Math 184 Week 1

David Soukup

March 31, 2022

TA information: Office hours: Math Sci 3921, Tue/Thu, 4-5pm Email: soukup AT math dot ucla dot edu Website: math.ucla.edu/~soukup (I'll post discussion materials here if Canvas is unavailable)

Recall that for integers n, k, the binomial coefficient $\binom{n}{k}$ counts the number of size-k subsets of a set with n elements. (We take $\binom{n}{k}$ to be zero if k < 0 or k > n).

These coefficients satisfy some interesting properties. Try to prove some. In particular, it would be nice to find *combinatorial* proofs.

- 1. $\binom{n}{k} = \binom{n}{n-k}$
- 2. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$
- 3. $\binom{n}{k-1} < \binom{n}{k}$ whenever $k \le n/2$
- 4. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$
- 5. $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$
- 6. $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$
- 7. $\sum_{n=0}^{m} \binom{n}{k} = \binom{m+1}{k+1}$