Systems of linear equations

1. (Warmup) Solve the following system of equations:

$$
\begin{array}{r}
x+y+z=0 \\
-x+3 z=2 \\
2 x+y+z=1
\end{array}
$$

(Answer: $x=1, y=-2, z=1$).
2. For what values of a, b, and c does the following system of equations have solutions? And how many solutions does it have in the case that it does?

$$
\begin{aligned}
2 x-y-3 z & =a \\
-x+y-z & =b \\
5 x-3 y-5 z & =c
\end{aligned}
$$

3. Consider the following system of equations:

$$
\begin{aligned}
x-2 y+z & =1 \\
x+y-2 z & =1 \\
-2 x+y+z & =1
\end{aligned}
$$

How many solutions does this system have? For any pair of the equations, how many solutions does that pair have? What does this system of equations look like graphically?

Solutions

1

Let's write this as a matrix:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
-1 & 0 & 3 & 2 \\
2 & 1 & 1 & 1
\end{array}\right]
$$

To solve this, let's use the 1 in the top left corner as a pivot to clear the first column. We add the first row to the second, and subtract twice the first row from the third to obtain

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & 4 & 2 \\
0 & -1 & -1 & 1
\end{array}\right]
$$

Now we use the 1 in the middle to clear the second column; add the second row to the third row to obtain

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 4 & 2 \\
0 & 0 & 3 & 3
\end{array}\right]
$$

and then divide the last row by 3 to get

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 4 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

At this point we are in row-echelon form. Now we change to back-substitution; subtract the third row from the first and subtract four times the third row from the second to get

$$
\left[\begin{array}{lll|c}
1 & 1 & 0 & -1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Lastly, we subtract the second row from the first to get

$$
\left[\begin{array}{lll|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

as a matrix in reduced row-echelon form. We can now read off the solution: $x=1, y=-2, z=3$.

2

We can start with any equation to solve the system; so let's add twice the second equation to the first and five times the second equation to the third:

$$
\begin{aligned}
y-5 z & =a+2 b \\
-x+y-z & =b \\
2 y-10 z & =c+5 b
\end{aligned}
$$

Now notice that the first equation and the third are similar; if we subtract twice the first equation from the third we get

$$
\begin{aligned}
y-5 z & =a+2 b \\
-x+y-z & =b \\
0 & =c+5 b-2(a+2 b)
\end{aligned}
$$

The last equation tells us that $-2 a+b+c=0$; if we have this, then the first two equations are always satisfiable. So we get that the solution set is a line when $-2 a+b+c=0$, and empty otherwise.

3

Note that if we add the three equations together, we get $0=3$, so there's no solutions to the system. If we look at any pair of equations, then they intersect in a line. So the picture here is three planes that intersect in three distinct parallel lines.

