Polynomials in Free Variables

Roland Speicher Universität des Saarlandes Saarbrücken

joint work with Serban Belinschi, Tobias Mai, and Piotr Sniady

Goal: Calculation of Distribution or Brown Measure of Polynomials in Free Variables

Tools:

- Linearization
- Subordination
- Hermitization

We want to understand distribution of polynomials in free variables.

What we understand quite well is:

sums of free selfadjoint variables

So we should reduce:

arbitrary polynomial \rightarrow sums of selfadjoint variables

This can be done on the expense of going over to operator-valued frame.

Let $\mathcal{B} \subset \mathcal{A}$. A linear map

$$E: \mathcal{A} \to \mathcal{B}$$

is a conditional expectation if

$$E[b] = b \qquad \forall b \in \mathcal{B}$$

and

$$E[b_1ab_2] = b_1E[a]b_2 \qquad \forall a \in \mathcal{A}, \quad \forall b_1, b_2 \in \mathcal{B}$$

An operator-valued probability space consists of $\mathcal{B} \subset \mathcal{A}$ and a conditional expectation $E : \mathcal{A} \to \mathcal{B}$

Consider an operator-valued probability space $E : \mathcal{A} \to \mathcal{B}$.

Random variables $x_i \in \mathcal{A}$ $(i \in I)$ are free with respect to E (or free with amalgamation over \mathcal{B}) if

$$E[a_1\cdots a_n]=0$$

whenever $a_i \in \mathcal{B}\langle x_{j(i)} \rangle$ are polynomials in some $x_{j(i)}$ with coefficients from \mathcal{B} and

 $E[a_i] = 0 \quad \forall i \qquad \text{and} \qquad j(1) \neq j(2) \neq \cdots \neq j(n).$

Consider an operator-valued probability space $E : \mathcal{A} \to \mathcal{B}$.

For a random variable $x \in A$, we define the operator-valued Cauchy transform:

$$G(b) := E[(b-x)^{-1}] \qquad (b \in \mathcal{B}).$$

For $x = x^*$, this is well-defined and a nice analytic map on the operator-valued upper halfplane:

$$\mathbb{H}^+(B) := \{b \in B \mid (b - b^*)/(2i) > 0\}$$

Theorem (Belinschi, Mai, Speicher 2013): Let x and y be selfadjoint operator-valued random variables free over \mathcal{B} . Then there exists a Fréchet analytic map $\omega \colon \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B})$ so that

$$G_{x+y}(b) = G_x(\omega(b))$$
 for all $b \in \mathbb{H}^+(\mathcal{B})$.

Moreover, if $b \in \mathbb{H}^+(\mathcal{B})$, then $\omega(b)$ is the unique fixed point of the map

$$f_b \colon \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^+(\mathcal{B}), \quad f_b(w) = h_y(h_x(w) + b) + b,$$

and

$$\omega(b) = \lim_{n \to \infty} f_b^{\circ n}(w) \quad \text{for any } w \in \mathbb{H}^+(\mathcal{B}).$$

where

$$\mathbb{H}^+(\mathcal{B}) := \{ b \in \mathcal{B} \mid (b - b^*)/(2i) > 0 \}, \qquad h(b) := \frac{1}{G(b)} - b$$

The Linearization Philosophy:

In order to understand polynomials in non-commuting variables, it suffices to understand matrices of **linear** polynomials in those variables.

- Voiculescu 1987: motivation
- Haagerup, Thorbjørnsen 2005: largest eigenvalue
- Anderson 2012: the selfadjoint version (based on Schur complement)

Consider a polynomial p in non-commuting variables x and y. A linearization of p is an $N \times N$ matrix (with $N \in \mathbb{N}$) of the form

$$\widehat{p} = \begin{pmatrix} 0 & u \\ v & Q \end{pmatrix},$$

where

- u, v, Q are matrices of the following sizes: u is $1 \times (N-1)$; v is $(N-1) \times N$; and Q is $(N-1) \times (N-1)$
- each entry of u, v, Q is a polynomial in x and y, each of degree ≤ 1
- $\bullet~Q$ is invertible and we have

$$p = -uQ^{-1}v$$

Consider linearization of \boldsymbol{p}

$$\widehat{p} = \begin{pmatrix} 0 & u \\ v & Q \end{pmatrix} \qquad p = -uQ^{-1}v \qquad \text{and} \qquad b = \begin{pmatrix} z & 0 \\ 0 & 0 \end{pmatrix} \quad (z \in \mathbb{C})$$

Then we have

$$(b-\hat{p})^{-1} = \begin{pmatrix} 1 & 0 \\ -Q^{-1}v & 1 \end{pmatrix} \begin{pmatrix} (z-p)^{-1} & 0 \\ 0 & -Q^{-1} \end{pmatrix} \begin{pmatrix} 1 & -uQ^{-1} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} (z-p)^{-1} & * \\ * & * \end{pmatrix}$$

and thus

$$G_{\widehat{p}}(b) = \mathsf{id} \otimes \varphi((b - \widehat{p})^{-1}) = \begin{pmatrix} \varphi((z - p)^{-1}) & \varphi(*) \\ \varphi(*) & \varphi(*) \end{pmatrix}$$

Note: \hat{p} is the sum of operator-valued free variables!

Theorem (Anderson 2012): One has

- for each p there exists a linearization \hat{p} (with an explicit algorithm for finding those)
- if p is selfadjoint, then this \hat{p} is also selfadjoint

Conclusion: Combination of linearization and operator-valued subordination allows to deal with case of selfadjoint polynomials.

Input:
$$p(x, y), G_x(z), G_y(z)$$

 \downarrow
Linearize $p(x, y)$ to $\hat{p} = \hat{x} + \hat{y}$
 \downarrow
 $G_{\hat{x}}(b)$ out of $G_x(z)$ and $G_{\hat{y}}(b)$ out of $G_y(z)$
 \downarrow
Get $w(b)$ as the fixed point of the iteration
 $w \mapsto G_{\hat{y}}(b + G_{\hat{x}}(w)^{-1} - w)^{-1} - (G_{\hat{x}}(w)^{-1} - w)$
 \downarrow
 $G_{\hat{p}}(b) = G_{\hat{x}}(\omega(b))$
 \downarrow
Recover $G_p(z)$ as one entry of $G_{\hat{p}}(b)$

Example:
$$p(x, y) = xy + yx + x^2$$

 \boldsymbol{p} has linearization

$$\hat{p} = \begin{pmatrix} 0 & x & y + \frac{x}{2} \\ x & 0 & -1 \\ y + \frac{x}{2} & -1 & 0 \end{pmatrix}$$

$P(X,Y) = XY + YX + X^2$ for independent X, Y; X is Wigner and Y is Wishart

 $p(x,y) = xy + yx + x^2$ for free x,y; x is semicircular and y is Marchenko-Pastur

Example: $p(x_1, x_2, x_3) = x_1x_2x_1 + x_2x_3x_2 + x_3x_1x_3$

 \boldsymbol{p} has linearization

$$\hat{p} = \begin{pmatrix}
0 & 0 & x_1 & 0 & x_2 & 0 & x_3 \\
0 & x_2 & -1 & 0 & 0 & 0 & 0 \\
x_1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & x_3 & -1 & 0 & 0 \\
x_2 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & x_1 & -1 \\
x_3 & 0 & 0 & 0 & 0 & -1 & 0
\end{pmatrix}$$

$P(X_1, X_2, X_3) = X_1 X_2 X_1 + X_2 X_3 X_2 + X_3 X_1 X_3$ for independent X_1, X_2, X_3 ; X_1, X_2 Wigner, X_3 Wishart

 $p(x_1, x_2, x_3) = x_1 x_2 x_1 + x_2 x_3 x_2 + x_3 x_1 x_3$ for free x_1, x_2, x_3 ; x_1, x_2 semicircular, x_3 Marchenko-Pastur

What about non-selfadjoint polynomials?

For a measure on $\ensuremath{\mathbb{C}}$ its Cauchy transform

$$G_{\mu}(\lambda) = \int_{\mathbb{C}} \frac{1}{\lambda - z} d\mu(z)$$

is well-defined everywhere outside a set of \mathbb{R}^2 -Lebesgue measure zero, however, it is analytic only outside the support of μ .

The measure μ can be extracted from its Cauchy transform by the formula (understood in distributional sense)

$$\mu = \frac{1}{\pi} \frac{\partial}{\partial \overline{\lambda}} G_{\mu}(\lambda),$$

Better approach by regularization:

$$G_{\epsilon,\mu}(\lambda) = \int_{\mathbb{C}} \frac{\overline{\lambda} - \overline{z}}{\epsilon^2 + |\lambda - z|^2} d\mu(z)$$

is well–defined for every $\lambda \in \mathbb{C}$. By sub-harmonicity arguments

$$\mu_{\epsilon} = \frac{1}{\pi} \frac{\partial}{\partial \bar{\lambda}} G_{\epsilon,\mu}(\lambda)$$

is a positive measure on the complex plane.

One has:
$$\lim_{\epsilon \to 0} \mu_{\epsilon} = \mu$$
 weak convergence

This can be copied for general (not necessarily normal) operators x in a tracial non-commutative probability space (\mathcal{A}, φ) . Put

$$G_{\epsilon,x}(\lambda) := \varphi\left((\lambda - x)^* \left((\lambda - x)(\lambda - x)^* + \epsilon^2\right)^{-1}\right)$$

Then

$$\mu_{\epsilon,x} = \frac{1}{\pi} \frac{\partial}{\partial \bar{\lambda}} G_{\epsilon,\mu}(\lambda)$$

is a positive measure on the complex plane, which converges weakly for $\epsilon \rightarrow 0$,

$$\mu_x := \lim_{\epsilon \to 0} \mu_{\epsilon,x}$$
 Brown measure of x

Hermitization Method

For given x we need to calculate

$$G_{\epsilon,x}(\lambda) = \varphi\left((\lambda - x)^* \left((\lambda - x)(\lambda - x)^* + \epsilon^2\right)^{-1}\right)$$

Let

$$X = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix} \in M_2(\mathcal{A}); \quad \text{note: } X = X^*$$

Consider X in the $M_2(\mathbb{C})$ -valued probability space with repect to $E = \mathrm{id} \otimes \varphi : M_2(\mathcal{A}) \to M_2(\mathbb{C})$ given by

$$E\left[\begin{pmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{pmatrix}\right] = \begin{pmatrix}\varphi(a_{11}) & \varphi(a_{12})\\\varphi(a_{21}) & \varphi(a_{22})\end{pmatrix}.$$

For the argument

$$\Lambda_{\epsilon} = \begin{pmatrix} i\epsilon & \lambda \\ \overline{\lambda} & i\epsilon \end{pmatrix} \in M_2(\mathbb{C}) \quad \text{and} \quad X = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix}$$

consider now the $M_2(\mathbb{C})$ -valued Cauchy transform of X

$$G_X(\Lambda_{\varepsilon}) = E\Big[(\Lambda_{\epsilon} - X)^{-1}\Big] = \begin{pmatrix} g_{\epsilon,\lambda,11} & g_{\epsilon,\lambda,12} \\ g_{\epsilon,\lambda,21} & g_{\epsilon,\lambda,22} \end{pmatrix}.$$

One can easily check that

$$(\Lambda_{\epsilon}-X)^{-1} = \begin{pmatrix} -i\epsilon((\lambda-x)(\lambda-x)^* + \epsilon^2)^{-1} & (\lambda-x)((\lambda-x)^*(\lambda-x) + \epsilon^2)^{-1} \\ (\lambda-x)^*((\lambda-x)(\lambda-x)^* + \epsilon^2)^{-1} & -i\epsilon((\lambda-x)^*(\lambda-x) + \epsilon^2)^{-1} \end{pmatrix}$$

thus

$$g_{\epsilon,\lambda,12} = G_{\varepsilon,x}(\lambda).$$

So for a general polynomial we should

- 1. hermitize
- 2. linearise
- 3. subordinate

But: do (1) and (2) fit together???

Consider p = xy with $x = x^*$, $y = y^*$.

For this we have to calculate the operator-valued Cauchy transform of

$$P = \begin{pmatrix} 0 & xy \\ yx & 0 \end{pmatrix}$$

Linearization means we should split this in sums of matrices in x and matrices in y.

Write

$$P = \begin{pmatrix} 0 & xy \\ yx & 0 \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & y \\ y & 0 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} = XYX$$

P = XYX is now a selfadjoint polynomial in the selfadjoint variables

$$X = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 0 & y \\ y & 0 \end{pmatrix}$$

 $\boldsymbol{X}\boldsymbol{Y}\boldsymbol{X}$ has linearization

$$\begin{pmatrix} 0 & 0 & X \\ 0 & Y & -1 \\ X & -1 & 0 \end{pmatrix}$$

thus

$$P = \begin{pmatrix} 0 & xy \\ yx & 0 \end{pmatrix}$$

has linearization

and we can now calculate the operator-valued Cauchy transform of this via subordination.

Does eigenvalue distribution of polynomial in independent random matrices converge to Brown measure of corresponding polynomial in free variables?

Conjecture: Consider m independent selfadjoint Gaussian (or, more general, Wigner) random matrices $X_N^{(1)}, \ldots, X_N^{(m)}$ and put

$$A_N := p(X_N^{(1)}, \dots, X_N^{(m)}), \qquad x := p(s_1, \dots, s_m).$$

We conjecture that the eigenvalue distribution μ_{A_N} of the random matrices A_N converge to the Brown measure μ_x of the limit operator x. Brown measure of xyz - 2yzx + zxy with x, y, z free semicircles

Brown measure of x + iy with x, y free Poissons

Brown measure of $x_1x_2 + x_2x_3 + x_3x_4 + x_4x_1$

