1. **Bayesian inference**. Suppose X_i are a sample of size *n* from $\text{Unif}[0, \Theta]$, where our prior distribution for Θ is exponential with parameter λ . Show that the posterior distribution of Θ is

 $\max x_i + \operatorname{Exp}(\lambda).$

- 2. **Rao-Blackwell**. Last week we briefly covered this example let's do it fully. Suppose X_i are a sample of size n from $\text{Unif}[0, \theta]$. Then we can let $T = X_{(n)} = \max X_i$. Define Y to be $2\bar{X}$. (Here T happens to be the MLE, and Y the method-of-moments estimator).
 - Show that T is sufficient.
 - Find $\mathbb{E}[Y|T]$. (Note: the conditional distribution of X_i on T is not uniform.
 - Compare Var Y and Var($\mathbb{E}[Y|T]$). Note: we know that T is Beta(n, 1)-distributed with variance

$$\frac{n^2}{(n+1)^2(n+2)}.$$