1. Likelihood ratios. Suppose we want to test whether a given coin is fair or unfair. That is, given a sample X_{1}, \ldots, X_{n}, each Bernoulli distributed with probability p of success, we want to test the null hypothesis $p=1 / 2$ against the alternate hypothesis $p=q$, for some $q \neq 1 / 2$.
(a) Argue that $Y=\sum X_{I}$ is a sufficient statistic for this model, and that Y is binomially distributed. So it's enough to look at Y.
(b) Find the likelihood ratio function.
(c) Show that the most powerful critical region is of the form $Y \geq C$ for q greater than $1 / 2$, and $Y \leq C$ for q less than $1 / 2$, where C is a constant potentially depending on α, n, q. [Hint - it may be helpful to write the likelihood function as $A^{x} B^{n}$ for some A, B.]
(d) Actually, C does not depend on q if we restrict ourself to the case where q if greater than $1 / 2$. Why is this? This shows that, in that case, this estimator is actually uniformly most powerful
