Playing with binomial coefficients

Recall that we define the binomial coefficients $C(n, k)$ as follows:

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}
$$

If A is a set of size n, then $\binom{n}{k}$ counts the number of subsets of size k. For example, the set $\{1,2,3,4,5\}$ has $\binom{5}{2}=10$ subsets of size 2 :

$\{1,2\}$	$\{1,3\}$	$\{1,4\}$	$\{1,5\}$	$\{2,3\}$
$\{2,4\}$	$\{2,5\}$	$\{3,4\}$	$\{3,5\}$	$\{4,5\}$

Prove the following identities of binomial coefficients, using combinatorial arguments if possible. A direct or inductive proof is often possible, but less satisfying.

1. For any n, k, both ≥ 0,

$$
\binom{n}{k}=\binom{n}{n-k}
$$

2. For any $n>1,0<k<n$,

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

3. For any $n \geq 0$,

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n}
$$

4. For any $n \geq 0$,

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}=0
$$

For instance, when $n=6$ we get $1-6+15-20+15-6+1=0$.
5. (Challenge) For any $n \geq 0$,

$$
\sum_{i=0}^{n}\binom{n}{i}^{2}=\binom{2 n}{n}
$$

For combinatorial arguments, only the idea will be given, since that is most of the content of the proof.

1

Any set of size k has a complement of size $n-k$. This process is a bijection. (Can also be proven directly from the definition).

2

Fix some element $a \in A$ (say, the first one). Then there are two kinds of sets of size k; either those which do not contain a, and thus have $k-1$ of the remaining $n-1$, and those which do not, and thus have k of the remaining $n-1$. (Can also be proven directly from the definition).

3

If we add together the subsets of size 0 , the subsets of size 1 , and so on, then we'll get all the subsets. (Can also be proven by induction on i, or with the binomial theorem:

$$
\begin{aligned}
\sum_{i=0}^{n}\binom{n}{i} & =\sum_{i=0}^{n}\binom{n}{i} 1^{i} 1^{n-i} \\
& =(1+1)^{n}
\end{aligned}
$$

but the binomial theorem relies on a proof that is at least as difficult as the induction proof).

4

We want there to be the same number of even and odd subsets. Fix some element $a \in A$. Then given an even subset we can construct an odd one by adding or removing a. This process is a bijection. (Could also be proven using the formula in (2), or with the same binomial-theorem trick).

5

Split $2 n$ elements into two halves. Then to pick n elements, we pick i from the first half and $n-i$ from the second half, so

$$
\sum_{i=0}^{n}\binom{n}{i} \cdot\binom{n}{n-i}=\binom{2 n}{n}
$$

Using the identity in (2) we get what we want. (Or, we pick i from the first half and we exclude i from the second half).

