1. Biased estimators. Let $X \sim \operatorname{Unif}[0, \theta]$, and suppose $n=1$ for simplicity.
(a) Show that the likelihood function is

$$
L(x ; \theta)= \begin{cases}\frac{1}{\theta} & 0 \leq x \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

(b) Show that the MLE for θ is x.
(c) Show that the method-of-moments estimator for θ is $2 x$.
(d) Which of these estimators is/are biased?
2. Maximum likelihood estimators. Let $X \sim \operatorname{Binom}(2, p)$.
(a) Show that the log-likelihood function is

$$
\ell\left(x_{1}, \ldots, x_{n} ; p\right)=A_{0} \log (1-p)^{2}+A_{1} \log (2 p(1-p))+A_{2} \log p^{2}
$$

where A_{k} is the number of x_{i} that are equal to k. (So if our sample is $0,2,2,2,1,0,0,2,2$, then $\left.A_{0}=3, A_{1}=1, A_{2}=5\right)$.
(b) Show that the MLE is $\frac{1}{2} \bar{X}$.
(c) Is the MLE biased?
3. Two-parameter estimation. Let $X \sim \operatorname{Unif}\left[\theta_{1}, \theta_{2}\right]$. Show that the MLEs of θ_{1} and θ_{2} are $\min x_{i}$ and $\max x_{i}$, respectively.
(1)
(a)

We use the PDF of a uniform random variable:

$$
L(x ; \theta)=f_{\theta}(x)= \begin{cases}\frac{1}{\theta} & 0 \leq x \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

(b)

Let's rewrite the likelihood function to be more explicitly a function of θ :

$$
L(x ; \theta)=f_{\theta}(x)= \begin{cases}\frac{1}{\theta} & \theta \geq x \\ 0 & \text { otherwise }\end{cases}
$$

Since $1 / \theta$ is decreasing, this is maximized at the point $\theta=x$.
(c)

We compute the first population moment as $\mathbb{E}[X]=\theta / 2$. For the method of moments, we want the first population moment to be estimated by the first sample moment:

$$
\frac{\hat{\theta}}{2}=\frac{1}{n} \cdot \sum x_{i}=x
$$

Solving, we get $\hat{\theta}=2 x$.
(d)

The expectation of the MLE is $\mathbb{E}[X]=\theta / 2$, which is not θ. So this estimator is biased. Meanwhile, the expectation of the MoME is $\mathbb{E}[2 X]=2 \theta / 2=\theta$, so this estimator is unbiased.
(a)

We find the log-likelihood function as the logarithm of the joint PMF:

$$
\begin{aligned}
\ell\left(x_{1}, \ldots, x_{n} ; p\right) & =\log L\left(x_{1}, \ldots, x_{n} ; p\right) \\
& =\log \prod_{i=1}^{n}\binom{2}{x_{i}} p^{x_{i}}(1-p)^{2-x_{i}} \\
& =\sum_{i=1}^{n} \log \left(\binom{2}{x_{i}} p^{x_{i}}(1-p)^{2-x_{i}}\right)
\end{aligned}
$$

If we break up the sum into the case where $x_{i}=0, x_{i}=1$, and $x_{i}=2$, then we can separate out the terms as

$$
A_{0} \log (1-p)^{2}+A_{1} \log (2 p(1-p))+A_{2} \log \left(p^{2}\right)
$$

(b)

Before solving, we simplify with properties of logs:

$$
\ell=2 A_{0} \log (1-p)+A_{1} \log 2+A_{1} \log p+A_{1} \log (1-p)+2 A_{2} \log (p)
$$

Then, to maximize ℓ, we take the derivative with respect to p :

$$
\begin{aligned}
\frac{\partial \ell}{\partial p} & =\frac{-2 A_{0}}{1-p}+0+\frac{A_{1}}{p}-\frac{A_{1}}{1-p}+\frac{2 A_{2}}{p} \\
& =\frac{-2 A_{0} p+A_{1}(1-p)-A_{1} p+2 A_{2}(1-p)}{p(1-p)} \\
& =\frac{\left(-2 A_{0}-2 A_{1}-2 A_{2}\right) p+A_{1}+2 A_{2}}{p(1-p)}
\end{aligned}
$$

Setting this equal to zero we get

$$
\left(-2 A_{0}-2 A_{1}-2 A_{2}\right) \hat{p}+A_{1}+2 A_{2}=0
$$

which means

$$
\hat{p}=\frac{1}{2} \cdot \frac{A_{1}+2 A_{2}}{A_{0}+A_{1}+A_{2}}=\frac{\sum X_{i}}{2 n}=\frac{\bar{X}}{2}
$$

(c)

We compute

$$
\mathbb{E}[\hat{p}]=\mathbb{E}[\bar{X} / 2]=\frac{1}{2} \mathbb{E}[\bar{X}]=\frac{1}{2}\left[X_{i}\right]=\frac{1}{2} \cdot 2 p=p
$$

so it's an unbiased estimator.
(3)

Let's write down the likelihood function:

$$
L\left(x_{1}, \ldots, x_{n} ; \theta_{1}, \theta_{2}\right)= \begin{cases}\frac{1}{\theta_{2}-\theta_{1}} & \theta_{1} \leq \text { all } x_{i} \leq \theta_{2} \\ 0 & \text { otherwise }\end{cases}
$$

The likelihood function is zero if the $\theta \mathrm{s}$ are not outside of all the x_{i}, and it gets smaller the further apart θ_{1} and θ_{2} are. Therefore, it's maximized if $\theta_{1}=\min x_{i}$ and $\theta_{2}=\max x_{i}$, as required.

