1. Goodness of fit. In 1898, Ladiaslus Bortkiewicz published *Das Gesetz der Kleinen Zahlen* [The Law of Small Numbers] in which he first showed how the Poisson distribution occurs in real life. This table is his most famous example; it counts the number of deaths due to horse kicks in 14 Prussian army corps over a period of 20 years.

Jahres- ergebnis		n denen das neben- bresergebnis zu erwarten war	Yearly result	Number of years in which the result was		
0	144	143,1				
1 2 3	91 32 11	92,1 33,5		observed	expected	
4 5 u. mehr	2	8,9 2,0	0	144	143.1	
J u. meni		0,6	1	91	92.1	
			2	32	33.3	
			3	11	8.9	
			4	2	2.0	
			5+	-	0.6	

For instance, there were 32 times where exactly two deaths occured in a year in one corps. Bortkiewicz compared this distribution to a Poisson distribution with a parameter that he estimated from the data.

- (a) How many degrees of freedom are there?
- (b) Set up a test statistic for goodness of fit. You don't need to compute it, an estimate is enough.
- (c) How good is the fit? Are there any problems with the test? How could these be resolved?
- (d) Give a rough guess as to the *p*-value.

Here's the relevant section of a chi-square table:

	0.01							
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09
6	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81

Solutions

(a)

We have six categories, so typically that would mean 6 - 1 = 5 degrees of freedom. But we lose a degree of freedom by estimating the parameter. So there are really four degrees of freedom.

(b)

The test statistic is

$$\sum_{\substack{\text{categories}}} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$
$$= \frac{(144 - 143.1)^2}{143.1} + \frac{(91 - 92.1)^2}{92.1} + \frac{(32 - 33.3)^2}{33.3} + \frac{(8.9 - 11)^2}{11} + \frac{(2 - 2)^2}{2} + \frac{(0 - 0.6)^2}{0.6}$$
$$\approx 1.07$$

(c/d)

By the table, this corresponds to a p-value of about 0.9. So we don't reject the null hypothesis, which was that the data are Poisson-distributed. That means the fit is very good.

Note that we do have a category (five or more deaths) where the expected number is very small, and that piece does contribute most of the test statistic. This might be a problem, but we don't really mind in this case as it doesn't lead to a rejection.