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Abstract. We prove that congruences of the cogrowth sequence in a unitriangular group UT(m,Z)

are undecidable. This is in contrast with abelian groups, where the congruences of the cogrowth
sequence are decidable. As an application, we conclude that there is no algorithm to present the

cogrowth series as the diagonal of a rational function.

1. Introduction

On a fundamental level, the growth and cogrowth sequences are used to extract global properties of
finitely generated groups from a local information. Although many problems remain unresolved, the
asymptotic approach to both sequences has led to a number of spectacular advances (see below).

The algebraic approach to growth and cogrowth sequences is usually stated in terms of their gen-
erating functions (GF). Do they satisfy an algebraic equation? What about a differential-algebraic
equation? Given that both sequences are sensitive with respect to the change in the generating sets,
one might not think there is much to this problem, and yet there is a plethora of positive results and
some notable negative results in this direction (see below).

In this paper we present an arithmetic approach to the cogrowth sequences of nilpotent groups as
a means to obtain negative results for their algebraic properties. We first state the main results and
historical remarks. We postpone the applications until Section 3.

1.1. Main results. Let G be a fixed finitely generated group, and let S = S−1 be a symmetric
generating set 〈S〉 = G. Denote by

cogS(n) :=
∣∣{(s1, . . . , sn) ∈ Sn : s1 · · · sn = 1

}∣∣ .
the number of products of generators equal to one. The sequence {cogS(n)} is called the cogrowth
sequence. It can be viewed as the number of closed walks of length n in the Cayley graph Γ(G,S).
The unitriangular group UT(m,Z) is the (nilpotent) group of upper triangular matrices with 1’s on the
diagonal.

Theorem 1.1 (Main theorem). Let m, a ≥ 1 be integers, and let p be a prime. The following problem
is undecidable: Given symmetric generating sets S, T in UT(m,Z), determine whether

∀n ∈ N : cogS(n) ≡ cogT (n) mod pa .

Moreover, the result holds for m ≤ 9.6 · 1085, p = 2 and a = 40.

This is a rare undecidabe problem for the relatively tame class of nilpotent groups. The proof uses
a technical yet explicit embedding of general Diophantine equations into the cogrowth. Solvability of
Diophantine equations is famously undecidable by the negative solution of Hilbert’s 10th problem (the
Matiyasevich, Robinson, Davis and Putnam theorem), see e.g. [Mat1].

Our main theorem should be compared with the following result:

Theorem 1.2. Let a ≥ 1 be an integer, let p be a prime, and let G be a finitely generated abelian
group. The following problem is decidable: Given finite symmetric generating sets S, T in G, determine
whether

∀n ∈ N : cogS(n) ≡ cogT (n) mod pa .
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This result is derived from a remarkable theorem of Adamczewski and Bell [AB], which in turn
extends a series of results by Furstenberg [Fur], Deligne [Del], Denef and Lipshitz [DL], on diagonals
of rational functions modulo prime powers. Our own motivation for the main theorem comes from the
opposite direction, and can be stated as follows.

The cogrowth series for the group G = 〈S〉 is defined as

CogS(t) := 1 +

∞∑
n=1

cogS(n)tn .

Let

B(x1, . . . , xk) =
∑

(n1,...,nk)∈Nk
b(n1, . . . , nk)xn1

1 · · ·x
nk
1 ∈ Z[[x1, . . . , xk]]

be a multivariate generating function. The diagonal of B is defined as
∑
n≥0 b(n, . . . , n)tn.

Theorem 1.3. The following problem is not computable: Given a symmetric generating set S of the
unitriangular group UT(m,Z), write the cogrowth series CogS(t) as a diagonal of a rational function
P/Q, for some polynomials P,Q ∈ Z[x1, . . . , xk], k ≥ 1. Moreover, the result holds for m ≤ 9.6 · 1085.

In other words, either some cogrowth series are not diagonal, or all of them are diagonals, but the
proof of that result would be ineffective to make the diagonals uncomputable. Let us mention a quick
motivation for this problem (see more on this below).

Kontsevich’s question, for the case of nilpotent groups (see below), asks whether the cogrowth series
CogS(t) is always D-finite, i.e. a solution of an ODE with polynomial coefficients. Christol’s Conjec-
ture 3.1 (see below), reduces the problem to whether CogS(t) is always a diagonal of a rational function.
Until now, no progress has been made in this direction.

Remark 1.4. Let us place our theorem in context. It is possible and even likely, that already for
the Heisenberg group UT(3,Z) with four standard generators, the cogrowth series is not a diagonal
(and non-D-finite), see §6.3. It is also possible and even likely, that for all m ≥ 3 and all symmetric
generating sets S of UT(m,Z), the cogrowth series is not a diagonal. Theorem 1.3 gives no contradiction
with that.

Additionally, it is possible that for some S the cogrowth series is a diagonal. It is also possible that
for all S the cogrowth series is a diagonal. What Theorem 1.3 shows is that there is no constructive
proof that the cogrowth series it is always a diagonal.

1.2. Historical background. Here we give a very brief overview of the vast literature on the subject.

(1) The growth of groups goes back to the works of Schwarz (1955) and Milnor (1968), and is now a
staple of Geometric Group Theory [Har2]. Notably, all nonamenable groups have exponential growth,
but not vice versa. Gromov’s theorem proves that the growth is polynomial if and only if the group is
virtually nilpotent. We refer to [Har1, Ch. VI,VII] for an extensive introduction, and to [Mann] for a
detailed treatment.

In probabilistic context, the cogrowth was first introduced by Pólya [Pól], to study transience and
recurrence of random walks in Zd, via asymptotic estimates on the return probability cogS(n)/|S|n,
and later by Kesten [Kes] in connection with amenability. In Group Theory, the study of cogrowth
was initiated by Grigorchuk [Gri] and extended by Cohen [Coh] and others. We refer to [Woe] for a
comprehensive presentation of both group theoretic and probabilistic results.

(2) The generating function (GF) approach became popular after the Golod–Shafarevich theorem on
the growth of algebras [Ufn, §3.5]. In a remarkable development, the growth series (the GF for the
growth sequence) is shown to be rational for every generating set of many classes of groups, including
virtually abelian [Ben] and hyperbolic [Can].

For other classes of groups, growth series can be more complicated. Notably, there are wreath prod-
ucts of abelian groups for which growth series are algebraic but not rational [Par]. For the fundamental
group of PSL(2,R) which is a Z-extension of a hyperbolic group, the growth series is rational for one
generating set and non-algebraic for another [Sha]. It is known (see e.g. [GP3]) that the growth series
is non-algebraic (in fact, non-D-finite) for all groups of intermediate growth. See [GH, §4] for further
examples and many references.
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For nilpotent groups, the growth series is especially interesting. In a breakthrough paper [Sto], Stoll
gave an example of a higher Heisenberg group H2 ⊂ UT(4,Z) and two generating sets so that one
growth series is rational while another is non-algebraic. Curiously, for the (usual) Heisenberg group
H1 = UT(3,Z), the growth series is always rational [DS].

(3) After Pólya’s work, lattice walks on Zd have been intensely studied with various generating sets S
(called steps). The corresponding return probabilities are always diagonals of rational functions, but
this stops being true when geometric constraints are added. These walks continue to be intensely
studied in Enumerative and Asymptotic Combinatorics, see e.g. [Bou, Mis].

For free groups Fk, the cogrowth series are always algebraic. This was shown independently in
[Hai] in a combinatorics context, and in [Aom, FTS] in an probabilistic context. The cogrowth series
is algebraic for many free products of groups [BM, Kuk2], and D-finite for Baumslag–Solitar groups
BS(N,N) [ERRW].

In recent years, interest in the problem has come from Kontsevich’s question whether the cogrowth
series is always D-finite on linear groups, see [Sta2]. Note that by Tits alternative and the Milnor–
Wolf theorem, Kontsevich’s question is reduced to three cases: virtually nilpotent groups, virtually
solvable groups of exponential growth, and groups containing free group F2 as a subgroup. Our state
of knowledge is very different in these three cases.

For solvable groups the question was resolved in the negative in [GP3] by the following argument.
Let G be a solvable group of exponential growth and bounded Prüfer rank. It was proved by Pittet
and Saloff-Coste in [PS], that for every symmetric generating set S, the cogrowth satisfies

|S|ne−αn
1/3

≤ cogS(n) ≤ |S|ne−βn
1/3

.

The Birkhoff–Trjitzinsky theorem1 then implies that the cogrowth series not D-finite [GP3]. An easy
example of such group is Z n Z2 ⊂ SL(3,Z), see e.g. [Woe, §15.B]. In response to a solution in [GP3],
Katzarkov, Kontsevich and Stanley independently asked if the cogrowth series is always D-algebraic.2

This strengthening of Kontsevich’s question remains unresolved.
In fact, the bounded Prüfer rank assumption above is not necessary for the conclusion. Recently, Bell

and Mishna used an analytic argument [BM] to show that, for all amenable groups of superpolynomial
growth, the cogrowth series is non-D-finite, resolving the conjecture in [GP3] and completing this case
of Kontsevich’s question.

For nilpotent groups, the subject of this paper, the Bass–Guivarc’h formula computes the polynomial
degree d(G) of the growth sequence. Several notable probabilistic results can be combined to give the
following asymptotics

C1 |S|nn−d(G)/2 ≤ cogS(n) ≤ C2 |S|nn−d(G)/2,

see [Woe, §3.B,§15.B] and references therein. Now Jungen’s theorem [Jun], implies that for the cogrowth
series is not algebraic for even d(G). For odd d(G) ≥ 5, only a weaker result is known, the cogrowth
series is not R+-algebraic; this follows from [BD, Thm 3]. At this point the analytic arguments lose
their power as there are numerous examples of algebraic and D-finite GFs with the same asymptotics,
see e.g. [BD, FS].

(4) Hilbert’s 10th problem was resolved by Matiyasevich (1970) building on the earlier work by Davis,
Putnam and Robinson (1949-1969). Solvability of Diophantine equations over various rings is now
fundamental in both Logic and Number Theory, and applied throughout mathematical sciences, from
Group Theory to Integral Programming. We refer to [Mat1] for a thorough treatment, to [Poo1] for a
short note introduction to recent developments, and to [MF] for an introductory textbook.

(5) The study of classes of GFs was initially motivated by applications in Number Theory and Analysis,
but came to prominence in connection to Formal Languages Theory. The GF for the number of accepted
paths by a Finite State Automaton is always rational (see e.g. [Sta1, §4.7]), and algebraic for a Pushdown
Automaton (see references in [BD]).

The class of diagonals of rational functions coincides with the class of GFs for (balanced) binomial
sums, see [BLS, Gar]. This class received much attention after the work of Wilf and Zeilberger on

1There are gaps in the proof of this result and it remains an open problem in full generality, see a discussion in [FS,
§VIII.7] and [Odl, §9.2]. For integral sequences which grow at most exponentially, the gaps were filled in a series of paper,
see [GP3, §5.1].

2Personal communication, 2015.
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binomial identities [WZ, Zei], which made heavy use of the fact that they are D-finite (holonomic in
their terminology).

Finding an explicit presentation of a GF as a diagonal of a rational function is of great interest in
Computer Algebra due to its many applications, see e.g. [BLS, Mel]. These range from congruences of
combinatorial sequences, see [AB, RY], to asymptotic analysis, see [BMPS, MS]. We should note that
there can be more than one way a function can be presented as diagonal, see e.g. [RY]. On the other
hand, for many series finding its presentation as a diagonal is a challenging open problem, see §6.6. Our
Theorem 1.3 proving uncomputability of such presentation is the first negative result in this direction.

Proving that a series is not D-finite (not D-algebraic) is a major challenge, of interest both in
Enumerative Combinatorics [Pak] and Differential Algebra [ADH]. Outside of analytic arguments, an
Automata Theory approach was developed in [GP2], which proves non-D-finiteness for GFs of various
permutation classes. In the context of cogrowth series, [GP3] uses this approach to prove non-D-
finiteness in the (less interesting) case of non-symmetric generating sets of nonamenable groups.

(6) The undecidability approach to algebraic properties of cogrowth series appears to be new. It is
also surprising, since both the word, the conjugacy and even the isomorphism problems are decidable
for finite nilpotent groups [GS] (see also discussion in [Sap, §3.2]). On the other hand, the solvability
of a system of equations is undecidable for H1 = UT(3,Z) [DLS, GMO]; the proofs of this result are
similarly based on Hilbert’s 10th problem, cf. §6.3.

1.3. Paper structure. After a few notation in Section 2, we start with a technology of generating
functions in Section 3. There, we give quick proofs of Theorem 1.2 from the Adamczewski–Bell theorem
(Theorem 3.3), and of Theorem 1.3 from the Main Theorem 1.1. There, we also formulate Theorem 3.5
on a possible non-D-algebraic cogrowth series for UT(m,Z). We then prove Main Theorem 1.1 in a
lengthy Section 4. The proof of Theorem 3.5 is given in Section 5. We conclude with final remarks and
open problems in Section 6.

2. Notation

We use the convention that bold letters represent multi-indices, e.g. x = (x1, . . . , xk) ∈ Zk. We use
|x | := |x1|+ . . .+ |xk| to denote the `1 norm of x .

For vectors a , b ∈ Zk, denote

(2.1)

(
a

b

)
:=

(
a1
b1

)
· · ·
(
ak
bk

)
.

The unipotent group UT(m,Z) is the group of all m×m upper-triangular integer matrices with ones
on the diagonal: 

1 Z Z · · · Z Z
0 1 Z · · · Z Z
0 0 1 · · · Z Z
...

...
...

. . .
...

...
0 0 0 · · · 1 Z
0 0 0 · · · 0 1


Since we will be working with many families of indexed matrices, we will adopt the convention that

[A]ij refers to the (i, j)-th entry of matrix A. Let In be the n × n identity matrix, and Ei,j be the
matrix that is 1 in the (i, j)-th coordinate and 0 otherwise.

When working with matrices, we write XY to denote the product of matrices X and Y . We use
X ◦ Y to denote the word with matrices as letters. Lastly, we use ⊕ for the operation of making a
block-diagonal matrix out of smaller matrices:

X ⊕ Y :=

[
X 0
0 Y

]
.

We use X ⊕k Y to mean that Y is added k times: X ⊕ Y ⊕ · · · ⊕ Y . Finally, a word (s1 · · · sn) in the
generators si ∈ S, is called a cogrowth word, if the product s1 · · · sn = 1.
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3. Cogrowth series

3.1. Classes of generating functions. Let {an} be an integer sequence, and let

A(t) :=

∞∑
n=0

an t
n ∈ Z[[t]]

be the corresponding generating function (GF). We write an = [tn]A to denote the coefficient of the
GF. For a multivariate GF B ∈ Z[[x1, . . . , xk]], the diagonal of B is defined as

diagB :=

∞∑
n=0

([
xn1 · · ·xnk

]
B
)
tn ∈ Z[[t]] ,

the GF for diagonal coefficients of B.

For A ∈ Z[[t]], we define the following five main classes of GFs, see e.g. [Sta1, Ch. 6]:

Rational: A(t) = P (t)/Q(t), for some P, Q ∈ Z[t],

Algebraic: c0A
k + c1A

k−1 + . . . + ck = 0, for some k ∈ N, ci ∈ Z[t],

Diagonal: A(t) = diagP/Q, for some P, Q ∈ Z[x1, . . . , xk], k ≥ 1,

D-finite: c0A + c1A
′ + . . . + ckA

(k), for some k ∈ N, ci ∈ Z[t],

D-algebraic: Q
(
t, A,A, . . . , A(k)

)
= 0, for some k ∈ N, Q ∈ Z[t, x0, x1, . . . , xk].

It is well known and easy to see that

Rational ( Algebraic ( Diagonal ( D-finite ( D-algebraic

It is known that the cogrowth series CogS(t) ∈ Rational if and only if G is finite [Kuk1]. For
example, for G = Z and S = {±1}, we have:

CogS(t) =

∞∑
n=0

(
2n
n

)
t2n = diag

1

1− x− y
=

1√
1− 4t2

∈ Algebraic .

For G = Z2 and S = {(±1, 0), (0,±1)}, the cogrowth series CogS(t) =
∑
n≥0

(
2n
n

)2
t2n is diagonal

but not algebraic.3 Diagonal GFs have coefficients which grow at most exponentially, so
∑
n≥0 n!tn is

D-finite but not a diagonal. Christol’s Conjecture claims that this is the only restriction:

Conjecture 3.1 (Christol [Chr1]). Let A(t) =
∑
n≥0 ant

n ∈ Z[[t]]. Let |an| < cn for all n ∈ N and
some c > 0, and let A ∈ D-finite. Then A ∈ Diagonal.

Note that Euler’s partition function

P (t) := 1 +

∞∑
n=1

p(n)tn =

∞∏
i=1

1

1− ti
∈ D-algebraic,

see [MC] and an explicit form ADE in [Pak, §2.5]. Since p(n) = eO(
√
n), it follows that P (t) /∈ D-finite.

In particular, Christol’s Conjecture does not extend to D-algebraic GFs.

3.2. Proofs of Theorems 1.2 and 1.3. We start with the following two results.

Theorem 3.2 (Kuksov [Kuk2, §5.1]). Let G be a finitely generated abelian group with a finite symmetric
generating set S. Then the cogrowth series CogS(t) ∈ Diagonal.

For G = Zd, this result is folklore, see e.g. [Mis, §3.1.4]. Note that Kuksov’s formulation is different,
but equivalent to ours.

Theorem 3.3 (Adamczewski–Bell [AB, Thm. 9.1(i)]). Let C(t) =
∑
n≥0 cnt

n ∈ Diagonal, let p be a
prime, and let a ≥ 1, b ≥ 0 be integers. The following problem is decidable:

∃n ∈ N : cn ≡ b mod pa.

3This was observed by Furstenberg [Fur] via Schneider’s theorem on transcendental numbers. As noted in [Mel,

p. 137], this is also immediate from
(2n
n

)2 ∼ 1
πn

16n. Jungen’s theorem can be used to show that the cogrowth series is

non-algebraic for all generating sets of Z2.
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Theorems 1.2 and 1.3 now follows easily by a combination of these results and the Main Theorem 1.1.

Proof of Theorem 1.2. Note that the proof of Theorem 3.2 in [Kuk2, §5.1] is completely constructive,
giving CogS = diagP1/Q1 and CogT = diagP2/Q2 for some explicit P1, P2, Q1, Q2 ∈ Z[x1, . . . , x2]. Let
C(t) =

∑
n≥0 cnt

n := diag
(
P1/Q1 − P2/Q2

)
. Apply Theorem 3.3 to C(t) with all possible 1 ≤ b < pa,

to check if there is a solution for b 6≡ 0 mod pa. If not, then we have cn ≡ 0 mod pa for all n ∈ N, as
desired. �

Proof of Theorem 1.3. Let p = 2, a = 40, and let G = UT(m,Z) be as in Theorem 1.1. Suppose every
cogrowth series CogS(t) is a diagonal of polynomials which are computable (given S). Then the same
holds for the difference: CogS(t)−CogT (t) = diagP/Q, for every two symmetric generating sets S and
T of G, and some computable multivariate polynomials P,Q. By Theorem 3.3, the congruence

∀n ∈ N : cogS(n) ≡ cogT (n) mod 240

is decidable, a contradiction with Theorem 1.1. �

3.3. Non-D-algebraic cogrowth series. Ideally, one would want to give a construction of a non-
D-algebraic cogrowth series of a unitriangular group. As an application of our tools we give such a
construction assuming there is a Diophantine equation with certain properties.

Denote x = (x1, . . . , xk), and let f ∈ Z[x1, . . . , xk]. Consider a Diophantine equation f(x ) = 0.
Denote by R(f) := {x ∈ Zk : f(x ) = 0} be the set of roots.

We say that f is sparse if all roots x ∈ R(f) have distinct `1 norm: |x | 6= |y | for all x ,y ∈ R(f).
In this case we can assume that the roots of f are ordered according to the norm: R(f) = {r1, r2, . . .},
where |r1| < |r2| < . . . For a sparse f , we use ρi := |r i|.

Finally, for z ∈ Z, let bin(z) denote the number of 1’s in the binary expansion of |z|.

Conjecture 3.4. There exists k ∈ N and a sparse f ∈ Z[x1, . . . , xk] which satisfies:

(1) ρi is even for all i ≥ 1,
(2) ρi+1/ρi →∞ as i→∞,
(3) for every integers a, b ≥ 1, there exists i ≥ 1, s.t. ρi ≡ a mod 2b,
(4) for every integers a, b, h ≥ 1, there exists some N = N(a, b, h) ≥ 1, s.t. for all i > N we have:

min
{
y : bin(cρi − y) ≤ a

}
≥ bρi−1 for all 1 ≤ c ≤ h.

Theorem 3.5. Suppose Conjecture 3.4 holds. Then there exists an integer m ≥ 1 and a symmetric
generating set S of UT(m,Z), s.t. the cogrowth series CogS(t) is not D-algebraic.

We prove Theorem 3.5 in Section 5. The proof is based on the following result of independent
interest. It also explains the nature of assumptions in the conjecture.

Lemma 3.6. Let {λn} ∈ N∞ be an integer sequence s.t. λ0 = 1. Suppose there exists an increasing
integer sequence {n1 < n2 < . . .} with the following properties:

(1) λni is odd for every i ∈ N,
(2) ni+1/ni →∞ as i→∞,
(3) for every integers a, b ≥ 1, there exists i ≥ 1, s.t. ni ≡ a mod 2b,
(4) for every C,D ≥ 1, there exists N = N(C,D) > 0, s.t. for every i1, . . . , iD > N , if

ni1 + · · ·+ niD − C ≤ b1 + · · ·+ bD ≤ ni1 + · · ·+ niD

for some nonnegative integers b1, . . . , bD, then either:
◦ λbj is even for at least one j.
◦ {b1, . . . , bD} and {n1, . . . , nD} are equal up to rearrangement.

Then the sequence {λn} is not D-algebraic.
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For example, the sequence {ni = i! + i} satisfies properties (2) and (3) above. Therefore, every
integer sequence {λn}, where all λn are odd if and only if n = i! + i for some i, is not D-algebraic.

More generally, every integer sequence {λn}, where λn is odd whenever n = i! + i, and even when
n is not between i! + i and i! + 2i for some i, is also not D-algebraic. This is because we can take
ni := i! + i and property (4) will still hold.

Remark 3.7. If the sequence {n1, n2, . . . } covers every index where an is odd, then condition (4)

follows from condition (3). This is because we could let N be large enough such that ni > Dni−1 �for
all i > N . This case was previously considered by Garrabrant and the first author.4

4. Proof of Theorem 1.1

The key idea in this proof will be to encode the existence of roots of an arbitrary Diophantine
equation f into statements about cogrowth in UT(m,Z). We proceed as follows. In Lemma 4.1 we
show that words of a particular structure can compute the value of f at integers. Then, in Lemmas 4.3
and 4.4 we extend our matrices so that this computation is true for a broader class of words.

Next, Lemmas 4.8 and 4.12 allows us to turn the question of Theorem 1.1 into a statement about
the existence of integer roots of an arbitrary Diophantine equation. An explicit solution of Hilbert’s
10th problem completes the proof.

4.1. Polynomials via matrix products. We start with the following key lemma.

Lemma 4.1. Let f ∈ Z[x1, . . . , xk] and let D := deg f . Then there exists matrices P,Q,A1, . . . , Ak ∈
UT(m,Z) for some m ≤ (D + 1)

(
D+k
k

)
+ 2, such that

PAQA−1P−1AQ−1A−1 = Im + f(x1, . . . , xk)E1m

for all

A = Ax1
1 A

x2
2 · · ·A

xk
k and (x1, . . . , xk) ∈ Nk.

Proof. Denote x = (x1, . . . , xk) and recall the multi-index notation (2.1). Write f(x ) in the binomial
basis {

(
x
d

)
: d ∈ Nk} as follows:

(4.1) f(x ) =
∑
|d |≤D

bd

(
x
d

)
for some bd ∈ Z, d ∈ Nk.

Let p, q ≥ 1. Denote by Jq the q × q Jordan block with 1’s on and above the diagonal. We have:

(4.2) Jq =



1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1


and

(
Jq
)p

=



1
(
p
1

) (
p
2

)
· · ·

(
p
q−2

) (
p
q−1

)
0 1

(
p
1

)
· · ·

(
p
q−3

) (
p
q−2

)
0 0 1 · · ·

(
p
q−3

) (
p
q−4

)
...

...
...

. . .
...

...
0 0 0 · · · 1

(
p
1

)
0 0 0 · · · 0 1


.

Now, for each d = (d1, . . . , dk) in the sum in (4.1), define matrices Bd ,i ∈ UT(|d |+ 1,Z) as follows:

(4.3)


Bd ,1 := Jd1+1 ⊕ Id2+ ...+dk

Bd ,2 := Id1 ⊕ Jd2+1 ⊕ Id3+ ...+dk

...

Bd ,k := Id1+ ...+dk−1
⊕ Jdk+1

4Scott Garrabrant and Igor Pak, unpublished notes (2015).
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For example, if d = (2, 3, 0, 1) then

Bd,1 =



1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


Bd,2 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



Bd,3 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


Bd,4 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1


Note that each of the Bd ,i contains one nontrivial Jordan block, highlighted in red above. In the case

where di = 0, the Jordan block has size one. The block is located between indices (d1 + . . .+ di−1 + 1)
and (d1 + . . . + di + 1). That means that the nontrivial block overlaps the nontrivial blocks of Bd ,i−1
and Bd ,i+1 in exactly one place.

Let Bd = Bx1

d ,1 · · ·B
xk
d ,k. Then the top-right entry of B is given by

(4.4)
[
Bd

]
1,|d |+1

=
∑

(j1, ... , jk+1) : j1=1, jk+1=|d |+1

[
Bx1

d ,1

]
j1,j2

[
Bx2

d ,2

]
j2,j3

· · ·
[
Bxkd ,k

]
jk,jk+1

.

We investigate which of the terms in the sum (4.4) survive. Since all the Bd ,i are upper triangular
we can only have a nonzero term if j1 ≤ j2 ≤ · · · ≤ jk+1. By the block structure of the Bd ,i, the only
way to have a nonzero term where ji < ji+1 is if ji and ji+1 satisfy

d1 + . . . + di−1 + 1 ≤ ji < ji+1 ≤ d1 + . . . + di + 1 .

Therefore, there is only one nonzero term in the sum (4.4), given by ji = d1 + . . . + di−1 + 1, for
all i. This term is the product of the top-right entries of all the nontrivial Jordan blocks in Bd ,1 to
Bd ,k. By (4.2), this gives

(4.5) [Bd ]1,|d |+1 =
[
Jx1

d1+1

]
1,d1+1

· · ·
[
Jxkdk+1

]
1,dk+1

=
(

x1

d1+1−1
)
· · ·
(

xk
dk+1−1

)
=
(

x
d

)
.

Now we need to arrange these parts to create f . For each i, define

Ai := I1 ⊕

[ ⊕
|d |≤D

Bd ,i

]
⊕ I1 .

Let m be the size of Ai . For each |d | ≤ D, let (αd , βd ) be the coordinates of the top-right entry of the
block in Ai coming from Bd ,i. Then we can define

P := Im +
∑
|d |≤D

E1,αd
and Q := Im +

∑
|d |≤D

bdEβd ,m ,

where the bd are the coefficients defined in (4.1). The top-right corner of PAQ is

[PAQ]1,m =
∑

1≤j1,j2≤m

[P ]1j1 [A]j1j2 [Q]j2m =
∑

d1,d2

[A]αd1
βd2

bd2
.

But since the Ai’s were defined as block matrices, the only way for [A]αd1
,βd2

to be nonzero is if

d1 = d2. Thus, using (4.5) this becomes

(4.6) [PAQ]1,m =
∑

d

[A]αd ,βd
bd =

∑
d

[Bd ]1,|d |+1 bd =
∑

d

bd

(
x

d

)
= f(x ) .

Now that we have a f(x ) in the top-right corner, we need to make all the entries between this corner
and the diagonal zero. Let M = PAQA−1. Then we investigate its entries [M ]ij . Recall that

[M ]ij =
∑

i≤m1≤m2≤m3≤j

[P ]i,m1
[A]m1,m2

[Q]m2,m3
[A−1]m3,j
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and that the only above-diagonal nonzero entries of P are on the top row, of Q are in the right column,
and of A are in neither the top row or right column.

We have the following cases:

◦ If i = j, then [M ]i,j = 1 because M ∈ UT(m,Z).
◦ If i > j, then [M ]i,j = 0, analogously.
◦ If 1 < i < j < m, then we are above the diagonal of but not along the top or right edge of

the matrix. Here the only terms in (4.1), such that [P ]i,m1
6= 0 will be those where m1 = i.

Likewise we must have m2 = m3, since m3 < m. Thus, we can ignore P and Q in the product,
and conclude [M ]ij = [AA−1]ij = 0.

◦ If 1 = i < j < m, then we are on the top row of the matrix but not in the corner. Again we
can ignore Q because m3 < m. So [M ]i,j = [PAA−1]ij = [P ]ij .

◦ If 1 = i < j = m, then we are in the top-right corner of the matrix. Here A−1 cannot contribute
to the sum, since [A−1]m3,m is nonzero only when m3 = m. Thus, [M ]1,m = [PAQ]1,m = f(x )
by (4.6).

To summarize, M is of the form

(4.7) M =



1 [P ]1,2 [P ]1,3 [P ]1,4 · · · [P ]1,m−1 f(x )
0 1 0 0 · · · 0 ξ1(x )
0 0 1 0 · · · 0 ξ2(x )
0 0 0 1 · · · 0 ξ3(x )
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1


where the ξi(x ) denote some polynomials.

Note that P is nonzero only in the first row and zero in the top-right corner. Thus, the same holds
for P−1. Therefore, we can right-multiply (4.7) by P−1 to get

(4.8) MP−1 =



1 0 0 0 · · · f(x )
0 1 0 0 · · · ξ1(x )
0 0 1 0 · · · ξ2(x )
0 0 0 1 · · · ξ3(x )
...

...
...

...
. . .

...
0 0 0 0 · · · 1


.

Similarly, P−1M must be equal to M except possibly in the first row. But P−1M = AQA−1 is the
product of three matrices whose first rows are trivial. Thus, P−1M must also be trivial in the first
row. We conclude:

(4.9) P−1M =



1 0 0 0 · · · 0
0 1 0 0 · · · ξ1(x )
0 0 1 0 · · · ξ2(x )
0 0 0 1 · · · ξ3(x )
...

...
...

...
. . .

...
0 0 0 0 · · · 1


.

Combining (4.8) and (4.9), we get

PAQA−1P−1AQ−1A−1 =
(
PAQA−1P−1

) (
AQ−1A−1

)−1
= MP−1

(
P−1M

)−1
= Im + f(x ),

as desired.
We now consider the size of m. There are exactly

(
D+k
k

)
possible multi-indices d with |d | ≤ D.

Each of these contributes at most (D + 1) to the size of Ai , and we get an additional 1 from each I1.

This gives m ≤ (D + 1)
(
D+k
k

)
+ 2. �

Corollary 4.2. A word of the form

PW1QW2P
−1W3Q

−1W4 where W1 = W−12 = W3 = W−14 = Ax1
1 · · ·A

xk
k

is a cogrowth word if and only if x = (x1, . . . , xk) is a root of f .
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4.2. Larger families of words. We now have the tools to evaluate Diophantine equations, but in order
to be able to eliminate extraneous words, we will need to extend the matrices defined in Lemma 4.1
to new matrices. Therefore the next lemmas will reduce the problem to Corollary 4.2. Note that we
will continue referring to the new matrices as Ai, P , and Q in order to connect their roles to those in
Lemma 4.1.

First, we extend our matrices so that the four words W1, W2, W3, W4 do in fact need to be inverses
as in the statement of Lemma 4.1.

Lemma 4.3. Suppose f ∈ Z[x1, . . . , xk] has degree D := deg f . Then there exists matrices P,Q,

A1, . . . , Ak ∈ UT(m,Z) for some m ≤ 4(D + 1)
(
D+k
k

)
+ 8, such that the conclusion of Corollary 4.2

holds, and such that every word of the form

PW1QW2P
−1W3Q

−1W4 where Wi ∈ 〈A±11 , . . . , A±kk 〉
is a cogrowth word only if W1 = W−12 = W3 = W−14 .

Proof. Let P ′, Q′, A′1, . . . , A
′
k be the matrices produced by Lemma 4.1. Define

P :=


P ′ 0 0 0
0 Im 0 Im
0 0 Im 0
0 0 0 Im

 , Q :=


Q′ 0 0 0
0 Im 0 0
0 0 Im Im
0 0 0 Im

 , Ai :=


A′i 0 0 0
0 Im 0 0
0 0 Im 0
0 0 0 A′i

 .

If W1 = A±1i1 · · ·A
±1
is

, then define

W ′1 := (A′i1)±1 · · · (A′is)
±1

and analogously for W ′2,W
′
3,W

′
4. A computation then shows

PW1QW2P
−1W3Q

−1W4 =


V 0 0 0
0 Im 0 W ′3W

′
4(Im −W ′2W ′1)

0 0 Im W ′4(Im −W ′2W ′3)
0 0 0 W ′1W

′
2W
′
3W
′
4


where V = P ′W ′1Q

′W ′2(P ′)−1W ′3(Q′)−1W ′4. The construction in Lemma 4.1 shows that Corollary 4.2
holds.

Moreover, for this matrix to be the identity, we must have

W ′3W
′
4(Im −W ′2W ′1) = W ′4(Im −W ′2W ′3) = 0 and W ′1W

′
2W
′
3W
′
4 = Im ,

which implies W ′1 = (W ′2)−1 = W ′3 = (W ′4)−1. This gives W1 = W−12 = W3 = W−14 as required. �

We now know that the Wi need to evaluate to the same matrix, but Lemma 4.1 is only able to speak
about subwords. So we must extend our matrices again, this time so that the only possible cogrowth
words are equivalent to subwords.

We do this by noticing that if we flip the Jordan block construction from Lemma 4.1 so the blocks
go from bottom-right to top-left instead, then instead of evaluating monomials the above-Jordan-block
terms will be zero. That allows us to prove the following:

Lemma 4.4. Let f ∈ Z[x1, . . . , xk] with D = deg f ≥ 2. Then there exists matrices P,Q,A1, . . . , Ak ∈
UT(m,Z) for some

m ≤ 4(D + 1)
(
D+k
k

)
+ 8 + 1

2

(
D+k
k

)
(D + 1)3 ,

such that the conclusion of Corollary 4.2 holds, and such that every word of the form

(4.10) PW1QW2P
−1W3Q

−1W4

where Wi ∈ 〈A±11 , . . . , A±kk 〉, is a cogrowth word only if W1 = W−12 = W3 = W−14 = Ax1
1 · · ·A

xk
k for

some integers x1, . . . , xk.

Proof. Let P ′, Q′, A′1, . . . , A
′
k be the matrices produced by Lemma 4.1. We consider the structure of

matrices in 〈(A′1)±1, . . . , (A′k)±〉 more deeply. Each consists of a collection of blocks defined as Bd ,i in
(4.4). Fix any particular Bd . By construction, it is of size |d |+ 1.

For any matrix X ∈ UT(L,Z), let ϕ(X) be the matrix obtained by reflecting X along the main
antidiagonal. Then Φ : X 7→ ϕ(X)−1 is an automorphism of UT(L,Z). Now, Bd ,1, . . . , Bd ,k have their
nontrivial blocks arranged from top left to bottom right; so Φ(Bd ,1), . . . ,Φ(Bd ,k) have their nontrivial
blocks arranged from bottom right to top left.
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For example, if

Bd ,1 =


1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 Bd ,2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1


then

Φ(Bd ,1) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 −1 1
0 0 0 0 1 −1
0 0 0 0 0 1

 Φ(Bd ,2) =


1 −1 1 −1 0 0
0 1 −1 1 0 0
0 0 1 −1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Sublemma 4.5. A matrix W ∈ 〈B±1d,1, . . . , B

±1
d,k〉 is equal to Bx1

d,1 · · ·B
xk
d,k for some integers x1, . . . , xk

if and only if Φ(W ) is zero outside of the nontrivial Jordan blocks of Φ(Bd,1), . . . ,Φ(Bd,k).

Proof. The forward direction is immediate: because the nontrivial Jordan blocks of the Φ(Bd ,i) are in
bottom right to top left order, the matrix

Φ
(
Bx1

d ,1 · · ·B
xk
d ,k

)
= Φ(Bd ,1)x1 · · · Φ(Bd ,k)xk

will not have any nonzero entries outside the nontrivial Jordan blocks of the matrices Φ(Bd ,i).
Conversely, suppose Φ(W ) is zero outside of the nontrivial Jordan blocks of Φ(Bd ,i). Since W is in

the subgroup generated by the Bd ,i, we can write

(4.11) W = Bε1d ,j1
· · ·Bεmd ,jm

for some integer m, indices 1 ≤ jm ≤ k, and exponents εm = ±1. Let y1, . . . , yk be the net number of
Bd ,1, . . . , Bd ,k in expression (4.11). In other words, we have:

yi =
∑

s : js=i

εs .

By assumption, Φ(W ) agrees with Φ(Bd ,1)y1 · · ·Φ(Bd ,k)yk outside of the nontrivial Jordan blocks. Fix
some index α, β within the nontrivial Jordan block of Bd ,γ . Then (4.11) implies that

Φ(W ) = Φ(Bd ,j1)ε1 · · · Φ(Bd ,jm)εm .

Note that the only terms that can contribute to the α, β index are those where js = γ. This means

[Φ(W )]α,β = [Φ(Bd ,γ)yγ ]α,β = [Φ(Bd ,1)y1 · · ·Φ(Bd ,k)yk ]α,β

Since this holds for any α, β we get

Φ(W ) = Φ(Bd ,1)y1 · · ·Φ(Bd ,k)yk = Φ(By1d ,1 · · ·B
yk
d ,k) .

The result follows since Φ is a bijection. �

The next sublemma will allow us to force particular entries in Φ(W ) to be zero.

Sublemma 4.6. Let V ∈ UT(q,Z) and let 1 < a ≤ b < q. Then(
Iq + E1,a

)
V
(
Iq + Eb,L

)
V −1

(
Iq + E1,a

)−1
V
(
Iq + Eb,q

)−1
V −1 = Iq + [V ]a,bE1,q .

Proof. The left-hand side is equal to

(Iq + E1,a)V (Iq + Eb,q)V
−1(Iq − E1,a)V (Iq − Eb,q)V −1

Expanding this and using the fact that V and V −1 are upper triangular gives Iq +E1,aV Eb,qV
−1. This

equals the right-hand side. �
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To finish the proof of Lemma 4.3, we construct our matrices as follows. Let P ′′, Q′′, A′′1 , . . . , A
′′
k be

the matrices obtained in Lemma 4.3. For every Bd in the construction of A′i, and every (α, β) above
the nontrivial Jordan blocks of Φ(Bd ,i), let

P := P ′′ ⊕
(
I|d |+3 + E1,α+1

)
Q := Q′′ ⊕

(
I|d |+3 + Eβ+1,|d |+3

)
Ai := A′′i ⊕ I1 ⊕ Φ(Bd ,i)⊕ I1

for all 1 ≤ i ≤ k. There are at most
(
D+k
k

)
of the Bd ’s, and for each of them we append at most

1
2 (D + 1)2 new matrices of size at most D + 1. Therefore these new matrices have size

m ≤ 4(D + 1)

(
D + k

k

)
+ 8 +

1

2

(
D + k

k

)
(D + 1)3,

as desired.
Suppose a word of the form (4.10) is cogrowth. Then by Lemma 4.3 we have W1 = W−12 = W3 =

W−14 . Therefore, by construction and Sublemma 4.6 all of the entries of Φ(W1) outside of the nontrivial
Jordan blocks are zero. Then, Sublemma 4.5 implies that W1 = Ay11 · · ·A

yk
k for the yi defined in

Sublemma 4.5. This completes the proof of Lemma 4.3. �

Corollary 4.7. For a fixed root x = (x1, . . . , xk) of f , the word

V = Ax1
1 ◦ · · · ◦A

xk
k

is the unique shortest word that evaluates to Ax1
1 · · ·A

xk
k .

Proof. We only need to prove the case k ≥ 2. Suppose to the contrary, there is some other word V ′

which also evaluates to Ax1
1 · · ·A

xk
k . Since the net number of Ai’s in V ′ needs to be xi, it must be that

V ′ is some nontrivial permutation of V .
This means there exists some j1 < j2 , such that an A±1j2 appears before an A±1j1 in the word Wi. But

then the above-diagonal entry in the block corresponding to
(
j1
1

)(
j2
1

)
will be nonzero, so this cannot be

a cogrowth word. �

4.3. The construction. We are now ready to construct our generating sets S and T as in Theorem 1.1.
For a fixed polynomial f ∈ Z[x], let P ′, Q′, A′1, . . . , A′k ∈ UT(m,Z) be the matrices given by
Lemma 4.4. Construct new matrices Ai := A′i ⊕ I3, for 1 ≤ i ≤ k, and let

P := P ′ ⊕

1 1 0
0 1 0
0 0 1

 , Q := Q′ ⊕

1 0 0
0 1 1
0 0 1

 , R := Im ⊕

1 0 −1
0 1 0
0 0 1

 .
Denote by Em = {Im ± Ei,i+1 : 1 ≤ i < m} the standard generating set of UT(m,Z). Fix be a

positive integer u to be determined later. Let

(4.12)
S := {A±11 , A±12 , . . . , A±1k } ∪ u ·

{
P±1, Q±1

}
∪ u10 · Em+3 , and

T := S ∪ u5 ·
{
R±1

}
,

where by n ·X we denote n copies of the set X.
Our next lemma will exploit the modular condition in Theorem 1.1 to eliminate any word that does

not fit the pattern of Lemma 4.4.

Lemma 4.8. Let f ∈ Z[x1, . . . , xk], and define S and T as in (4.12). Let cn be the number of cogrowth
words of length n of the form

PV1QV2P
−1V3Q

−1V4 , where Vi are words in 〈A±11 , . . . , A±kk 〉.

Then:

cogT (n) − cogS(n) ≡ 2n(n− 1)cn−1u
9 mod u10.
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Proof. First, note that we can ignore all words that contain any of the standard generators. By con-
struction, such words will appear a multiple of u10 times.

Second, note that the left-hand side counts the number of cogrowth words that are in 〈T 〉 but not
in 〈S〉. This corresponds to words with at least one R±1. However, words with two or more R±1 will
be eliminated by the modulo condition.

Next, there is a bijection between words containing one R and those containing one R−1 given by
reversing the order of the word and inverting all the elements. So let us look only at words that contain
just an R. This gives a factor of 2 on the right hand side.

In order to cancel out the −1 in R we can only use copies of P±1 and Q±1. But every word with
an R and at least five of these will also be eliminated since the total weight would be divisible by u10.
So the only possible words that remain have some cyclic permutation of PQP−1Q−1, which gives the
factor of u9.

Because any cyclic permutation of a cogrowth word is still cogrowth, we can take the unique word
that starts with P . This gives a factor of n on the right hand side.

Finally, note that R commutes with P,Q, and all the Ai. Since our word has exactly one R, we can
just ignore it in counting words by looking at words of length (n− 1). This gives us one more factor of
(n− 1) on the right-hand side. The result counts exactly cn−1. �

The following two corollaries relate this lemma to whether or not the polynomial f has integer roots.

Corollary 4.9. Let f ∈ Z[x1, . . . , xk] be a polynomial with no integer roots, Then

cogT (n) − cogS(n) ≡ 0 mod u10.

In a different direction, we have:

Corollary 4.10. Let f ∈ Z[x1, . . . , xk] be a polynomial with an integer root x ∈ Zk. Suppose that |x|
is even, and |x| is minimal among all integer roots of f . Let u = 16 and let S, T be defined by (4.12).
Then:

cogT (4|x|+ 5) − cogS(4|x|+ 5) 6≡ 0 mod u10.

Proof. By Lemma 4.8, we have:

cogT
(
4 |x |+ 5

)
− cogS

(
4 |x |+ 5

)
≡ 2

(
4 |x |+ 5

)(
4 |x |+ 4

)
c4 |x |+4169 mod 1610.

Since |x | is minimal, the only way to have a cogrowth word in c4|x |+4 is to let Vi = Ax1
1 ◦ · · · ◦ A

xk
k by

Lemma 4.4 and Corollary 4.7. So c4|x |+4 = 1. Because |x | is even, the right hand side has only at most

1 + 0 + 2 + 36 = 39 factors of 2. That means that it not not zero modulo 1610, as desired. �

Remark 4.11. Unfortunately, not every polynomial has a root satisfying the conditions of Corol-
lary 4.10. For example, the polynomial f(x1, x2) = x21 − 13x22 − 1 has four solutions with minimal
`1-norm, namely (±649,±180). This would imply that c3317 = 4, introducing an extra factor of 2 to
the right-hand side and making the two sides congruent.

To avoid the issue in the remark above, we introduce an auxiliary variable which will separate out
the `1 norms of all integer roots.

Lemma 4.12. There exists a map Φ : Z[x1, . . . , xk] → Z[y1, . . . , yk+1], such that for all g̃ = Φ(g) we
have:

◦ polynomials g and g̃ have the same (possibly infinite) number of integer roots, (4.13)
◦ x ∈ Zk+1 is an integer root of g̃ ⇒ |x| is even, (4.14)
◦ x, y ∈ Zk+1 are integer roots of g̃ ⇒ |x| 6= |y|, (4.15)
◦ deg g̃ ≤ max{2 deg g, 4k + 12}. (4.16)

Proof. Let v = v(y) := 4(y21 + y22 + · · ·+ y2k + 1), and let

g̃(y1, . . . , yk+1) = Φ(g) := g(y1, . . . , yk)2 +

(
−yk+1 + vk+3 +

k∑
i=1

yiv
i+1 +

k∑
i=1

yi

)2

.

Note that condition (4.16) is clearly satisfied.
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In order for g̃ to have a root, we must have g(y1, . . . , yk) = 0 and

yk+1 = vk+3 +

k∑
i=1

yiv
i+1 +

k∑
i=1

yi .

This implies (4.13).
Next, suppose r = {y1, . . . , yk+1} is an integer root of g̃. Because v is even, we have:

|r | ≡ |y1| + . . . + |yk| + 0 + y1 + . . . + yk ≡ 0 mod 2,

which proves (4.14).
On the other hand, observe that∣∣|r | − vk+3

∣∣ ≤ k∑
i=1

|yi| +

∣∣∣∣∣
k∑
i=1

yiv
i+1 +

k∑
i=1

yi

∣∣∣∣∣ ≤
k∑
i=1

|yi|
(
2 + vi+1

)
≤ (2 + vk+1)

k∑
i=1

|yi| ≤ (2 + vk+1)
v

4
≤ vk+3 − (v − 1)k+3 .

This implies that if g̃(x ) = g̃(y), then v(x ) = v(y).
Now suppose that x ,y ∈ Zk+1 are roots of g̃ such that |x | = |y |. From above, v(x ) = v(y). Write

Y := |y | − v(y)k+3 as a polynomial in y1, . . . , yk and observe that yi’s are uniquely determined by the
integrality. For example, y1 is the closest integer to Y/vk+1, etc. The same argument for x shows that
x = y , which implies (4.15). This finishes the proof of the lemma. �

We can now complete the proof of Theorem 1.1. Suppose an algorithm exists that determines whether
or not, for arbitrary generating sets S and T , we have

(4.17) ∃n ≥ 0 : cogS(n) 6≡ cogT (n) mod pa.

Then we could use this algorithm to determine whether or not a Diophantine equation g(x1, . . . , xk)
has an integer root as follows. First construct g̃ as in Lemma 4.12. Then construct S and T with f = g̃
and u = 16 as in Lemma 4.4. By Corollaries 4.9 and 4.10, polynomial g̃, and thus f , has a root if and
only if (4.17) holds with p = 2 and a = 40, so pa = u10.

Finally, Jones [Jon] shows that Diophantine problems over N are undecidable for polynomials of
degree at most 96 in 21 variables. By a standard reduction (see e.g. Sun [Sun]) the Diophantine
problem over Z is undecidable for deg g = 192 and k = 63. Then deg g̃ = 384, which by Lemma 4.4
gives the desired bound m ≤ 9.6 · 1085. This completes the proof of Theorem 1.1. �

Remark 4.13. In fact, Jones [Jon] gives several pairs (degree, number of variables) which give rise to
a minimal Diophantine equation. Of these, we chose the one which gives the smallest bound on n.

5. D-algebraic

The previous sections gave us information about the parity of cogrowth sequences. We first prove
Lemma 3.6 where the parity information is enough to conclude that a sequence is not D-algebraic. We
then deduce Theorem 3.5.

5.1. Proof of Lemma 3.6. Let Λ(t) =
∑
λnt

n, and suppose that Λ satisfies an algebraic differential
equation. Then there exist positive integers C and D together with a finite family of polynomials
{Πc,d}0≤c≤C,0≤d≤D, not all zero, such that for all n∑

c,d

∑
i1+···+id=n−c

Πc,d(i1, . . . , id)λi1 · · · λid = 0.

Note that this sum has repeated terms, so e.g. λ3λ7 and λ7λ3 are counted separately. We recast
this as a sum over partitions:

(5.1)
∑
c,d

∑
ν`(n−c) : |ν|=d

Γν,n λ1 · · ·λd = 0 for all n,

where Γν,n are sums of the corresponding Πc,d.
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Denote by v2(x) the largest power of 2 dividing x. Take some µ such that v2(Γµ, n) is minimized.
This is always possible because not all Γν are zero, since the ADE is trivial otherwise. If there are ties,
then we pick the one where c is minimal.

Let V = v2(Γµ, n), and let ` = `(µ). By the assumption of our lemma, there exist distinct indices
nα1 , . . . , nα` , such that nαi ≡ µi modulo 2V+1. Furthermore, we can assume that all of these indices
are greater than N(C,D) as defined in condition (4).

We claim that this contradicts (5.1). Indeed, consider the equality modulo 2V+1. Letting ν =
{nα1

, . . . , nα`}, by the assumption we get that V = v2(Γν , n). Since all λnαi are odd, this particular
term will have v2 = V .

Any term with lower c will have v2(Γ, n) > V , so we can ignore those terms in (5.1). On the other
hand, any other term besides ν will have v2(Γ, n) ≥ V , and by condition (4) at least one of the λi is
even, meaning such terms will also have v2(Γ, n) > V .

Thus the left-hand side of (5.1) has exactly one term which is not congruent to zero modulo 2V+1,
a contradiction. Hence our sequence cannot be D-algebraic. �

5.2. Proof of Theorem 3.5. Suppose we have a polynomial f satisfying the conditions prescribed in
Conjecture 3.4. Construct A1, . . . , Ak and P,Q,R as in the proof of Theorem 1.1. Suppose for the sake
of contradiction that cogS(n) and cogT (n) are both D-algebraic.

Now, let W be the set of cogrowth words of the form

PW1QW2P
−1W3Q

−1W4 ,

where Wi are words in {A±11 , . . . , A±1k }. Define ωn to be the number of words in W of length n.
Lemma 4.4 shows that the evaluations of W1 and W3 are the same, and are equal to the inverse of

the evaluations of W2 and W4. Also, there must be a root x = (x1, . . . , xk) of f , such that the net
number of Ai’s in W1 is equal to xi, for all i ∈ [k]. The same must be true (up to minus sign) for
W2,W3,W4.

We now proceed to make one more modification of our matrices. We expand P and Q by adding k
copies of a 5× 5 matrix I5 + E13 and I5 + E23 + E45, respectively:

P ← P ⊕k


1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and Q ← Q⊕k


1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1


Then, for each j, create two versions of Aj . One will be A⊕ I5k, called the neutral version. The other

will be

Aj ⊕ I5(j−1) ⊕


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⊕ I5(k−j) ,
called the positively charged version. Symmetrically, there will also be a neutral and negatively charged
version of A−1i .

We have added a 5k×5k sub-block to each of the matrices in our generating set. Call this sub-block
the new parts of the matrix. Also let the net charge of a word be the number of positively charged Ai’s
minus the number of negatively charged Ai’s.

Let W ′ be the set of cogrowth words of the form

PW1QW2P
−1W3Q

−1W4 ,

where Wi are words in {A±11 , . . . , A±1k } together with their charged versions.

Lemma 5.1. A word in W ′ will be cogrowth if and only if it corresponds to a word in W in which W1

through W4 all have net charges of 0.
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Proof. Suppose that the words W1 through W4 have charges c1 through c4. Then the new part of Wi

is 
1 0 0 0 0
0 1 0 0 0
0 0 1 ci 0
0 0 0 1 0
0 0 0 0 1

 .
This means that the new part of the whole word can be computed to be

1 0 0 c1 + c2 c1 − c2 − c3
0 1 0 c2 + c3 −c2 − c3
0 0 1 c1 + c2 + c3 + c4 −c2 − c3
0 0 0 1 0
0 0 0 0 1

 .
This gives a cogrowth word if and only if c1 = c2 = c3 = c4 = 0, as desired. �

Denote by γn be the number of charged words which are cogrowth words, so we have γn ≥ ωn. One
can think of this as giving a weight to each of the words in W counting how many ways we can assign
charges so that each of the Wi has net charge zero. Since we can always neutrally charge all the Ai’s
every word has weight at least 1. If this word is the minimal word for some root, then that is the only
choice; otherwise there will be many.

Let us assign charges to the Ai’s in W1. Without loss of generality we can assume that xi ≥ 0. Since
there are v + xi instances of Ai and v instances of A−1i , there are

v∑
u=0

(
v + xi
u

)(
v

u

)
=

(
2v + xi

v

)
ways of doing this. We charge u each of the positive and negative ones. It can be shown (see e.g. in
[Sta1, Exc. 1.6]), that

(
2v+xi
v

)
is odd only if there exists some positive integer d such that

(5.2) 2d − xi ≤ v ≤ 2d.

This implies that for a fixed xi, there will be an even number of ways of assigning charge for a set of
v’s having density 1. In particular, for there to be an odd weight on a word, we need (5.2) to hold for
all W ’s and x’s. That implies

(5.3) |n− 4− e| ≤ 4|x | ,
where e is the sum of at most 4k powers of 2. Note that we also have n− 4 ≥ 4|x |+ 4.

Define the sequence

λn =
1

239
(

cogT (8n+ 5) − cogS(8n+ 5)
)
.

Then by Lemma 4.8, {λn} is a sequence of integers which is congruent to γ2n modulo 2. By assumption,
the GF for {λn} is D-algebraic. We claim that this contradicts Lemma 3.6.

Indeed, let ni = |ρi|/2. Conditions (1), (2) and (3) of Lemma 3.6 follow from the assumptions
of Theorem 3.5 and Corollary 4.10. Therefore {λn} cannot be D-algebraic. And condition (4) of
Lemma 3.6 follows from the above computation plus assumption (4) of Conjecture 3.4. As subsequences
of D-algebraic sequences along arithmetic progressions are also D-algebraic, we can conclude that at
least one of cogS and cogT is not D-algebraic. �

6. Final remarks and open problems

6.1. Grappling with undecidability. To further understand the meaning of our Main Theorem 1.1,
we state the following corollary:

Corollary 6.1. For some integer m ≤ 9.6 · 1085, there are symmetric generating sets S and T of the
unitriangular group UT(m,Z), such that the following problem is independent of ZFC 5 :

∀n ∈ N : cogS(n) ≡ cogT (n) mod 240 .

5We chose ZFC to make the statement more accessible. The proof naturally extends to any system of axioms.
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The corollary follows from a standard diagonalization argument (see e.g. [Poo2, p. 212]). Here is
another corollary which is even easier, but perhaps more suggestive.

For a matrix M = (mij), denote φ(M) :=
∑
ij |mij | the total sum of absolute values of the entries.

Similarly, denote by φ(S) :=
∑
M∈S φ(M) the size of S. The following corollary follows from basic

results on computability:

Corollary 6.2. For some integer m ≤ 9.6 · 1085, there are symmetric generating set S and T of the
unitriangular group UT(m,Z), such that

∃n ∈ N : cogS(n) 6≡ cogT (n) mod 240 ,

but the first time the inequality holds is for n > Tow(Tow(Tow(φ))),6 where φ := φ(S) + φ(T ).

Here Tow(k) is the tower of 2’s of length k. While a single tower is unusual but does occur for
natural combinatorial problems, see e.g. [Gow], the iterated towers get us close to the edge of human
imagination.

In the context of cogrowth sequences, we can only think of [Moo] which proves a single tower lower
bound of the size of the Følner sets for the Thompson’s group F . This does not refute the conjecture
that F is nonamenable (cf. [Sap, §5.4]), but suggests that the proof would be rather involved. We refer
to a curious numerical investigation of the cogrowth sequence [PG] (see also [HHR]), strongly suggesting
nonamenability.

6.2. Unitriangular group. Jennings famously proved in [Jen] (see also [GW]), that every torsion-free
nilpotent group is a subgroup of the unitriangular group UT(m,Z) for some m. This explains why
we chose to work with the unitriangular group towards Kontsevich’s question for nilpotent groups. In
fact, this can be stated formally: if the analogue of Theorem 1.1 holds for some nilpotent group and
its families of generating sets, then the “using multiple copies of extra generators” trick used in §4.3

6.3. Heisenberg group. For the Heisenberg group H1 = UT(3,Z) with natural generators, the first
71 terms were computed by Pantone, see [OEIS, A307468]. His analysis suggests that there are no lower
order algebraic differential equation (ADE) for the cogrowth series. We conjecture that this cogrowth
series is not D-algebraic. Thus, in particular, it is non-D-finite and not a diagonal.

Continuing the discussion of Stoll’s example in §1.2, there is a deeper reason why H1 has simpler
structure than the higher Heisenberg group H2 ⊂ UT(4,Z), see [NY]. In fact, from metric geometry
point of view, group H2 is the “most distorted” relative to the abelian group, see [Naor]. Additionally,
every equation is decidable in H1 [DLS, §2.2], and there are relatively few distinct words [GL]. Thus, if
one is looking for a conceptual proof of non-D-finiteness in a smaller example, perhaps H2 or UT(4,Z)
is a better place to start than H1.

6.4. Dependence on the generators. A deep problem for cogrowth series is whether their properties
depend on the generating set. For D-finiteness we have a partial answer: they do not for free groups and
amenable groups of superpolynomial growth (see §1.2). We conjecture that they do not for virtually
nilpotent group as well. We are at loss what happens to general nonamenable groups, but that’s where
we would look for counterexamples.

6.5. Abelian groups. Kuksov’s Theorem 3.2 holds for general abelian groups. We found an alternative
proof using binomial sums, which implies a stronger statement: that the cogrowth series is always a
diagonal of an N-rational function, see [GP1]. It would be interesting to extend Theorem 3.2 to other
tame classes of group. We conjecture that the cogrowth series for a virtually abelian group is always a
diagonal of a rational function. Thus, in particular, it is D-finite.

6.6. Christol’s conjecture. There is a healthy debate in the literature about the validity of Christol’s
Conjecture 3.1. A large number of potential counterexamples were suggested by Christol himself and
his coauthors [B+, Chr2]. A few of these were recently refuted, i.e. shown to be diagonals of rational
functions [AKM, BY]. It would be most exciting if there is an uncomputability result analogous to
Theorem 1.3 in this setting.

6We stopped at three towers for clarity. We could have e.g. Tow(φ) of towers, of course.

https://oeis.org/A307468
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6.7. Explicit construction. The construction of generating sets in Corollary 6.1 can be made explicit
if one uses an explicit construction of a Diophantine equation whose solution is independent of ZFC.
This equation, in principle, can be obtained from an explicit construction of a Turing machine whose
halting is independent of ZFC, see [YA] and follow the approach in [CM]. We would be curious to see
the resulting numerical bounds on the size of the resulting generating sets.
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