- Probability space: The basic object in probability. We have a sample space S, which we can think of as the set of all possible outcomes of an experiment. The randomness come from a probability function \mathbb{P}, which tells us the probability of various events in the sample space.
- Our probability function needs to obey two rules; Probabilities are between 0 and 1 (with the whole space having probability 1), and the probabilities of disjoint events add ${ }^{1}$.
- Suppose we run some random experiment. Without being told the full result, we're given partial information on what happened. We can update our probabilities based on this. We call $\mathbb{P}(A \mid B)$ the conditional probability of A conditioned on B, and define it by

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- From this we get Bayes' rule: $\mathbb{P}(A \mid B)=\mathbb{P}(B \mid A) \mathbb{P}(A) / \mathbb{P}(B)$.
- We say that two events A and B are independent if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$, or equivalently ${ }^{2}$ that $\mathbb{P}(A \mid B)=\mathbb{P}(A)$, or $\mathbb{P}(B \mid A)=\mathbb{P}(B)$.
- Conditional probabilities give us ways of breaking things down into more easily workable pieces. If we have a bunch of events $A_{1}, A_{2}, \ldots, A_{k}$ which are disjoint and cover S, then for any other event B we get

$$
\begin{aligned}
\mathbb{P}(B) & =\mathbb{P}\left(B \cap A_{1}\right)+\cdots+\mathbb{P}\left(B \cap A_{k}\right) \\
& =\mathbb{P}\left(B \mid A_{1}\right) \mathbb{P}\left(A_{1}\right)+\cdots+\mathbb{P}\left(B \mid A_{k}\right) \mathbb{P}\left(A_{k}\right)
\end{aligned}
$$

This is very useful if B is complicated, but can be made simpler if we know about A.

- Random variables are the next key piece of the puzzle. Formally, a random variable is a function from the probability space to the real numbers. The intuitive picture is of a variable whose value depends on the outcome of your experiment.
- For the purposes of this class, we distinguish random variables as being either discrete-valued or continuous-valued.
- Discrete random variables are governed by a PMF (probability mass function), which is the function

$$
p_{X}(x)=\mathbb{P}(X=x)
$$

[^0]- Continuous random variables are governed by a PDF (probability density function), which is a function f_{X} such that

$$
\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x
$$

- Any random variable has a CDP (cumulative distribution function), which is the function

$$
F_{X}(x)=\mathbb{P}(X \leq x)
$$

- There are many types of distibutions you should know: Bernoulli, binomial, geometric, Poisson, normal, exponential, uniform, etc.
- The expectation of a random variable is given by

$$
\begin{aligned}
\text { (discrete case) } & \mathbb{E}[X]=\sum x p_{X}(x)=\sum x \mathbb{P}(X=x) \\
\text { (continuous case) } & \mathbb{E}[X]=\int x f_{X}(x) d x
\end{aligned}
$$

This is the 'balancing point' of the distribution; it's your best guess for the value of a random variable given no additional information.

- Note that we can find expectations of related random variables like so:

$$
\begin{aligned}
\text { (discrete case) } & \mathbb{E}[\phi(X)]=\sum \phi(x) p_{X}(x)=\sum \phi(x) \mathbb{P}(X=x) \\
\text { (continuous case) } & \mathbb{E}[\phi(X)]=\int \phi(x) f_{X}(x) d x
\end{aligned}
$$

- We can also define the variance of the distribution as follows:

$$
\operatorname{Var} X=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

- The law of total probability has a natural extension to expectations. For our disjoint events A_{1}, A_{2}, \ldots, covering S, we get

$$
\mathbb{E}[X]=\mathbb{E}\left[X \mid A_{1}\right] \mathbb{P}\left(A_{1}\right)+\mathbb{E}\left[X \mid A_{2}\right] \mathbb{P}\left(A_{2}\right)+\cdots
$$

[^0]: ${ }^{1}$ In general, $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$. If the events are disjoint, then their intersection has probability zero, so the last term goes away and they just add.
 ${ }^{2}$ In the conditional expressions we are implicitly assuming that the probabilities are not zero.

