Counting

1. How many integers between 1 and 100 are divisible by
(a) 3 ?
(b) 2,3 , and 5 ?
(c) 2,3 , or 5 ?
(d) Exactly one of 2,3 , and 5 ?
2. (Set up, but do not try to evaluate) How many five-card poker hands (from a standard deck of 52 cards) have
(a) exactly two clubs?
(b) at least two clubs?
(c) more black cards than red cards?
(d) three of a kind? (That is, three of one rank, with the other two ranks distinct. So 33345 counts, but 777AA and QQQQK do not).

1a

These are the numbers $\{3,6,9, \ldots, 99\}$, of which there are 33 . (Note that this is exactly $\lfloor 100 / 3\rfloor$.

1b

These are the numbers that are multiples of 30 ; there are 3 , namely 30,60 , and 90. This is $\lfloor 100 / 30\rfloor$.

1c
Here we need to use inclusion/exlcusion; we get

$$
\begin{aligned}
(\text { what we want })= & (\text { multiples of } 2)+(\text { multiples of } 3)+(\text { multiples of } 5) \\
- & (\text { multiples of } 2 \text { and } 3)-(\text { multiples of } 3 \text { and } 5)-(\text { multiples of } 2 \text { and } 5) \\
+ & (\text { mutiples of } 2,3, \text { and } 5) \\
= & \lfloor 100 / 2\rfloor+\lfloor 100 / 3\rfloor+\lfloor 100 / 5\rfloor \\
& -\lfloor 100 / 6\rfloor-\lfloor 100 / 15\rfloor-\lfloor 100 / 10\rfloor+\lfloor 100 / 30\rfloor \\
= & 50+33+20-16-6-10+3
\end{aligned}
$$

1d

(what we want) $=($ multiples of 2,3 , or 5$)-($ multiples of at least two of 2,3 , and 5$)$

$$
\begin{aligned}
& =74-(\text { multiples of } 2 \text { and } 3)-(\text { multiples of } 3 \text { and } 5)-(\text { multiples of } 2 \text { and } 5)+2 \cdot(\text { multiples } \\
& =74-16-6-10+2 \cdot 3 \\
& =48
\end{aligned}
$$

2a
This is

$$
\underbrace{\binom{13}{2}}_{\text {ways to pick two clubs ways to pick three non-clubs }}
$$

2b
To get this, we add the numbers of hands with two, three, four, and five clubs to get

$$
\binom{13}{2} \cdot\binom{39}{3}+\binom{13}{3} \cdot\binom{39}{2}+\binom{13}{4} \cdot\binom{39}{1}+\binom{13}{5} \cdot\binom{39}{0}
$$

Note that this is not the same thing as

$$
\binom{13}{2} \cdot\binom{50}{3}
$$

2c
Half of the hands will have more black than red, so it's

$$
\frac{1}{2}\binom{52}{5}
$$

2d

$$
\left[\binom{13}{1} \cdot\binom{4}{3}\right] \cdot\left[\binom{12}{2} \cdot\binom{4}{1}\right]
$$

