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Goal: Calculation of Distribution or Brown

Measure of Polynomials in Free Variables

Tools:

• Linearization

• Subordination

• Hermitization



We want to understand distribution of polynomials in free vari-

ables.

What we understand quite well is:

sums of free selfadjoint variables

So we should reduce:

arbitrary polynomial −→ sums of selfadjoint variables

This can be done on the expense of going over to operator-valued

frame.



Let B ⊂ A. A linear map

E : A → B

is a conditional expectation if

E[b] = b ∀b ∈ B

and

E[b1ab2] = b1E[a]b2 ∀a ∈ A, ∀b1, b2 ∈ B

An operator-valued probability space consists of B ⊂ A and a

conditional expectation E : A → B



Consider an operator-valued probability space E : A → B.

Random variables xi ∈ A (i ∈ I) are free with respect to E (or

free with amalgamation over B) if

E[a1 · · · an] = 0

whenever ai ∈ B〈xj(i)〉 are polynomials in some xj(i) with coeffi-

cients from B and

E[ai] = 0 ∀i and j(1) 6= j(2) 6= · · · 6= j(n).



Consider an operator-valued probability space E : A → B.

For a random variable x ∈ A, we define the operator-valued

Cauchy transform:

G(b) := E[(b− x)−1] (b ∈ B).

For x = x∗, this is well-defined and a nice analytic map on the

operator-valued upper halfplane:

H+(B) := {b ∈ B | (b− b∗)/(2i) > 0}



Theorem (Belinschi, Mai, Speicher 2013): Let x and y be
selfadjoint operator-valued random variables free over B. Then
there exists a Fréchet analytic map ω : H+(B)→ H+(B) so that

Gx+y(b) = Gx(ω(b)) for all b ∈ H+(B).

Moreover, if b ∈ H+(B), then ω(b) is the unique fixed point of
the map

fb : H+(B)→ H+(B), fb(w) = hy(hx(w) + b) + b,

and

ω(b) = lim
n→∞ f

◦n
b (w) for any w ∈ H+(B).

where

H+(B) := {b ∈ B | (b− b∗)/(2i) > 0}, h(b) :=
1

G(b)
− b



The Linearization Philosophy:

In order to understand polynomials in non-commuting variables,

it suffices to understand matrices of linear polynomials in those

variables.

• Voiculescu 1987: motivation

• Haagerup, Thorbjørnsen 2005: largest eigenvalue

• Anderson 2012: the selfadjoint version

a (based on Schur complement)



Consider a polynomial p in non-commuting variables x and y.
A linearization of p is an N ×N matrix (with N ∈ N) of the form

p̂ =

(
0 u
v Q

)
,

where

• u, v,Q are matrices of the following sizes: u is 1× (N − 1); v
is (N − 1)×N ; and Q is (N − 1)× (N − 1)

• each entry of u, v, Q is a polynomial in x and y,
each of degree ≤ 1

• Q is invertible and we have

p = −uQ−1v



Consider linearization of p

p̂ =

(
0 u
v Q

)
p = −uQ−1v and b =

(
z 0
0 0

)
(z ∈ C)

Then we have

(b− p̂)−1 =

(
1 0

−Q−1v 1

)(
(z − p)−1 0

0 −Q−1

)(
1 −uQ−1

0 1

)
=

(
(z − p)−1 ∗
∗ ∗

)

and thus

Gp̂(b) = id⊗ ϕ((b− p̂)−1) =

(
ϕ((z − p)−1) ϕ(∗)

ϕ(∗) ϕ(∗)

)



Note: p̂ is the sum of operator-valued free variables!

Theorem (Anderson 2012): One has

• for each p there exists a linearization p̂

(with an explicit algorithm for finding those)

• if p is selfadjoint, then this p̂ is also selfadjoint

Conclusion: Combination of linearization and operator-valued

subordination allows to deal with case of selfadjoint polynomials.



Input: p(x, y), Gx(z), Gy(z)

↓

Linearize p(x, y) to p̂ = x̂+ ŷ

↓

Gx̂(b) out of Gx(z) and Gŷ(b) out of Gy(z)

↓

Get w(b) as the fixed point of the iteration
w 7→ Gŷ(b+Gx̂(w)−1 − w)−1 − (Gx̂(w)−1 − w)

↓

Gp̂(b) = Gx̂(ω(b))

↓

Recover Gp(z) as one entry of Gp̂(b)



Example: p(x, y) = xy + yx+ x2

p has linearization

p̂ =


0 x y + x

2

x 0 −1

y + x
2 −1 0





P (X,Y ) = XY + Y X + X2

for independent X,Y ; X is Wigner and Y is Wishart
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p(x, y) = xy + yx + x2

for free x, y; x is semicircular and y is Marchenko-Pastur



Example: p(x1, x2, x3) = x1x2x1 + x2x3x2 + x3x1x3

p has linearization

p̂ =



0 0 x1 0 x2 0 x3
0 x2 −1 0 0 0 0
x1 −1 0 0 0 0 0
0 0 0 x3 −1 0 0
x2 0 0 −1 0 0 0
0 0 0 0 0 x1 −1
x3 0 0 0 0 −1 0





P (X1, X2, X3) = X1X2X1 + X2X3X2 + X3X1X3
for independent X1, X2, X3; X1, X2 Wigner, X3 Wishart
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p(x1, x2, x3) = x1x2x1 + x2x3x2 + x3x1x3
for free x1, x2, x3; x1, x2 semicircular, x3 Marchenko-Pastur



What about non-selfadjoint polynomials?

For a measure on C its Cauchy transform

Gµ(λ) =
∫
C

1

λ− z
dµ(z)

is well-defined everywhere outside a set of R2-Lebesgue measure

zero, however, it is analytic only outside the support of µ.

The measure µ can be extracted from its Cauchy transform by

the formula (understood in distributional sense)

µ =
1

π

∂

∂λ̄
Gµ(λ),



Better approach by regularization:

Gε,µ(λ) =
∫
C

λ̄− z̄
ε2 + |λ− z|2

dµ(z)

is well–defined for every λ ∈ C. By sub-harmonicity arguments

µε =
1

π

∂

∂λ̄
Gε,µ(λ)

is a positive measure on the complex plane.

One has: lim
ε→0

µε = µ weak convergence



This can be copied for general (not necessarily normal) operators

x in a tracial non-commutative probability space (A, ϕ).

Put

Gε,x(λ) := ϕ

(
(λ− x)∗

(
(λ− x)(λ− x)∗+ ε2

)−1
)

Then

µε,x =
1

π

∂

∂λ̄
Gε,µ(λ)

is a positive measure on the complex plane, which converges

weakly for ε→ 0,

µx := lim
ε→0

µε,x Brown measure of x



Hermitization Method

For given x we need to calculate

Gε,x(λ) = ϕ

(
(λ− x)∗

(
(λ− x)(λ− x)∗+ ε2

)−1
)

Let

X =

(
0 x
x∗ 0

)
∈M2(A); note: X = X∗

Consider X in the M2(C)-valued probability space with repect to

E = id⊗ ϕ : M2(A)→M2(C) given by

E

[(
a11 a12
a21 a22

)]
=

(
ϕ(a11) ϕ(a12)
ϕ(a21) ϕ(a22)

)
.



For the argument

Λε =

(
iε λ
λ̄ iε

)
∈M2(C) and X =

(
0 x
x∗ 0

)
consider now the M2(C)-valued Cauchy transform of X

GX(Λε) = E
[
(Λε −X)−1

]
=

(
gε,λ,11 gε,λ,12
gε,λ,21 gε,λ,22

)
.

One can easily check that

(Λε−X)−1 =

(
−iε((λ− x)(λ− x)∗+ ε2)−1 (λ− x)((λ− x)∗(λ− x) + ε2)−1

(λ− x)∗((λ− x)(λ− x)∗+ ε2)−1 −iε((λ− x)∗(λ− x) + ε2)−1

)
.

thus

gε,λ,12 = Gε,x(λ).



So for a general polynomial we should

1. hermitize

2. linearise

3. subordinate

But: do (1) and (2) fit together???



Consider p = xy with x = x∗, y = y∗.

For this we have to calculate the operator-valued Cauchy trans-

form of

P =

(
0 xy
yx 0

)

Linearization means we should split this in sums of matrices in

x and matrices in y.

Write

P =

(
0 xy
yx 0

)
=

(
x 0
0 1

)(
0 y
y 0

)(
x 0
0 1

)
= XYX



P = XYX is now a selfadjoint polynomial in the selfadjoint vari-

ables

X =

(
x 0
0 1

)
and Y =

(
0 y
y 0

)

XYX has linearization 0 0 X
0 Y −1
X −1 0





thus

P =

(
0 xy
yx 0

)
has linearization



0 0 0 0 x 0
0 0 0 0 0 1
0 0 0 y −1 0
0 0 y 0 0 −1
x 0 −1 0 0 0
0 1 0 −1 0 0


=



0 0 0 0 x 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 −1
x 0 −1 0 0 0
0 1 0 −1 0 0


+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 y 0 0
0 0 y 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



and we can now calculate the operator-valued Cauchy transform

of this via subordination.



Does eigenvalue distribution of polynomial in

independent random matrices converge to

Brown measure of corresponding polynomial in

free variables?

Conjecture: Consider m independent selfadjoint Gaussian (or,

more general, Wigner) random matrices X(1)
N , . . . , X

(m)
N and put

AN := p(X(1)
N , . . . , X

(m)
N ), x := p(s1, . . . , sm).

We conjecture that the eigenvalue distribution µAN of the ran-

dom matrices AN converge to the Brown measure µx of the limit

operator x.



Brown measure of xyz − 2yzx+ zxy with x, y, z free semicircles



Brown measure of x+ iy with x, y free Poissons



Brown measure of x1x2 + x2x3 + x3x4 + x4x1


