated in Fig. 6(a).

In the weak binding, q ≫ 1, maximum cluster formation is a rare event

and ⟨T (q ≫ 1)⟩ ∼ qN−2. Because of these asymptotic relations, we expect

at least a single minimum in the mean first assembly time as a function

of detachment rate q [44]. Figure 6 shows ⟨T (q)⟩ as a function of q for

M = 7 and M = 8, clearly indicating a shortest expected maximum cluster

formation time at intermediate detachment rates q. As long as M is even

or N ≥ 4, traps states arise and the expected cluster completion time di-
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Fig. 6. (Color online) Mean first assembly times for M = 7 and N = 3 in panel (a)
and M = 8 and N = 3 in panel (b). The notation TN (M,0,0) denotes the mean first
maximum cluster (of size N) assembly time ⟨T ⟩ starting from an initial condition of M
monomers. Exact results are plotted as black solid lines, while red circles are obtained
by averaging over 105 KMC simulation trajectories. The dashed blue lines show the
q → 0 and q →∞ asymptotic approximations.

verges as q → 0. Thus, in this limit, it may be physically more meaningful

to define the expected assembly time of a maximum cluster, conditioned

on trajectories yielding complete clusters. The above results can also be

extended to first assembly times of the stochastic heterogeneous nucleation

process [45].

Ideas of self assembly have also been applied to a structurally more

specific application of linear filament and microtubule growth [46, 47]. The

cell cytoskeleton is a dynamically growing and shrinking assembly of micro-

tubules and filaments that regulate cell migration, internal reorganization

such as organelle transport, and mitosis. The assembly and disassembly of

microtubules is a key microscopic process for these vital higher order cell

functions. The molecular players involved in these processes are numerous

and their interaction are biochemically and geometrically complex. How-

ever, one basic feature is that the tips of growing filaments can exist in

a state that promotes elongation, or one that promotes disassembly. By

switching between these two states, the filament can be biased to shrink or

grow. A first passage problem that has been studied in this context has been

to derive a model for the first disassembly time of a filament starting from

a specific length. Using a discrete stochastic model describing the proba-

bility density for the number of monomers in a single microtubule, as well

as transitions between growing and shrinking states, Rubin calculated its
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disassembly time distribution in terms of modified Bessel’s functions [46].

In later work, Bicout [47] used a semi-Markov model to describe sin-

gle filament dynamics. During the growth or shrinking phases, the length

of the filament was assumed to be continuous variable that increased or

decreased according to deterministic velocities v±. However, the switching

between growing and shrinking states was assumed to be Markovian with

exponentially distributed times, with rates f±. For this “Broadwell” model

we introduce P±(x, t∣x0,0) as the probability that the tip of the filament is

moving with velocity v± and is located between position x and x + dx at

time t, given that it was at position x0 at t = 0. Conservation of probability

yields

∂

∂t

⎛⎜⎝
P+

P−

⎞⎟⎠ = L
⎛⎜⎝
P+

P−

⎞⎟⎠ , (22)

where

L = ⎛⎜⎝
−v+ ∂

∂x
− f+ f−

f+ v−
∂
∂x
− f−

⎞⎟⎠ , (23)

which is also known as the “telegraphers” equation. The ballistic intervals

of motion introduces an overall memory into the dynamics. This can be

seen by combining P+ +P− = P to find an equation for the total probability

P (x, t) containing terms of the form ∂2P /∂t2.
By using the associated Green’s function, Bicout [47, 48] found explicit

solutions for the distribution of lifetimes of a microtubule that started off

at a fixed length x0:

w(t;x0)dt ∼ t3/2 exp [−t/τc]dt. (24)

The Broadwell model and telegrapher’s equation have been used in many

other applications, including gas kinetics [49, 50] and photon transport [51].

In the next section, we present another example of a first passage problem

from molecular biophysics that involves electron transport and that is also

described by equations similar to Eq. (22).
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4. Molecular transport and search

A molecular setting in which first passage problems arise in biology is the

so called “narrow escape problem”, which is simply a higher dimensional

generalization of a high-barrier bond-rupturing problem. In cellular envi-

ronments, numerous confined spaces arise in which molecules diffuse and

react. Typically, a small section of the surface of the confined space is “re-

active”, i.e., contains receptors that bind diffusing molecules, or is a hole

that allows escape into a much larger volume. Examples include synaptic

clefts connecting neurons, nuclear envelopes and their associated nuclear

pore complexes.

Mathematically, the problem is described by Fig. 7(a) in which a particle

diffuses in the domain Ω, bounded by ∂Ω. The boundary ∂Ω is made of two

regions, a reflecting boundary ∂Ωr, and an absorbing one ∂Ωa, representing

a hole or irreversibly binding surface. Asymptotic results for mean first

passage times have been derived for ε = ∂Ωa/∂Ω ≪ 1. Since escaping is a

rare event in this limit, we expect that the escape time will be insensitive

to the starting position.

A number of asymptotic results for the mean escape time of particles in

confined geometries have been determined by Singer, Schuss, and Holcman

[52], as well as Ward et al. [53].

Figure 7(a) shows the diffusing particle in a volume Ω that can escape

from a small hole of size ∼ εΩ1/d, where d is the spatial dimensionality of

Ω. If ε≪ 1, estimates of the mean first exit times have been derived using

asymptotic analysis of Eq. (10) and conformal mapping. Specifically, in 2D

and 3D, for escape from a small hole punched through a smooth boundary

as shown in Fig. 7(a), we find

⟨T ⟩ ∼ Ω

4πD
[log 1

ε
+O(1)] , 2D

⟨T ⟩ ∼ Ω2/3

εD
[1 + ε

π
log

1

ε
+ . . .] . 3D

(25)

Analogous results were obtained for the constriction escape problem, where

a narrow bottleneck is formed by circles or spheres of radius Rc approaching

each other or revolved to form a three-dimensional bottleneck:
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Rc

Ωr

Ω1/dε
Ωa

Ω

εRcΩ

(c)(b)(a)

Fig. 7. (a) The canonical narrow escape problem. A particle with diffusivity D can
escape from an asymptotically small aperture. The mean time ⟨T (x)⟩ to escape Ω, as
a function of initial position x can be calculated in the asymptotic limit ε → 0. (b) An
escape problem where the escape hatch is at a cusp. (c) DNA target site search problem.
Search is facilitated by 1D diffusion along the DNA chain.

⟨T ⟩ ∼ πΩ

2D
√
ε
, 2D

⟨T ⟩ ∼ Ω√
2RcD

1

ε3/2
, 3D.

(26)

Similar results have been derived for different geometries such as diffusion

to the tip of a corner, and first passage to the end of a long neck. Due to the

chosen geometries, escape is a rare event, and the particle reaches a quasi-

steady-state distribution before any escape has occurred. Since the time to

reach the quasi-steady-state distribution starting from a specific position

is negligible compared to the mean escape time, all the above results are

independent of the particle’s initial position x.

Another related and biologically important example of first passage is

the search of molecules for their target sites, such as the binding of tran-

scription factors (sequence-specific DNA-binding proteins) to their corre-

sponding binding sites along DNA [54–58] (see Fig. 7(c)). These sites are

often proximal to the genes they regulate, although in reality, numerous

transcription factors, including basal factors, RNA polymerase, coactiva-

tors, and activators must assemble before transcription of a specific gene

is initiated. The search problem is of theoretical interest because exper-

imental search times are much shorter than those estimated from simple

3D diffusion alone, leading to the idea of facilitated diffusion, a mechanism

whereby more than one transport path is available. Since DNA is a linear,

often compacted polymer, sections many bases away from the target may
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nonetheless be spatially proximal to it. These physical features have been

incorporated into transport models to estimate the time it takes for an en-

zyme to bind its intended target along DNA of arclength L. The original

phenomenological model assumes an effective absorbing sphere of radius λ

around the target, where λ is the typical contiguous length traveled along

the DNA. A simple heuristic expression for this “antennae effect” on the

search time was derived: ⟨T ⟩ ≈ (L/λ)(τ1 + τ3), where τ1 and τ3 are the

typical times spent on the DNA and in the bulk, respectively. To obtain

realistic search times using this expression requires that the enzyme spend

approximately an equal amount of time on DNA as in the bulk. However,

in reality, enzymes spend an overwhelming majority of time associated with

DNA. Moreover, this expression breaks down in certain singular limits such

as when the one-dimensional diffusivity D1 → 0, leading to τ1 →∞. An im-

proved expression for the mean search time has been recently derived [59],

⟨T ⟩ ≈ Lr

2D3np
( r

λnad
+ λD3np

D1rnads
+ 2D3koff
konD1

√
np
) , (27)

where L is the arclength of the DNA, r is its effective thickness, np and

nads are the number of bulk and adsorbed proteins, and kon andkoff are the

attachment and detachment rates of protein. Note that in this treatment,

kon was defined using a reference protein concentration of one molecule per

search volume. The typical arclength a protein stays within r of the DNA

before dissociating is thus estimated to be

λ ≈ r
√
konD1√

koffD3nads

. (28)

The result (28) is able to resolve a number of quantitative kinetic issues.

In particular, Cherstvy, Kolomeisky, and Korynyshev [59] were able to find

optimal binding energies that minimize the search time. Within a realistic

parameter regime, the reduction in search time relative to 3D diffusion alone

can be obtained even for small D1/D3. Additional details and references

are found in Kolomeisky [60]. Note that all results on this problem are

independent of the initial starting position of the searching enzyme since

an initial uniform distribution of enzyme positions is implicitly assumed.

The molecular search problem is also intimately related to the filament

growth described in the previous section. During mitosis, the ends of grow-

ing and shrinking microtubules emanating from centrosomal bodies form
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a party in search of kinetochores that hold together chromosomes [61, 62].

Using the Green’s function approach of Bicout [47] for a single microtubule

as a starting point, Gopalakrishnan and Govindan [63] found estimates for

the search time to one kinetochore

⟨T ⟩ ≈ eΔd

p
(1 + f−(1 − e−Δd)

v−Δ
)(v+ + v−

Δv−v+
+ 1

f
) , (29)

where Δ ≡ (v−f+ − v+f−)/(v+v−), and f is the frequency of nucleation of

new microtubules from the centrosome that is located a distance d from the

kinetochore target. The probability that any new microtubule is pointed in

the right direction and within the capture cone is p≪ 1. The microtubule

velocities v± and flipping rates f± take on the same meaning as in Eq. (22)

used by Bicout to study the lifetime of a single microtubule. Equation (29)

holds only when the cell radius R ≫ d. This and related formulae allow

for an easy determination of optimal parameters that minimize the mean

search time. The topic of capture of multiple kinetochores associated with

multiple chromosomes has also been treated by Wollman et al. [62].

Besides the filament growth and search problems described in Section 3

and above, two other examples of cellular transport involving first passage

times have been recently discussed: optimal microtubule transport of virus

material to a host cell nucleus [64], and localization of DNA damage repair

enzymes to DNA lesions [65, 66].

When a virus first enters a mammalian host cell its genetic material

needs to be processed and transported into the host cell nucleus before pro-

ductive infection can occur. The transport is often mediated by molecular

motors that carry viral RNA or DNA towards the nucleus. This process

was modeled by a unidirectional convection of cargo in multiple stages,

while detachment of the motor and degradation of the viral cargo was im-

plemented by a decay term. Nuclear entry probabilities and conditional

first arrival times for cargo starting at the cell periphery and ending at the

nucleus were calculated [64]. These were found to depend on parameters

describing convection, decay, and transformation in nontrivial ways which

suggested new strategies for drug intervention of the transport process.

Another biophysical example where finding first passage times is impor-

tant is the localization of proteins to certain sites on DNA using an electron

ejection mechanism [65]. A redox mechanism for certain DNA repair en-

zymes to localize near DNA damage sites has been proposed [67–69], as

depicted in Fig. 8(a). Here, a recently deposited repair enzyme oxidizes
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by releasing an electron that can either scatter or absorb at guanine bases

and damaged DNA sites. The oxidized repair enzyme has a higher binding

affinity to DNA. However, if the electron returns, the reduced enzyme will

dissociate from the DNA.

e−e−

e− e−

(a)

(b) (c)

L/2

−L/2X=0

X=Le −

. .

.. .. ..

.

konkoff

y
L

(d)

Fig. 8. (a) A repair enzyme (hexagon) adsorbs onto a DNA which is initially populated
by guanine radicals (circled dots) with a density ρ. An electron is emitted to the left or
right with equal probability. The emitted electron has flip rates f±, rightward/leftward
velocity v± and decay rate M . (b) The one-sided Broadwell problem. An electron is
emitted from position X = 0 with probability 1 toward a guanine radical at X = L.
(c) The two-sided Broadwell problem. An enzyme is deposited between two guanine
radicals which are at a distance L apart. Immediately after landing inside this segment,
an electron is emitted to the left or right with equal probability. (d) First passage time
to a boundary position y = L in the presence of multiple particles undergoing Langmuir
kinetics.

Within this overall mechanism, the problems of the first electron re-

turn time, conditioned on its returning arises. The model equation for

this subproblem is identical to Eq. (22) except that x, v±, and f± are the

position, speeds, and flip rates of an electron along the DNA, and decay

terms are added to describe the absorption of electrons “off” the DNA. The

effective desorption rate was calculated from the probability and time of

electron return. For repair enzymes that land far from electron absorbing

lesions, and if other electron-absorbing mechanisms are negligible, return

of the emitted electron is likely and the enzyme will detach before it can

diffuse sufficiently far. However, in a finite cell volume, the detached en-

zyme reenters the bulk pool and can reattach to the DNA, potentially closer

to the lesion. Deposition near a lesion will likely be longer-lived because

the ejected electron will be more likely absorbed rather than returning and

dissociating the enzyme. In this way, Fok and Chou [65, 66] were able to

find conditions under which the repair enzymes statistically localize near

electron-absorbing damage sites on DNA.

Finally, search problems can involve multiple diffusing particles. In this
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case, it is still reasonable to define the state-space in terms of the positions{xj}, 1 ≤ j ≤ N for each of, say, N particles. In one-dimension, the first

hitting time for any particle to reach an absorbing point of a line segment

has been examined by Sokolov et al. [70] who considered noninteracting

particles that diffuse and undergo Langmuir kinetics as shown in Fig. 8(b).

In their study, the authors employ a mean-field assumption for Eq. (4)

where the probability current J(t) is conditioned on no other particle having

exited the interval previous to time t. The mean-field assumption arises

by expressing this conditioning as Jconditioned(t) = JunconditionedS(t). The

mean-field solution to the probability S(t) that no particle has hit the

target site up to time t is

S(t) = J(t) exp [−∫ t

0
J(t′)dt′] , (30)

where J(t) is the unconditioned probability flux. Note that for this ap-

proximation to yield physical results, we require

lim
t→∞

tJ(t) > 0 (31)

in order for ∫ t

0 J(t′)dt′ to diverge and S(t) → 0 as t →∞. In this problem,

the flux was approximated by J(t) = −D∂yn(y, t)∣y=L, where n(y, t) is the

particle density at position y that is found from

∂n(x, t)
∂t

=D∂2n(x, t)
∂x2

− koffn + kon, (32)

where D is the one-dimensional diffusivity, and kon and koff are the parti-

cle adsorption and desorption rates. Because of the implied infinite bulk

reservoir (through rate kon) the mean-field flux satisfies Eq. (31). Even in

the case koff = kon = 0, if an infinite system size is assumed, the condition in

Eq. (31) is also satisfied. In fact, when the system is infinite, the mean-field

assumption in Eq. (30) is exact.

A more general approach that does not initially rely on the mean-

field assumption, and can be used for finite-sized systems, is to note that

if the particles are noninteracting, the survival probability S(t;{xi}) =∏N
i=1 S1(t;xi) is a product of the survival probabilities of each particle with

initial position xi. We assume a finite segment and assume N total of par-

ticles, including those in the bulk. In this way, we can compute the single
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particle probability flux J1(t) = −D∂yP1(y, t∣x,0)∣y=L, and use the exact

relation

∂S1(t;x)
∂t

= −J1(t;x) =D∂yP1(y, t∣x,0)∣y=L. (33)

Using conservation of probability, ∫ ∞0 J1(t′;x)dt′ = 1 and, assuming the

initial positions (including the possibility of being detached from the lattice)

of all particles are identical, we find

S(t;x) = [1 − ∫ t

0
J1(t′;x)dt′]N . (34)

A direct comparison can be made with the mean field result in the case

koff = kon = 0. Upon solving Eq. (32), we can find the the Laplace transform

of the single-particle probability flux, assuming a uniformly distributed

initial condition

J̃1(s) = −D∂ñ(x, s)
∂x

∣
x=L

= tanhL
√
s/D

L
√
s/D . (35)

Upon inverse Laplace-transforming, and using the result in Eq. (34), we can

find the exact survival probability. Note that this result is different from

using NJ1(t) for J(t) in the mean-field approximation Eq. (30). Only in

the infinite system size limit of L,N → ∞, but N/L = n0 constant do the

mean-field and exact result S(t) = exp [−2n0

√
Dt/π] coincide. This can

be shown mathematically by using L = N/n0 in Eq. (35), inverse Laplace

transforming, substituting the result in Eq. (34), and taking the N → ∞
limit. The discrepancy can be most easily seen by assuming all particles

start at x and

∂S(t;x)
∂t

= NSN−1
1 (t;x)∂S1(t;x)

∂t
= −NJ1(t;x)SN−1

1 (t;x). (36)

For noninteracting particles, the total annihilation flux J(t;x) =NJ1(t;x),
and

∂S(t;x)
∂t

= −J(t;x)SN−1
1 (t;x) = −J(t;x) S(t;x)

S1(t;x) . (37)

The relative effect of the extra factor S1(t;x) < 1 on S(t;x) decreases as
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N → ∞. It should be stressed that independence of the diffusing particles

allow for the exact analysis above. However, certain approximate results

for interacting particles have also been obtained [71].

Multiple particle first passage problems also illustrate the concept of

order statistics. Although Eq. (34) provides the survival probability of a

boundary untouched by any one of the diffusing particles, one might be

interested in the statistics of the first, second, third, etc., particle to leave

the interval, as well as the complete clearing time distribution. These order

statistics and asymptotic expressions for the first two moments of the j

exit times have been derived for independent particles diffusing in one-

dimension [72] and d−dimensions [73].

5. Neuronal spike trains

An important first passage problem within a living, functioning nerve cell,

or group of nerve cells arises in the study of the timing of electrical spike

trains. While modeling the stochastic dynamics of the membrane potential

of a neuron requires taking into account a large number of detailed micro-

scopic processes, such as nonlinear ion channel gating and membrane capac-

itance and leakage, the overall phenomena of spike trains can be effectively

described by a stochastic process with a threshold membrane potential V ∗.

When the voltage of a neuron reaches V ∗, highly nonlinear processes take

over, the voltage quickly spikes, and returns to a reset voltage, as shown in

Fig. 9(a). The interspike times are distributed according to the time that

the transmembrane potential first reaches V ∗ after the previous resetting.

A simple one-dimensional stochastic model for predicting interspike

times for a single neuron has been proposed by Stein [74]. Here, the trans-

membrane voltage is assumed to dissipate through a “leak” current, while

other connected neurons impart noise to the neuron of interest. The model

implicitly relies on a mean field assumption in the sense that none of the

other neurons are affected by the behavior of the neuron in question. The

“bath” neurons provide random excitatory and inhibitory signals through

unspecified physical connections with the isolated neuron. Starting from a

stochastic differential equation (SDE) formulation, increments of the trans-

membrane voltage V can be expressed as

dV = −V
τ
dt + aedπe(re, t) − aidπi(ri, t), (38)
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Fig. 9. First exit times in simple neuronal firing models. (a) A schematic time trace of
the transmembrane potential showing voltage spikes triggered at V ∗ and resetting back to
V0. The subthreshold voltage dynamics is a stochastic processes with the interspike time
distribution measuring the statistics of the first passage time to the threshold voltage.
(b) Voltage trajectories for two coupled neurons, with transmembrane voltage V1 and
V2. If neuron 2 spikes first at point (B), V2 spikes and quickly resets to point (C). In
this example, neuron 1 spikes next at point (D), and V1 resets to point (E).

where ae and ai are the fixed amplitudes of the excitatory and inhibitory

spikes feeding into the neuron, and πe(re, t) and πi(ri, t) are possibly time-

varying unit excitatory and inhibitory Poisson processes with rates re and

ri, respectively. Suppose the voltage starts at V (t = 0) = X and that

the threshold for spiking is V∗. The recursion equations for the moments

Mn(X ;V∗) ≡ ⟨T n(X ;V∗)⟩ of the interspike times are [75]

X

τ

dMn

dX
−reMn(X+ae)−riMn(X−ai)+(re+ri)Mn(X) = nMn−1(X), (39)

where M0(X) ≡ 1. The mean interspike times M1(X,V∗) ≡ ⟨T (X)⟩ were
analyzed by Cope and Tuckwell [76] using asymptotic analysis for large

negative reset voltages, and continuing the solutions to the threshold V∗.

Assuming ae = ai, their result for the mean first time T (V ) to spiking

starting from an initial voltage V can be expressed in the form

⟨T (X,V∗)⟩ ≈ 1

re
[ 1

τre
log ( V

ae
) +C (V∗

ae
) + ∞∑

n=1

An (ae
V
)] , (40)

where the function C(V∗/ae) and the coefficients An were numerically found

from recursion relations of a set of linear equations. However, note that the
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associated equation for the voltage probability density P (V, t∣V0,0)dV is

∂P

∂t
= 1

τ

∂(V P )
∂V

+ reP (V − ae, t) + riP (V + ai, t) − (re + ri)P, (41)

where only arguments of P that are different from (V, t∣V0,0) are explic-

itly written. A further simplification can be taken by assuming the noise

amplitudes ae,i are small and Taylor expanding the probability densities to

second order in ae,i (a “diffusion” approximation). The Fokker-Planck or

Smoluchowski equation now takes the form

∂P

∂t
= ∂

∂V
[(V

τ
− reae + riai)P ] + 1

2
(rea2e + ria2i ) ∂2P

∂V 2
, (42)

with P (V, t∣V0,0) = δ(t) when V = V∗. This model for subthreshold neuron

voltage is simply a first passage problem of the Ornstein-Ulhenbeck process

that has been used to describe particle escape from a quadratic potential

or rupturing of a harmonic bond. Recasting the problem using a Backward

Kolmogorov Equation, the survival probability (the probability that no

spike has occurred) as well as the moments of the interspike times can be

expressed in terms of special functions [75]. Tuckwell and Cope [75] also

provide a careful analysis of the accuracy of the diffusion approximation in

approximating the “exact” results from Eq. (39). As expected the diffusion

approximation is accurate in the limit of large excitatory and inhibitory

spike noise rates re and ri, and when the threshold voltage V∗ is far from

the reset voltage.

Besides simple one-dimensional models, higher dimensional models that

include more mechanistic details of a single neuron have also been studied.

In particular, stochastic first passage problems for Fitzhugh-Nagumo [77]

and Hodgkin-Huxley models [78] have been developed. These more complex

models still focus on the voltage dynamics of a single neuron, with the volt-

age dynamics of other connected neurons subsumed into the “noise” felt by

the neuron. Typically, the multiple neuron voltages can be simultaneously

measured using multielectrode recordings, allowing for the quantification

of the correlations between the spiking times of connected neurons. A first

approach for modeling these higher dimensional data is to treat the stochas-

tic dynamics of a small number of interacting neurons. For the two neuron

problem illustrated in Fig. 9(b), the dynamics of the subthreshold voltages

of neurons 1 and 2, V1 and V2, respectively, are independent of each other,

and the probabilities factorize: P (V1, V2)dV1dV2 = P1(V1)P2(V2)dV1dV2.
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Interactions between the two neurons occur when either voltage spikes. A

neuron connected to one that spikes can suffer a small voltage displacement.

Rather than treating each neuron as subject to independent noise, the spik-

ing time statistics of the neurons provide one component of the random

noise of the other neuron. The full spiking time statistics must be com-

puted self-consistently. Trajectories in the state space shown in Fig. 9(b)

can be described moving along a torus with jumps in the orthogonal direc-

tion each time it crosses circumferentially or axially. Mathematically, the

probability densities for the two subthreshold voltages obey

∂Pi(Vi, t)
∂t

= ∂

∂Vi
[Ui(Vi)Pi] +Di

∂2Pi

∂V 2
i

, (43)

where Di is the voltage diffusivity in neuron i. However, as soon as one Vi

reaches V ∗i , not only does it reset, but Vj≠i → Vj≠i + δj is shifted by δj .

6. Cellular and organismic population dynamics

The simplest nonspatial deterministic population model, describing growth

limitations due to a carrying-capacity, centers on the logistic equation

dn(t)
dt

= rn(t)(1 − n(t)
K
) , (44)

where n(t) is the population density and K is the carrying-capacity. This

deterministic model has stable fixed points at n = 0 and n = K. There

are multiple ways to define stochastic birth-death models that in the mean

field limit reduce to Eq. (44) [79]. Nonetheless, all of these models requires

at least one existing organism for proliferation to take place. Therefore,

these models contain an absorbing state at n = 0, where the population

is extinct. Although the deterministic equation predicts, at long times, a

permanent population n =K, a stochastic model predicts a finite extinction

time T after which n(t ≥ T ) = 0. Approximations to this extinction time

have been analyzed by Kessler and Shnerb [80] using a WKB approxima-

tion and Assaf and Meerson [81] using a generating function approach and

properties of the associated Sturm-Liouville equation. Both methods use

the approximation K ≫ 1, for which extinction is rare, and a near equilib-

rium number distribution is first achieved before an extinction event occurs.

This approximation is analogous to that of assuming “local thermodynamic



December 16, 2013 13:26 World Scientific Review Volume - 9in x 6in 13˙review10

334 T. Chou and M. R. D’Orsogna

equilibrium” (as opposed to kinetic theory) for transport calculations [82].

The probability flux is then constructed from the rate of transport into

an absorbing state from this near equilibrium density. The distribution of

times for the rare extinction events are nearly exponential

w(t)dt ≈ Γe−Γtdt, (45)

where to leading order the extinction rate is of the form

Γ ∼K3/2e−K . (46)

Note that these results, as with those of the narrow escape problem (Section

4), do not depend on the initial number n0 = n(t = 0) because equilibration
to a quasi-stationary state occurs on a time scale much faster than Γ−1.

Other classic population models, such as models for cell geno-

type/phenotype populations, Lotka-Volterra type models [83], and disease

models (such as SIS and SIR) [84, 85] have also been extended into the

stochastic realm, and the corresponding exit times into absorbing configu-

rations analyzed (see Ovaskainen and Meerson [86] for a review). Here, the

total organism number is a random variable determined by the dynamical

rules of the model, which may include “interacting” effects such as carrying-

capacity. The simplest model for heterogeneity in a birth-death process is

the Wright-Fisher model or, in continuous-time, the Moran model. The

latter is a stochastic model for two-competing species with numbers n1 and

n2, where the total population n1 + n2 ≡ N is fixed. Since n2 = N − n1,

the problem state-space reduces to one-dimension. The transition rules in

the Moran model are defined by randomly selecting an individual for anni-

hilation, but instantaneously replacing it with either one of the same type

(so that the system configuration does not change), or one of the opposite

type. The transition probability in time interval dt for converting an n1

individual to an n2 individual is thus r1n1n2dt = r1n1(N − n1)dt, while
conversion of n2 to n1 occurs with probability r2n2(N −n2)dt. By defining

P (n, t∣m,0) as the probability that there are n = n1 type 1 individuals at

time t, given that there were initially m type 1 individuals, the BKE is

simply

∂P (n, t∣m,0)
∂t

= m(N −m)[r1P (n, t∣m + 1,0) + r2P (n, t∣m − 1,0)
−(r1 + r2)P (n, t∣m,0)]. (47)
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Note that n = 0 and n = N are absorbing states corresponding to the

entire population being fixed to either type 1 or type 2 individuals. Upon

summing ∑N−1
n=1 P (n, t∣m,0) ≡ S(t;m), we can find the corresponding BKE

for the probability of survival against fixation at either n = 0 or n = N . The

mean time to fixation can then be found from inverting the matrix equation

m(N −m) [r1⟨T (m + 1)⟩ + r2⟨T (m − 1)⟩ − (r1 + r2)⟨T (m)⟩] = −1, (48)

with ⟨T (0)⟩ = ⟨T (N)⟩ = 0, to give the well-known result

⟨T (m)⟩ = N m∑
k=1

N −m
N − k +N

N−1∑
k=m+1

m

k
. (49)

If spontaneous mutations are included in the model, there is strictly no

fixation since the states n = 0,N are no longer absorbing. Many general-

izations of the Moran model have been investigated, including extensions

to include more species, fluctuating population sizes, and time-dependent

parameters such as the rates r1(t), r2(t) [87, 88]. These extended mod-

els are not typically amenable to closed form solutions such as Eq. (49).

Nonetheless, it is often possible to employ asymptotic analysis in the large

N limit and derive a corresponding PDE for either the probability density

or its generating function. For example, if one assumes N → ∞ and takes

x =m/N one finds the diffusion approximation for the BKE

∂S(t;x)
∂t

=Deffx(1 − x)∂2S(t;x)
∂x2

, 0 ≤ x ≤ 1. (50)

Here, we have introduced Deff = r1N2 = r2N2. The corresponding PDEs for

more complex Moran-type models are often amenable to analysis, making

the Moran model one of the paradigmatic theories in population biology

and ecology. However, recall from Section 1 the discrepancy between the

first passage times derived from discrete and corresponding continuum the-

ories [6]. For Eq. (50), there is no selection or mutation giving rise to

a convection term, so the corresponding mean first passage time asymp-

totically approaches the discrete result in Eq. (49) as N → ∞. However,

care should be exercised for more complex models that include effective

convection terms.

Higher dimensional generalizations of these types of discrete models can

also be readily applied to problems in cell population biology such as cancer



December 16, 2013 13:26 World Scientific Review Volume - 9in x 6in 13˙review10

336 T. Chou and M. R. D’Orsogna

modeling and stem-cell proliferation. When the total population size con-

straint is relaxed, a linear, multiple state model shares many mathematical

features with the Zero-Range Process (ZRP) [89], as shown in Fig. 10. The

multiple sites in such a ZRP might represent the number of cells in a tissue

at a particular mutation stage as the cells progress towards a cancerous

state. Of interest is the first time that a certain number of cells arrive at

the final, “fully cancerous” state a.

N

N

.  .  .
(a)

stem cell:

differentiated cell:

. . . N

p

p

pα

(b)

1 2

2 3

3

age units

age units
1 2 3

1

2

3

Fig. 10. Schematic of a reduced model of stem-cell aging. (a) Asymmetric division of
aging stem-cells. The circles represent stem cells, while the squares represent differen-
tiated cells. The numerical index represents the age of the cell and is assumed to be
inversely related to the telomere length. (b) A lattice representation of the stem-cell
aging model. The rate of asymmetric differentiation are shown as pk, while the death
rates μk at each age k are not indicated.

Besides multi-hit models of cancer and evolution, the Zero-range pro-

cess can also be adapted to model aging in a stem-cell population. Con-

sider stem-cells that have a limited number of divisions due to shortening

telomeres, ends of their DNA that are shortened at each division. With-

out telomerase to rebuild these ends, cells will generally be programmed

for death. As shown in Fig. 10(a), our model assumes that each division

leads to one stem-cell and one differentiated cell, both aged by one unit

(or both with shortened telomeres). Since all cell divisions are asymmetric,

yielding one stem-cell and one differentiated cell, one only needs to keep

track of the number of stem-cells. The forward master equation for the

process has been derived in Shargel, D’Orsogna, and Chou [90], as well as

aIn other contexts, such as individual survival probabilities against death from cancer
are called Kaplan-Meier curves which represent the fraction of a population alive as a
function of time after the initial diagnosis of cancer.



December 16, 2013 13:26 World Scientific Review Volume - 9in x 6in 13˙review10

First passage problems in biology 337

the associated equation for the generating function:

∂G

∂t
= −N−1∑

j=1

(μj + pj)zj ∂G
∂zj
+ N∑

j=1

μj
∂G

∂zj
+ N−1∑

j=1

pjzj
∂G

∂zj
− μNzN

∂G

∂zN
, (51)

where

G(z1,⋯, zN ; t) = ∑
nj

P (n1,⋯, nN ; t)zn1

1 ⋯znN

N (52)

and P ({n}; t) is the probability that there are exactly nk stem-cells of age

k at time t. If we do not assume an immigration of new stem-cells defined

as having age k = 1 (as was done in Shargel, D’Orsogna, and Chou [90]),

Eq. (51) can be expressed in the form dG/dt = 0 and solved using the

method of characteristics. The vector of characteristic trajectories Z =(z1, z2, . . . , zN)T can be found by solving Ż = PZ −M, where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 + p1 −p1 0 ⋯ 0

0 μ2 + p2 −p2 ⋯ 0

0 ⋯ μj + pj −pj 0

0 ⋯ 0 μN−1 + pN−1 −pN−1⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 0 0 μN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(53)

and M = (μ1,⋯, μj ,⋯, μN )T . For an initial condition of one stem-cell of

age k = 1, these trajectories can be inverted and expressed in terms of

the initial values zi(t = 0), which form the independent variable in the

generating function:

G(Z; t) = z1e−Δ1t + N∑
i=2

⎡⎢⎢⎢⎣zi(−1)
i+1 (i−1∏

�=1

p�) i−1∑
j=1

e−Δjt − e−Δit

∏i
k≠j(Δj −Δk)

⎤⎥⎥⎥⎦ + (54)

1 − e−Δ1t + N∑
i=2

⎡⎢⎢⎢⎣(−1)
i ( i∏

�=1

p�) i−1∑
j=1

e−Δjt − e−Δit

∏i
k≠j(Δj −Δk)

⎤⎥⎥⎥⎦ ,

where Δj ≡ pj + μj , for 1 ≤ j ≤ N − 1 and ΔN = μN . From the generat-

ing function in Eq. (54) we can derive the probability P (n1 = 0, ..., nj =
1, ..., nN = 0; t) that a certain age by the descendants of single cell can be



December 16, 2013 13:26 World Scientific Review Volume - 9in x 6in 13˙review10

338 T. Chou and M. R. D’Orsogna

found at a given age j:

P (n1 = 1, n2 = 0,⋯, nN = 0) = e−Δ1t, (55)

while for all other ages 1 < j <N we find

P (0,⋯, nj = 1,⋯,0; t) = (−1)j (j−1∏
�=1

p�) j−1∑
k=1

e−Δjt − e−Δkt

∏j
i≠k(Δk −Δi)

= (pt)j−1(j − 1)!e−(μ+p)t,
(56)

where the last equality holds in the case where all pi = p and μi = μ are age-

independent. Finally, the probability for complete extinction of the lineage

is given by

P ({n} = 0; t) = 1 − e−Δ1t + N∑
i=2

⎡⎢⎢⎢⎣(−1)
i (i−1∏

�=1

p�) i−1∑
j=1

e−Δjt − e−Δit

∏i
k≠j(Δj −Δk)

⎤⎥⎥⎥⎦ . (57)

It can be easily verified that the sum of the probabilities in Eqs. (55), (56)

and (57) add to unity, and that P (n1 = 0,⋯, nN = 0; t→∞) → 1, indicating

that a single cell will eventually age and that its lineage will go extinct with

certainty.

From these probabilities we can construct the probability that the oldest

age reached by a lineage is Qk:

Qk = ∫ ∞

0
[pk−1P (0, ..., nk−1 = 1, ...,0; t) − pkP (0, ..., nk = 1, ...,0; t)]dt.

(58)

Equation (58) is derived by considering the difference between the probabil-

ity flux into age k and the flux out of age k into age k+1 (excluding death).

The time-integrated result Qk is thus the probability that the lineage died

at age k. For the constant rate case pi = p and μi = μ, we find explicitly

Q1 = μ

μ + p , Qk = μpk−1

(μ + p)k , and QN = pN−1

(μ + p)N−1 . (59)

From these probabilities, we can define the first passage time to age k

conditioned on the system reaching at least age k. Since the decay at all
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ages preceding k are “interfering” absorbing states, we can use Jk
1 (t) =

pP (0, ..., nk−1 = 1, ...,0; t) in Eq. (11) to find

w1(t∣k) ≡ J1(t∣k) = (μ + p)((μ + p)t)k−2(k − 2)! e−(μ+p)t, k ≥ 2, (60)

with a corresponding conditional mean arrival time to age k: ⟨T1(k)⟩ =(k − 1)/(μ+ p). Note that if the decay rate μ is high, the conditional mean

arrival time is small because only fast trajectories will survive to state k.

Our simple stem-cell aging model assumes all divisions are asymmetric

at all ages. Nonetheless, this model serves as an illustrative example of

an application of a simple Markov process to cell biology. Indeed, since

aging only increases, our model can also be represented by a simple asym-

metric, decaying random walk of a single “particle” in one-dimension, with

the position of the particle representing the age of the single stem-cell in

the system at any given time. The more complicated approach we have

illustrated above allows our model to be generalized to include effects of

multiple initial stem-cells and symmetric stem-cell division, as well as a

more complete analysis of differentiated cell populations.

7. Summary

We have surveyed only a few mathematical and physical models wherein

first passage problems play a central role in the quantitative understand-

ing of biological observations and experiments. These applications span all

scales from molecular to cellular to populations. Most applications thus

far have been concerned with low dimensional models with few degrees

of freedom. As measurements improve and more complex systems can be

quantitatively studied, first passage time problems should become increas-

ingly important in higher dimensional settings where additional analytic

and numerical insights will be desired. Furthermore, first passage prob-

lems provide a new framework with which to fit experimental data, model

biological processes, and develop inverse problems of model determination.
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