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Abstract. Sign imbalance is a statistic on posets which counts the difference between the number

of even and odd linear extensions. We prove complexity results about the sign imbalance and parity
of linear extensions, focusing on the representative case of height 2 posets. We then consider a recent

conjecture of Chan and Pak [CP23].

1. Introduction

Let P be a poset on n elements, and fix some labeling of P with labels {1, . . . , n}. Then the sign
imbalance (defined in section 2.1) is a natural statistic counting the difference between the number of
odd and even linear extensions of P .

Sign imbalance was introduced by Ruskey in [Rus88] in the context of Gray codes. Define a graph
G(P ) with vertices corresponding to linear extensions of P and connect pairs of vertices which differ
by a transposition. Then it is an easy observation that if G(P ) has a Hamiltonian path, then the sign
imbalance of P must be at most 1. Furthermore, G(P ) is always connected (see §5.2). The converse
was conjectured by Ruskey in [Rus88]. It remains open. Only a small class of special cases have been
shown; see [Rus03, §5] for a reference or [Müt23, §5.5] for a more recent overview. Further information
can be found in [Sta05] or [Knu11]. Sign imbalance has also been applied to real algebraic geometry
[SS06] (see §5.2).

Few general results exist for computing the sign imbalance of arbitrary posets. If P is a poset where
every nonminimal element is greater than at least two other elements, then P is sign-balanced; switching
the labels 1 and 2 provides a bijection between odd and even permutations [Rus88]. Suppose that P is
a poset on n elements and that for every maximal chain C, the length of C is congruent to n modulo
2. Stanley observed in [Sta05] that the promotion operator provides a sign-reversing involution and so
P must be sign-balanced.

Ruskey conjectured that a product of chain posets Cm × Cn with m,n > 1 is sign-balanced if and
only if m ≡ n modulo 2 and showed the case where m,n are both even [Rus92]. This conjecture was
proven by White [Whi01], who gave a formula for the case m 6≡ n. Some other results for specific posets
exist (e.g. [Ber18]).

We note that sign imbalance naturally correspond to counting domino tableaux (see Lemma 3.1).
For posets arising from Young diagrams, these are the special case of rim hook tableaux where all rim
hooks have size 2 with labels that must be increasing along rows and columns.

One problem is to compute the sign imbalance of a poset:

Sign Imbalance
Input: A poset P .
Output: the sign imbalance si(P ).

Stachowiak gives a complexity result (cf. §5.3):

Theorem 1.1 (Theorem 1 of [Sta97a]). Sign Imbalance is #P-hard. This holds even if we consider
only posets with height 2.

The proof gives a parsimonious reduction from the sign imbalance of height 2 posets to counting
linear extnsions. This corresponds to one direction of Lemma 3.3. Since counting linear extensions
was shown to be #P-hard by Brightwell and Winkler [BW91], this shows that #Sign Imbalance is
#P-hard.
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By a theorem of Dittmer and Pak [DP20], counting linear extensions is still #P-hard even in the
restricted case of height 2 posets. We prove a complementary result: determining whether a height 2
poset has at least a given sign imbalance is decidable in polynomial time.

H2SB
Input: A poset P of height 2 and an integer k.
Decide: Is the sign imbalance of P at least k?

Theorem 1.2. H2SB is in P. In the specific case k = 1 we obtain that determining whether a height
2 poset is sign balanced is in P.

Note that the polynomial bound above implicitly depends on k.
Recently, Kravitz and Sah showed in [KS21] an upper bound of O(log a log log a) for the minimal

number of elements in a poset with a linear extensions. Lemma 3.3 then allows us to obtain the following
corollary:

Corollary 1.3. For every positive integer a, there exists a height 2 poset P with O(log a log log a)
elements such that si(P ) = a.

We contrast Corollary 1.3 with the following conjecture of Chan and Pak:

Conjecture 1.4 (Conjecture 5.17 in [CP23]). For every sufficiently large integer m there exists a height
2 poset P such that LE(P ) = m.

Note that without the “height 2” condition, Conjecture 1.4 would be trivial, as Cm−1 + C1 has m
linear extensions. Furthermore, since a height 2 poset on n elements must have at least (n/2)!2 linear
extensions, a positive resolution of Conjecture 1.4 would imply a logarithmic bound similar to that of
Conjecture 1.3 or [KS21].

We note that the number of linear extensions of height 2 posets is not equally distributed among
odd and even numbers. Let f(n) be the number of height 2 posets on n elements which have an odd
number of linear extensions.

Given a poset P = (X,≺), we define

re(P ) := #{i, j ∈ X : i ≺ j}
cr(P ) := #{i, j ∈ X : i covers j}

Equivalently, re(P ) is the number of edges in the comparability graph and cr(P ) is the number of edges
in the Hasse diagram of P . Also, for any positive integer k we let Ok be the set of posets on k elements
with an odd number of linear extensions.

Theorem 1.5. Then for every n ≥ 1 we have

f(2n + 1) = f(2n) =
∑

P∈On

2re(P )−cr(P )

and

2(n−1
2 ) < f(2n) < 2(n

2)

See §5.4 for an example when n = 3. Note that the bounds for f imply that nearly all posets of
height 2 have an even number of linear extensions. A similar result holds for all primes:

Theorem 1.6. Let q > 1 be an prime. Let fq(m) be the number of height 2 posets P on m vertices
such that q - e(P ). Then

fq(m) ≤ 2
q−1
4q m2+O(m)

For comparison, note that there are 2
1
4m

2+O(m) total height 2 posets on m vertices. In the case

q = 2, Theorems 1.5 and 1.6 agree on an asymptotic 2
1
8m

2+O(m).

2. Definitions and examples

We use the notation [n] := {1, 2, . . . , n}. Also, Cn and An will denote chain posets and antichain
on n elements, respectively. A lower order ideal of a poset P = (X,≺) is a subset Y ⊆ X such that
y ∈ Y, x ≺ y ⇒ x ∈ Y .
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2.1. Posets and linear extensions. We will assume familiarity with basic notions of posets (see e.g.
[Sta97b, §3] or surveys [BW00, Tro95]). Suppose P is a poset (X,≺), where X has n elements. Then a
linear extension of P is a bijection ` : X → [n] such that `(x1) < `(x2) whenever x1 ≺ x2. We describe
the linear extension as assigning the labels in [n] to the elements of P . We denote the number of linear
extensions of P by e(P ) and the set of linear extensions by LE(P ).

Fix an arbitrary bijection f : X 7→ n. Then every linear extension corresponds to either an odd or
an even permutation. We define the sign imbalance as

(2.1) si(P ) :=

∣∣∣∣∣∣
∑

`∈LE(P )

sgn(`)

∣∣∣∣∣∣
It is easy to show that si(P ) is independent of the choice of f . Thus we will suppress the dependence
on f . A poset P for which si(P ) = 0 is called sign-balanced. For example, the following poset has
e(P ) = 61 and si(P ) = 1:

We note that e(P ) ≡ si(P ) mod 2 for all posets P .
Furthemore, we denote by P ⊕Q the ordinal sum (linear sum) of the posets and by P +Q the disjoint

union (parallel sum). Also, a poset is disconnected if its Hasse diagram is disconnected.

2.2. Domino tableaux and quotients. Given a poset P = (X,≺) with n elements, a domino tableau
M is a set partition of X such that:

(1) Every part is a chain of length 2 except for possibly one chain of length 1,
(2) If there is a chain of length 1, then it is a maximal element,
(3) There exists an ordering X1, . . . , Xk of the parts of M such that for all 1 ≤ j ≤ k, the set

Xi ∪ · · · ∪Xj is a lower order ideal.

Condition (1) is equivalent to saying that M is a perfect matching in the Hasse diagram plus possibly
one extra vertex. We say that a linear extension ` of P is adapted to M when i and i + 1 are assigned
to same part of X for all odd i < n. (If n is odd, then the label n will be assigned to the singleton
vertex). Condition (3) implies that there is a linear extension f ∈ LE(P ) adapted to M . This can be
constructed by assigning 1 and 2 to X1, then 3 and 4 to X2, and so on. We denote by DT (P ) the set
of all domino tableaux of P

For example, consider the following pair of posets. The left poset has a highlighted domino tableau
with an adapted linear extension. The right poset does not admit a domino tableau even though the
Hasse diagram does have a perfect matching. Indeed, suppose we match a with d and b with e. We
cannot put (a, d) before (b, e) because b ≺ d. And we cannot put (b, e) before (a, d) because a ≺ e.

5 1 3

6 2 4

a b c

d e f

It is not hard to show that any two linear extensions adapted to the same domino tableau must have
the same sign. Therefore, we define the sign of a domino tableau to be the sign of the linear extensions
which are adapted to it.

Given a poset P with a domino tableau M , we can construct the quotient poset P/M as follows.
The vertices of P/M are the elements of M . The comparisons of P/M are generated by relations of
the form

X1 4 X2 in P/M ⇐⇒ x1 4 x2 in P for some x1 ∈ X1, x2 ∈ X2
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Condition (3) implies that this defines a valid poset structure for P/M . As an example, the left
poset in the diagram above has P/M isomorphic to C2 + C1.

3. Lemmas

The following lemma is based on a standard involution (see for instance [Rus92, Lem. 3], [Sta97a,
Thm. 1] , [Whi01, §5], and [Sta05, Corr. 4.2]).

Lemma 3.1. Let P be a poset. Then

(3.1) si(P ) =

∣∣∣∣∣∣
∑

M∈DT (P )

sgn(M) e(P/M)

∣∣∣∣∣∣
Proof. We construct an involution Φ on LE(P ) where P = (X,<). Suppose P has n vertices and
consider a linear extension ` of P . Define the set S to be the set of all odd integers i ∈ [n − 1] such
that ` assigns i and i + 1 to incomparable elements of P .

If S is the empty set, then we let Φ(`) = `. Otherwise, let j be the smallest element of S. Then
construct Φ(`) by switching the labels j and j + 1. By assumption, this is still a valid linear extension.
Moreover, it has opposite sign to `. Therefore the terms corresponding to ` and Φ(`) will cancel out in
the sum (2.1).

Here is an example of Φ. Since 3 is the smallest odd number not comparable to its successor, it gets
switched with 4.

4 1 3

5 2 6

3 1 4

5 2 6

⇐⇒

We are left only with fixed points of Φ. Suppose ` is a fixed point. Then ` is adapted to a unique
domino tableau M formed by partitioning X into {`−1(1), `−1(2)}, {`−1(3), `−1(4)}, · · · . This tableau
will by definition have sgn(M) = sgn(`). We can define a linear extension `′ on P/M by assigning the
label i to the subset containing 2i− 1. This is illustrated in the picture below.

5 1 3

6 2 4

1

3

2
−→

This constitutes a bijection between linear extensions of P which are adapted to M and LE(P/M).
Since every linear extension adapted to a domino tableau is also a fixed point of Φ, we obtain the
formula (3.1) �

We give an example of Lemma 3.1. Consider the poset P below. It has two perfect matchings
{Y1, Y2, Y3, Y4} and {Z1, Z2, Z3, Z4}, both of which are domino tableaux, illustrated in red and blue
below:
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Y1

Y2

Y3
Y4

Z1

Z2
Z3

Z4

The two quotient posets (let us call them Y and Z) are not isomorphic:

Y2

Y1

Y4

Y3

Z2

Z1 Z3

Z4

The red quotient Y has e(P/M) = 4, and the blue quotient Z has e(P/M) = 2. Since the two tableaux
have opposite signs, we get si(P ) = |4− 2| = 2.

If P has very few domino tableaux, then we can reduce the problem of finding the sign imbalance of
P to smaller posets:

Corollary 3.2. If P is a poset which does not admit a domino tableau, then P is sign-balanced. If P
is a poset with a unique domino tableau M , then si(P ) = e(P/M).

Our goal is to flip Lemma 3.1 by building a poset where we control e(P/M). To that end, we will
define an operation on posets.

Let P = (X,≺) be a poset. Call R good if it is a subset of X2 with the following properties:

(1) (x, x) ∈ R for all x ∈ X,
(2) (x, y) ∈ R for all x, y ∈ X such that y covers x in P ,
(3) If (x, y) ∈ R then x 4 y in P .

In other words, R consists of the diagonal of X, all covering relations of P , and some subset of the
non-covering relations of P . Then we define the poset A(P,R) as follows. The vertices consist of pairs
of the form (x, i) for x ∈ X, i ∈ {0, 1}. And our relations are given by

(x, i) ≺ (y, j) if i = 0, j = 1, and (x, y) ∈ R.

We claim that this allows us to control the sign imbalance of height 2 posets. We note that the
first part of this lemma was proved (in the case where R is maximal) by Stachowiak in [Sta97a], who
used it to show that counting the sign imbalance of a poset is #P-hard. See 5.4 for examples of this
construction.

Lemma 3.3 (Main lemma). Let P be a poset. Then for any good R defined as above, A(P,R) is a
poset with height 2 and

si(A(P,R)) = e(P ).

Conversely, suppose Q is a poset with height 2 that is not sign-balanced. Then if Q has even number of
vertices, there exists a poset P and a good set R such that

Q = A(P,R)

And if Q has an odd number of vertices, then there exists a poset P and a good set R such that

Q = A(P,R) + C1.



6 DAVID SOUKUP

Proof. For the first part, note that by construction the Hasse diagram of A(P,R) has only one perfect
matching, namely M =

{(
(x, 0), (x, 1)

)
: x ∈ X

}
. This is also a domino tableau. Since R contains all

the covering relations of P , we know A(P,R)/M = P . The result follows from Corollary 3.2.
For the other direction, suppose Q is a poset with height 2 which is not sign-balanced. By Corollary

3.2, Q must have at least one domino tableau M . Suppose that Q has an even number of vertices. We
claim that the Hasse diagram of Q must in fact have only one perfect matching.

Suppose for contradiction that it had another perfect matching N . Then M ∪ N must contain at
least one cycle of length > 2. As Q was assumed to have height 2, this cycle can only correspond to a
subposet of Q which is isomorphic to a crown poset. That is, we have elements x1, . . . , x2k in Q such
that

x1 ≺M x2 �N x3 ≺M x4 � · · · ≺M x2k �N x1

But this contradicts M being a domino tableau, since we now have a loop in Q/M . Therefore M
is the unique perfect matching. By construction, every pair of M has a bottom element and a top
element.

Now let P = Q/M , and define R ⊂M2 by

(M1,M2) ∈ R ⇐⇒ x ≺ y for some x ∈M1, y ∈M2.

It is easy to see that Q = A(P,R).
Suppose now that Q has an odd number of vertices. If Q has no isolated vertices, then without

loss of generality it has more minimal than maximal elements. But then Q cannot have a domino
tableau. So Q must be sign-balanced. (Note that flipping a poset vertically does not affect whether it
is sign-balanced). If it has two or more isolated vertices, it also cannot have a domino tableau. So for Q
to not be sign-balanced, it must have exactly one isolated vertex v. This vertex must be the singleton
in the domino tableau, which means Q− v is a height 2 poset which is not sign-balanced. Now we just
apply the previous case. �

4. Proofs

4.1. Proof of Theorem 1.5. First, suppose P is a height 2 poset with an odd number of linear
extensions and 2n + 1 vertices. Clearly P cannot be sign-balanced. Therefore Lemma 3.3 implies that
P consists of an isolated vertex and a subposet of 2n vertices which also has an odd number of linear
extensions. This implies that f(2n + 1) = f(2n). Therefore, we will assume that our posets have an
even number of vertices.

Consider the map A from Lemma 3.3. It is easy to see that A is injective. Take the chain poset Cn;

this clearly has an odd number of linear extensions. Then there are exactly 2(n−1
2 ) possible good sets

R. Thus the set

{A(Cn, R) : R good }
establishes our lower bound.

For the upper bound, consider the poset Πn with vertex set [n]× {0, 1} and relations

(a1, b1) ≺ (a2, b2) if a1 ≤ a2 and b1 < b2.

Let D be the set of subposets of Πn such that (a, 0) ≺ (a, 1) for all a ∈ [n]. It is clear that the image

of A is equal to D and that |D| = 2(n
2). Since any poset with an odd number of linear extensions is not

sign-balanced, the lower bound follows. (Note that some posets in the image of A have an even number
of linear extensions, so we do not have equality here). �

4.2. Proof of Theorem 1.6. Note that it suffices to consider the case where q is prime. We prove a
somewhat broader version of 3.3. The proof essentially follows that of 1.5.

Let P be a height 2 poset on m elements such that q - e(P ). Fix ` to be a linear extension of P .
Consider the subposets P1, P2, . . . , Pbm/qc defined by

P1 := the induced subposet on elements labeled 1, 2, . . . , q

P2 := the induced subposet on elements labeled q + 1, q + 2, . . . , 2q

· · ·
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Note that there may be up to q−1 elements which are not contained in a subposet. Call ` adapted if
none of these subposets are disconnected. (In the case q = 2, this means that ` is adapted to a domino
tableau in the sense of Lemma 3.3).

Lemma 4.1. If q - e(P ) then P has a linear extension which is adapted.

Proof. We show that the number of linear extensions which are not adapted is a multiple of q. The
following is an equivalence relation on linear extensions which are not adapted.

Given a linear extension ` which is not adapted, let i be minimal such that Pi is disconnected. Let
` ≡ `′ if ` and `′ are equal when restricted to P\Pi. It is easy to see that this is an equivalence relation,
and the size of an equivalence class is e(Pi).

Pi is disconnected and has q elements. Therefore there exist nonempty posets Q1, Q2 such that
Pi = Q1 + Q2. But since

e(Pi) =

(
q

|Q1|

)
e(Qi)e(Q2)

we have q | e(Pi). This follows because q is prime. That means that the set of linear extensions which
are not adapted has been partitioned into equivalence classes of sets each of which has size a multiple
of q. �

So we can fix an adapted linear extension ` and corresponding subposets P1, . . . , Pbm/qc. By con-
struction, the edges from Pi to Pj where i < j can only be between a bottom vertex of Pi and a top
vertex of Pj . The notion of bottom and top vertex are well-defined because Pi and Pj are connected.
Each subposet can have only at most q − 1 elements on the top or bottom.

A simple perturbation argument shows that the greatest number of external edges is possible when
the first half of the subposets are of the form Aq−1⊕A1 and the second half are of the form A1⊕Aq−1.
(For simplicity we will assume bm/qc is even; extending to the case where bm/qc is odd is trivial.) In
this case there are at most(

1

2

⌊
m

q

⌋)2

· (q − 1)2 +

(
1

2

⌊
m

q

⌋)2

· (q − 1) + O(m)

possible external edges. (The first term counts edges which go between the first and second halves, and
the second counts edges which remain within one half or the other).

Let cq be the number of connected height 2 posets with q elements. Then we can construct P as
follows: first, we pick each of the bm/qc subposets. Then we add external edges between the subposets;
the above discussion gives a bound on the number of ways to do this. Lastly, each of the m − bm/qc
remaining vertices can be greater than or incomparable to all the previous vertices. This gives an upper
bound of

cbm/qc
q · 2( 1

2bm
q c)2·(q)(q−1)+O(m) · 2(m−bm/qc) = 2

q−1
4q m2+O(m)

possible posets, as required. This completes the proof of Theorem 1.6. �

5. Final remarks and open problems

5.1. Completeness of the number of linear extensions of height 2 posets. Our results do not
contradict Conjecture 1.4, but can be used to construct numbers which are not the number of linear
extensions of any height 2 poset.

We begin by giving a loose bound on the possible odd numbers of linear extensions of a height 2
poset:

Proposition 5.1. Let P be a height 2 poset on 2n vertices with an odd number of linear extensions.
Then (

n!
)2 ≤ e(P ) ≤ n!(2n− 1)!!

Proof. By Lemma 3.3, any such poset must satisfy

n⋃
i=1

C2 ⊆ P ⊆ An ⊕An.

�



8 DAVID SOUKUP

Letting n = 9 we see that any height 2 poset on ≤ 18 elements for which e(P ) is odd has at most
9! · 17!! = 12504636144000 linear extensions. But letting n = 10 we see that any height 2 poset on 20
vertices for which e(P ) is odd has at least 10!2 = 13168189440000 linear extensions. Also by Lemma
3.3, any height 2 poset P on 19 elements has an isolated vertex, and so 19 | e(P ). Combining these
facts we obtain that there is no height 2 poset with 10!2 − 1 = 13168189439999 linear extensions. See
the footnote of §6.4 in [CP23].

5.2. Geometric definition of Ruskey’s conjecture. Given a poset P with elements labeled by [n],
the order polytope O(P ) is the subset of [0, 1]n given by

xi ≤ xj whenever i ≺ j in P

Its canonical triangulation is given by cutting O(P ) with the hyperplanes of the form xi = xj for i, j ∈
[n]. Note that each simplex corresponds to a linear extension of P . Since this is a triangulation obtained
by cutting with hyperplanes, it must be bipartite. [SS06] observed that the two parts correspond exactly
to the odd and ever permutations in the definition of sign imbalance, and so a poset is sign-balanced if
and only if both parts are the same size.

We note that this provides an immediate proof that the graph G(P ) is connected. Any two face-
adjacent simplicies in the canonical triangulation of O(P ) correspond to linear extensions which differ
by an adjacent transposition. Since triangulations must be face-connected, G(P ) is connected.

Soprunova and Sottile [SS06] considered toric varieties associated to order polytopes. In this case,
sign imbalance provides a lower bound for the number of real solutions of a Wronski polynomial system.

5.3. GapP and #P. It is easy to see that sign imbalance is the absolute difference between two #P
functions, one counting even linear extensions and the other counting odd linear extensions. However,
this does not imply (as claimed in [Sta97a]) that sign imbalance is in #P. The closure of #P under
subtraction is called GapP and was defined independently in [FFK94] and [Gup95] building on [OH93].
Therefore, the following conjecture remains open:

Conjecture 5.2. #Sign Imbalance is not in #P.

Many natural combinatorial differences are not in #P; see [IP22] for a survey.

5.4. An example of Theorem 1.5. Consider the case n = 3. There are two posets on 3 elements
with an odd number of linear extensions, namely C2 +C1 and C3. The former poset has re(C2 +C1) =
cr(C2 + C2) = 1, and the latter has re(C3) = 2 and cr(C3) = 1. So there are 21−1 + 22−1 = 3 height 2
posets on 6 elements with an odd number of linear extensions, namely:

These posets were obtained by applying the map A in Lemma 3.3. The left poset has P = C1 + C2,
and the other two have P = C3 for different choices of R. They have 75, 61, and 57 linear extensions
respectively.

5.5. Euler numbers and posets for which many primes do not divide e(P ). The Euler numbers
En [OEIS, A000111] count the number of linear extensions of a zizag poset Zn and have exponential
generating function secx+tanx. Using these, we can construct posets whose number of linear extensions
avoids divisibility by many primes. Theorem 1.6 shows that for all q the number of posets with q - e(P )
is small. Here we give an example of an infinite set of posets which satisfy many such conditions.

Proposition 5.3. Let Q be a finite set of primes. Then there exists an infinite sequence of posets
P1, P2, . . . , such that

e(Pi) ≡ 1 mod q for all q ∈ Q, i ≥ 1.

Proof. We show that for any prime q and integer n > q,

(5.1) En ≡ EqEn−(q−1) mod q
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Indeed, consider the set of ` ∈ LE(Zn) such that 1, 2, . . . , q are not in a contiguous block. For each
of these linear extensions, we can permute the labels 1, 2, . . . , q in some number of ways that is divisible
by q. (This is essentially the same as the proof of Lemma 4.1). So, mod q, we can ignore these. But
if 1, . . . , q are in a contiguous block, then we can collapse the entire block into a single element; this
leaves Zn−(q−1). This shows 5.1.

Since Eq ≡ ±1 mod q [OEIS, A000111] and E1 = 1 we need only pick n such that n ≡ 1 mod (q−1)
for all q ∈ Q. �

As a side note, we show that 3 - En for all n ≥ 1. Indeed, one can verify that 3 - En for all 1 ≤ n ≤ 3,
and by 5.1 the result follows. Similarly, computer calculations show that p - En for all n for

p = 3, 7, 11, 23, 83, 107, 163, 167, 179, 191, 199, 211, 227, 239, 367, 383, 443, 479, 487, 503, 599, . . .

It is not clear if there are infinitely many such primes.

5.6. Acknowledgments. I would like to thank my advisor Igor Pak for suggestions and guidance, as
well as Andrew Sack for helpful discussions.
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