True or False? (Note: for all of these, we can assume that we are in a finite-dimensional vector space over the reals).

- 1. If a set of two vectors $\{v_1, v_2\}$ is linearly dependent, then v_2 must be a multiple of v_1 .
- 2. A linear transformation from \mathbb{R}^4 to \mathbb{R}^6 cannot be onto.
- 3. If n-by-n matrices A and B are similar, and A is invertible, then B is invertible.
- 4. Any ten vectors in \mathbb{R}^4 must be a spanning set.
- 5. If matrices A and B commute, then they must be square matrices.
- 6. Matrices A and B commute if and only if $A = B^{-1}$.
- 7. Any subspace of \mathbb{R}^n has a basis.
- 8. It is possible for a subspace of \mathbb{R}^n to have exactly two bases.
- 9. It is possible for a subspace of \mathbb{R}^n to have exactly two orthonormal bases.
- 10. There exist a, b, and c to make the following set of vectors a basis for \mathbb{R}^3 :

ſ	[1]		[1]		[1])
{	a	,	b	,	c	}
J	[1		[1]		1	J

- 11. If T and S are both one-to-one, then so is TS. (You can assume TS is well-defined).
- 12. If T and S are both onto, then so is TS. (You can assume TS is well-defined).
- 13. For any invertible matrices A and B, we have $(AB)^{-1} = A^{-1}B^{-1}$.
- 14. The set of real-coefficient polynomials of degree 7 is a vector space.
- 15. Any linear transformation from \mathbb{R}^6 to \mathbb{R}^{10} is one-to-one.
- 16. Any set containing the zero vector is linearly dependent.
- 17. Given k vectors in \mathbb{R}^n , their span is a subspace of dimension k.
- 18. For a matrix A, the solutions of the equation A(x) = b constitute a subspace.

(Note: If you would like to check your work, the sum of the True statements' numbers is 65.)

- 1. False: try letting v_1 be the zero vector.
- 2. True: its rank is at most 4, so the output can't be \mathbb{R}^6 .
- 3. True: if $A = SBS^{-1}$, then $ASB^{-1}S^{-1} = I$, so A is invertible.
- 4. False: consider 10 copies of the zero vector.
- 5. True: suppose A is $n \times m$. Then in order for B to multiply both ways, B is $m \times n$. So AB is $n \times n$ and BA is $m \times m$. For them to be the same, m = n. So A is square.
- 6. False: the zero matrix commutes with itself.
- 7. True: just keep adding independent vectors until you get a basis.
- 8. False: if v_1 is in the basis, can replace it with $2v_1$, $3v_1$, and so on.
- 9. True: pick your favorite 1D subspace.
- 10. False: that matrix isn't invertible since the first and last rows are the same.
- 11. True: For any $x \neq y$, $Sx \neq Sy$, so $TSx \neq TSy$.
- 12. True: For any b there exists some x such that Sx = b. Then there's some y such that Ty = b. So STy = Sx = b.
- 13. False: it's $B^{-1}A^{-1}$.
- 14. False: x^7 and $-x^7$ are in the space, but their sum is not.
- 15. False: consider the zero transformation.
- 16. True: the zero vector is dependent (see HW) and so any set containing it is.
- 17. False: consider k copies of the zero vector.
- 18. False: 0 isn't in it (unless b = 0).