Math 184 Week 1

David Soukup

March 31, 2022

TA information:
Office hours: Math Sci 3921, Tue/Thu, 4-5pm
Email: soukup AT math dot ucla dot edu
Website: math.ucla.edu/~soukup (I'll post discussion materials here if Canvas is unavailable)

Recall that for integers n, k, the binomial coefficient $\binom{n}{k}$ counts the number of size- k subsets of a set with n elements. (We take $\binom{n}{k}$ to be zero if $k<0$ or $k>n)$.

These coefficients satisfy some interesting properties. Try to prove some. In particular, it would be nice to find combinatorial proofs.

1. $\binom{n}{k}=\binom{n}{n-k}$
2. $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$
3. $\binom{n}{k-1}<\binom{n}{k}$ whenever $k \leq n / 2$
4. $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$
5. $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$
6. $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$
7. $\sum_{n=0}^{m}\binom{n}{k}=\binom{m+1}{k+1}$
