Induction

1. In the famous song "The Twelve Days of Christmas," the singer's lover gives them 1 gift on the first day, then $1+2$ gifts on the second day, $1+2+3$ gifts on the third day, and so on. The total number of gifts received up to and including day n is

$$
\frac{n(n+1)(n+2)}{6}, \text { or }\binom{n+2}{3}
$$

(That is, by the first day we have 1 gift, by the second we have 4 , then 10 , and so on).

Functions

1. Define a function f from the set of natural numbers $\{1,2,3, \ldots\}$ to the set of even natural numbers $\{2,4,6, \ldots\}$ by letting $f(x)=2 x$. Show carefully that f is a bijection and conclude that these two sets have the same cardinality, even though one is a subset of the other.
2. Suppose we have a function $f: A \rightarrow B$ and a function $g: B \rightarrow C$. Then we can define the composition function $g \circ f: A \rightarrow C$ which is defined by $(f \circ g)(a)=f(g(a))$. (Note that it is 'backwards': $g \circ f$ means first f, then g).
(a) If $g \circ f$ is surjective, what can we say about f and g ?
(b) If $g \circ f$ is injective, what can we say about f and g ?
(c) If we want to show $g \circ f$ is surjective, what would we need to know about f and g (in terms of injectivity and surjectivity)?
(d) If we want to show $g \circ f$ is injective, what would we need to know about f and g ?
(Remember that 'surjective' or 'onto' means that the function hits everything in the target space; 'injective' or 'one-to-one' means that everything that is hit is hit only once; and 'bijective' means that both of these happen).

Solutions

1

We induct on n. The base case occurs when $n=1$; on the first day, the singer receives one gift, which is

$$
\frac{1 \cdot(1+1) \cdot(1+2)}{6}=\frac{6}{6}=1
$$

So suppose we've received the correct number of gifts up to day n. Then we receive $1+\cdots+(n+1)$ gifts on the $n+1$ st day. That's equal to $\frac{(n+1)(n+2)}{2}$, so we have gotten

$$
\begin{aligned}
& \frac{n(n+1)(n+2)}{6}+\frac{(n+1)(n+2)}{2} \\
& =\frac{n(n+1)(n+2)+3(n+1)(n+2)}{6} \\
& =\frac{(n+3)(n+1)(n+2)}{6}
\end{aligned}
$$

by the $n+1$ st day, as required. Note that we can get a slightly nicer argument using binomial coefficients: by the nth day, we've received $\binom{n+2}{3}$, and on the $n+1$ st day we get $\frac{(n+2)(n+1)}{2}=\binom{n+2}{2}$. And we know

$$
\binom{n+2}{3}+\binom{n+2}{2}=\binom{n+3}{3}
$$

by binomial identities. The numbers we computed here are called tetrahedral numbers because the nth one is the number of spheres needed to make a regular tetrahedron with side length n.

1

We break up the proof into two parts. First, we show that f is injective. That means we need to prove

$$
\text { If } 2 x=2 y, \text { then } x=y
$$

But if $2 x=2 y$, then we can just divide both sides by 2 to conclude $x=y$. So f is in fact injective.

Next we show that f is surjective. That means we need to prove
For any even natural number y, there is a natural number x such that $y=2 x$.
But there is such a natural number, namely $y / 2$. So the function is also surjective.

Thus f is a bijection between the two sets, and if there is a bijection the sets must have the same cardinality.

2a

All we can say is that g is surjective. For if we have some $c \in C$, then the surjectivity of $g \circ f$ implies that $(g \circ f)(a)=c$ for some $a \in A$; then $g(f(a))=c$, which means that $f(a)$ does what we need. But neither has to be injective, and f does not have to be surjective; consider the functions $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow\{1\}$ which are both the constant function 1.

2b

All we can say is that f is injective. For if $(g \circ f)\left(a_{1}\right)=(g \circ f)\left(a_{2}\right)$, then $a_{1}=a_{2}$; so if $f\left(a_{1}\right)=f\left(a_{2}\right)$, we get $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$ and so $a_{1}=a_{2}$. We can't say that g is injective, or that either is surjective; consider the functions $f:\{1\} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow\{1\}$ where f is the identity function and g is the constant function 1 .

2c

We need both f and g to be surjective to conclude that the composition is. (Just proving that g is surj. is not sufficient ${ }^{1}$). If both are surjective, that means for any $c \in C$, we can find $b \in B$ such that $g(b)=c$, and then $a \in A$ such that $f(a)=b$. So $(g \circ f)(a)=g(f(a))=g(b)=c$.

2d

We need both f and g to be injective to conclude that the composition is. (Just proving that f is inj. is not sufficient ${ }^{2}$). If both are injective, that means whenever $a_{1} \neq a_{2}$, we have $f\left(a_{1}\right) \neq f\left(a_{2}\right)$, so $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$.

[^0]
[^0]: ${ }^{1}$ Consider the functions $f: \mathbb{Z} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}_{>0}$ where f is the identity function and $g(x)=x^{2} \cdot g$ is surjective but $g \circ f$ is not, as nothing maps to 2.
 ${ }^{2}$ Same example as before: f is injective but $(g \circ f)(2)=(g \circ f)(-2)$

