Math 184 Week 2

David Soukup

April 7, 2022

TA information:
Office hours: Math Sci 3921, Tue/Thu, 4-5pm
Email: soukup AT math dot ucla dot edu
Website: math.ucla.edu/~soukup (I'll post discussion materials here if Canvas is unavailable)

1. Derangements and inclusion/exclusion Recall that a permutation is a derangement if it has no fixed points; that is, $\sigma(i) \neq i$ for all i. We will count the number of derangements in S_{n}. For every $i \in[n]$, let $A_{i}=\left\{\sigma \in S_{n}: \sigma(i)=i\right\}$. Then the set of derangements is $S_{n}-\bigcup A_{i}$.
(a) What is $\left|A_{i}\right|$? And if $i \neq j$, what is $\left|A_{i} \cap A_{j}\right|$?
(b) Show that the number of derangements in S_{n} is

$$
n!\cdot \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

(Hint: inclusion/exclusion)
(c) Show that as $n \rightarrow \infty$ the probability that a random permutation is a derangement approaches $1 / e$. Can you give a bound for the error in this approximation?
(d) Show that as $n \rightarrow \infty$ the probability that a random permutation has exactly m fixed points approaches $1 /(e m!)$.
2. Counting Suppose we pick a random permutation $\sigma \in S_{n}$ for n some fixed constant.
(a) What is the probability that the first three entries in the permutation $\sigma(1), \sigma(2), \sigma(3)$ are in increasing order?
(b) What's the expected number of i such that $\sigma(i), \sigma(i+1), \sigma(i+2)$ are in increasing order? (Hint: Write this value as a sum of things you can take the expectation of)

