1. Method-of-moments against MLE. Suppose X_{i} are a random sample from Unif $[-\theta, \theta]$ for θ a positive parameter. Note that the variance of a random variable with distribution $\operatorname{Unif}[a, b]$ is $(b-a)^{2} / 12$.
(a) Show that the method-of-moments estimator for θ is

$$
\sqrt{\frac{3}{n} \sum_{i=1}^{n} x_{i}^{2}}
$$

(b) Show that this estimator is biased. (Hint: Jensen's inequality ${ }^{1}$; computing the expectation directly is difficult).
(c) Show that the MLE is max $\left|x_{i}\right|$, which is also biased.
2. Sufficient statistics. Let X_{i} be a random sample from Poisson (λ) for a positive parameter λ. Consider the statistic $T=\sum x_{i}$. Show that T is sufficient in two different ways:
(a) Directly, by computing the conditional distribution of X given T and showing that it does not depend on θ. (Hint: if A and B are independent $\operatorname{Poisson}(\lambda)$ and Poisson (μ) respectively, then $A+B$ is Poisson $(\lambda+\mu)$.
(b) Using the Fischer-Neyman factorization theorem.

[^0](1)
(a)

Let's find the moments of X_{i}, using the known moments of the uniform distribution:

$$
\mathbb{E}\left[X_{i}\right]=\frac{\theta+(-\theta)}{2}=0
$$

Since the first moment is zero, we get no information from the first moment. So we need to continue to the second moment:

$$
\mathbb{E}\left[X_{i}\right]=\frac{(\theta--\theta)^{2}}{12}=\frac{\theta^{2}}{3}
$$

So the method of moments gives us

$$
\frac{\hat{\theta}^{2}}{3}=\frac{1}{n} \sum x_{i}^{2}
$$

which we can solve to get the desired estimator.
(b)

To check bias, we compute the expectation:

$$
\begin{aligned}
\mathbb{E}[\hat{\theta}] & =\mathbb{E}\left[\sqrt{\frac{3}{n} \sum X_{i}^{2}}\right] \\
& \stackrel{(\text { Jensen) }}{<} \sqrt{\mathbb{E}\left[\frac{3}{n} \sum X_{i}^{2}\right]} \\
& =\sqrt{\frac{3}{n} \sum \mathbb{E}\left[X_{i}^{2}\right]} \\
& =\sqrt{\frac{3}{n} \cdot n \frac{\theta^{2}}{3}} \\
& =\theta
\end{aligned}
$$

Since we have an inequality, that means that it's a biased estimator.
(2)
(a)

First, note that the distribution of T is Poisson with parameter $n \theta$. Let $\left(x_{1}, \ldots, x_{n}\right)$ be a sequence of nonnegative integers. Then

$$
\begin{aligned}
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T=t\right) & =\frac{\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}, T=t\right)}{\mathbb{P}(T=t)} \\
& =\frac{\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)}{\mathbb{P}(T=t)} \mathbb{1}_{\sum x_{i}=t} \\
& =\left(\prod_{i=1}^{n} \frac{e^{-\theta} \theta^{x_{i}}}{x_{i}!}\right) \cdot \frac{t!}{e^{-n \theta}(n \theta)^{t}} \mathbb{1}_{\sum x_{i}=t} \\
& =\frac{\left(e^{-\theta}\right)^{n} \theta^{\sum x_{i}}}{e^{-n \theta} \theta^{t}} \cdot \frac{t!}{x_{1}!x_{2}!\cdots x_{n}!} \cdot \frac{1}{n^{t}} \cdot \mathbb{1}_{\sum x_{i}=t} \\
& =\binom{t}{x_{1}, x_{2}, \ldots, x_{n}} \cdot \frac{1}{n^{t}} \cdot \mathbb{1}_{\sum x_{i}=t}
\end{aligned}
$$

which does not depend on θ, as required. Note that we could assume $\sum x_{i}=$ t, since if this doesn't happen then the $\mathbb{1}_{\sum x_{i}=t}$ term will eliminate things.
(b)

Let $\left(x_{1}, \ldots, x_{n}\right)$ be nonnegative integers. We can write

$$
\begin{aligned}
\mathbb{P}_{\theta}\left(\left(x_{1}, \ldots, x_{n}\right)\right) & =\mathbb{P}_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
& =\prod_{i=1}^{n} \frac{e^{-\theta} \theta^{x_{i}}}{x_{i}!} \\
& =\frac{e^{-n \theta} \theta x^{\sum x_{i}}}{x_{1}!\cdots x_{n}!} \\
& =f_{\theta}(T(x)) \cdot \frac{1}{x_{1} \cdots x_{n}!}
\end{aligned}
$$

where $f_{\theta}(t)=e^{-n \theta} \theta^{t}$. So the distribution decomposes into a function of t and θ times a function of x, which exactly means the statistic is sufficient by the decomposition theorem.

[^0]: ${ }^{1}$ Jensen's inequality says that for a random variable X with expectation and a convex function f,

 $$
 f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]
 $$

 Moreover, if f is strictly convex, then equality holds if and only if X is almost surely constant.
 In our problem, this means

 $$
 \mathbb{E}[\sqrt{Y}] \leq \sqrt{\mathbb{E}[Y]}
 $$

 with equality if and only if Y is almost surely constant.

