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1. Method-of-moments against MLE. Suppose Xi are a random sample
from Unif[−θ, θ] for θ a positive parameter. Note that the variance of a
random variable with distribution Unif[a, b] is (b− a)2/12.

(a) Show that the method-of-moments estimator for θ is√√√√ 3

n

n∑
i=1

x2i

(b) Show that this estimator is biased. (Hint: Jensen’s inequality1; com-
puting the expectation directly is difficult).

(c) Show that the MLE is max |xi|, which is also biased.

2. Sufficient statistics. Let Xi be a random sample from Poisson(λ) for a
positive parameter λ. Consider the statistic T =

∑
xi. Show that T is

sufficient in two different ways:

(a) Directly, by computing the conditional distribution of X given T
and showing that it does not depend on θ. (Hint: if A and B are
independent Poisson(λ) and Poisson(µ) respectively, then A + B is
Poisson(λ+ µ).

(b) Using the Fischer-Neyman factorization theorem.

1Jensen’s inequality says that for a random variable X with expectation and a convex
function f ,

f(E[X]) ≤ E[f(X)].

Moreover, if f is strictly convex, then equality holds if and only if X is almost surely constant.
In our problem, this means

E
[√

Y
]
≤

√
E[Y ]

with equality if and only if Y is almost surely constant.
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(1)

(a)

Let’s find the moments of Xi, using the known moments of the uniform distri-
bution:

E[Xi] =
θ + (−θ)

2
= 0

Since the first moment is zero, we get no information from the first moment.
So we need to continue to the second moment:

E[Xi] =
(θ −−θ)2

12
=
θ2

3

So the method of moments gives us

θ̂2

3
=

1

n

∑
x2i

which we can solve to get the desired estimator.

(b)

To check bias, we compute the expectation:

E[θ̂] = E

[√
3

n

∑
X2
i

]
(Jensen)
<

√
E
[

3

n

∑
X2
i

]
=

√
3

n

∑
E[X2

i ]

=

√
3

n
· nθ

2

3

= θ

Since we have an inequality, that means that it’s a biased estimator.
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(2)

(a)

First, note that the distribution of T is Poisson with parameter nθ. Let (x1, . . . , xn)
be a sequence of nonnegative integers. Then

P(X1 = x1, . . . , Xn = xn|T = t) =
P(X1 = x1, . . . , Xn = xn, T = t)

P(T = t)

=
P(X1 = x1, . . . , Xn = xn)

P(T = t)
1∑

xi=t

=

(
n∏
i=1

e−θθxi

xi!

)
· t!

e−nθ(nθ)t
1∑

xi=t

=
(e−θ)nθ

∑
xi

e−nθθt
· t!

x1!x2! · · ·xn!
· 1

nt
· 1∑

xi=t

=

(
t

x1, x2, . . . , xn

)
· 1

nt
· 1∑

xi=t

which does not depend on θ, as required. Note that we could assume
∑
xi =

t, since if this doesn’t happen then the 1∑
xi=t term will eliminate things.

(b)

Let (x1, . . . , xn) be nonnegative integers. We can write

Pθ((x1, . . . , xn)) = Pθ(X1 = x1, . . . , Xn = xn)

=

n∏
i=1

e−θθxi

xi!

=
e−nθθ

∑
xi

x1! · · ·xn!

= fθ(T (x)) · 1

x1 · · ·xn!

where fθ(t) = e−nθθt. So the distribution decomposes into a function of t and
θ times a function of x, which exactly means the statistic is sufficient by the
decomposition theorem.


