OUTLIER EIGENVALUES FOR DEFORMED I.I.D. RANDOM MATRICES

Charles Bordenave

CNRS & University of Toulouse

Joint work with Mireille Capitaine.

What this talk is about

Take $N = \begin{pmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & \cdots \end{pmatrix} \in M_n(\mathbb{R}),$ and $U \in O(n)$.

What this talk is about

Take $N = \begin{pmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & \cdots \end{pmatrix} \in M_n(\mathbb{R}),$ and $U \in O(n)$.

What are the eigenvalues of UNU^* ?

WHAT THIS TALK IS ABOUT

Simulation for n = 2000 and U Haar distributed on O(n).

What this talk is about

Simulation for n = 30 and U Haar distributed on O(n).

Could a smoothed analysis explain this?

von Neumann & Goldstine (1947), Edelman, Spielman & Teng (2001).

Deformed IID RANDOM MATRICES

Consider the non-hermitian random matrix model

 $M = \sigma Y + A,$

where A is an $n \times n$ matrix, $\sigma > 0$ and

$$Y = \frac{X}{\sqrt{n}},$$

with $(X_{ij})_{i,j\geq 1}$ iid complex variables

 $\mathbb{E}X_{ij} = 0, \quad \mathbb{E}|X_{ij}|^2 = 1, \quad \mathbb{E}|X_{ij}|^4 < \infty.$

EXPERIMENTAL MATHEMATICS

CIRCULANT MATRIX

$$A = C_n = \begin{pmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ 1 & 0 & \cdots & \end{pmatrix}, \quad n = 500, \quad \sigma^2 = 1/2.$$

$$A = N_n = \begin{pmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & \cdots & \end{pmatrix}, \quad n = 500, \quad \sigma^2 = 1/2.$$

OUTLIERS WITH DIAGONAL JORDAN BLOCKS

$$A = \begin{pmatrix} C_{n-r} & 0\\ 0 & 0_r \end{pmatrix}, \quad r = 3, \quad n = 500, \quad \sigma^2 = 1/2.$$

OUTLIERS WITH FULL JORDAN BLOCK

$$A = \begin{pmatrix} C_{n-r} & 0\\ 0 & N_r \end{pmatrix}, \quad r = 3, \quad n = 500, \quad \sigma^2 = 1/2.$$

CONVERGENCE OF SPECTRAL DISTRIBUTIONS

The two spectra

If $B \in M_n(\mathbb{C})$ has eigenvalues $\lambda_1(B), \ldots, \lambda_n(B)$, then

$$\mu_B = \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k(B)}$$

is the empirical distribution of the eigenvalues.

The two spectra

If $B \in M_n(\mathbb{C})$ has eigenvalues $\lambda_1(B), \ldots, \lambda_n(B)$, then

$$\mu_B = \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k(B)}$$

is the empirical distribution of the eigenvalues.

The singular values of B will be denoted by

$$0 \leqslant s_n(B) \leqslant \ldots \leqslant s_1(B) = ||B||.$$

We get

$$\mu_{BB^*} = \frac{1}{n} \sum_{k=1}^n \delta_{s_k^2(B)}.$$

CONVERGENCE OF THE SPECTRAL DISTRIBUTIONS

We will consider a sequence $A_n \in M_n(\mathbb{C})$ such that, as $n \to \infty$,

 $\|A_n\| = O(1),$

and for all $z \in \mathbb{C}$, weakly,

$$\mu_{(A_n-z)(A_n-z)^*} \xrightarrow{w} \nu_z,$$

for some probability measure ν_z on \mathbb{R}_+ .

CONVERGENCE OF THE SPECTRAL DISTRIBUTIONS

We will consider a sequence $A_n \in M_n(\mathbb{C})$ such that, as $n \to \infty$,

 $\|A_n\| = O(1),$

and for all $z \in \mathbb{C}$, weakly,

$$\mu_{(A_n-z)(A_n-z)^*} \xrightarrow{w} \nu_z,$$

for some probability measure ν_z on \mathbb{R}_+ .

Example : A_n converges in \star -moments to an operator a in a tracial non-commutative probability space (\mathcal{A}, τ) , i.e. for all $\varepsilon_{\ell} \in \{1, *\},$

$$\frac{1}{n} \operatorname{Tr}(A_n^{\varepsilon_1} \dots A_n^{\varepsilon_k}) \to \tau(a^{\varepsilon_1} \dots a^{\varepsilon_k}),$$

then ν_z is the distribution of $(a-z)(a-z)^*$.

 Recall

$$M_n = \sigma Y_n + A_n.$$

Theorem (Śniady (2002), Dozier & Silverstein (2007), Tao & Vu(2010))

There exists a probability measure β on \mathbb{C} such that, a.s.

$$\mu_{M_n} \xrightarrow{w} \beta.$$

For any $z \in \mathbb{C}$, there exists a probability measure μ_z on \mathbb{R}_+ such that, a.s.

$$\mu_{(M_n-z)(M_n-z)^*} \xrightarrow{w} \mu_z.$$

If A_n converges in \star -moments to an operator a. Set

 $b = \sigma c + a,$

where c is a circular element free of a.

Then,

- μ_z is the distribution of $(b-z)(b-z)^*$,
- β is the Brown's spectral measure of b, i.e. in $\mathcal{D}'(\mathbb{C})$,

$$\beta = -\frac{1}{4\pi} \Delta \int_0^\infty \log(\lambda) d\mu_z(\lambda).$$

Haagerup & Larsen (2000), Biane & Lehner (2001), Bordenave, Chafaï & Caputo (2013),

SUPPORT OF BROWN'S MEASURE

We have

$$\operatorname{supp}(\beta) = \left\{ z \in \mathbb{C} : 0 \in \operatorname{supp}(\nu_z) \text{ or } \int \lambda^{-1} d\nu_z(\lambda) \ge \sigma^{-2} \right\},$$

provided that

$\operatorname{supp}(\beta) = \{ z \in \mathbb{C} : 0 \in \operatorname{supp}(\mu_z) \}$

(holds e.g. if a is a normal operator, always holds?).

We will assume that the above formula holds and study the eigenvalues of M_n in $\mathbb{C} \setminus \operatorname{supp}(\beta)$.

NO OUTLIER

Theorem Let $\Gamma \subset \mathbb{C} \setminus \operatorname{supp}(\beta)$ be a compact set with continuous boundary.

Assume that for all $z \in \Gamma$, there exists $\eta > 0$ such that $s_n(A_n - z) \ge \eta$ for all $n \gg 1$.

Then, a.s. for all $n \gg 1$, M_n has no eigenvalue in Γ .

In fact, more is true, for some $\delta > 0$ a.s. for all $n \gg 1$, $s_n(M_n - z) \ge \delta$ for all $z \in \Gamma$.

Well-conditioned matrix

Take the normal matrix

$$A_n = C_n.$$

The support of β is an annulus

$$\operatorname{supp}(\beta) = \left\{ z \in \mathbb{C} : \sqrt{(1 - \sigma^2)_+} \leqslant |z| \leqslant \sqrt{1 + \sigma^2} \right\}.$$

The singular values of $A_n - z$ are equal to

 $|e^{\frac{2i\pi k}{n}} - z| \ge |1 - |z||.$

BADLY-CONDITIONED MATRIX

Take the nilpotent matrix

$$A_n = N_n.$$

Then β is unchanged but, if |z| < 1, $s_n(A_n - z) = o(1)$.

Decompose

$$A_n = A'_n + A''_n$$

with $\operatorname{rank}(A_n'') = r = O(1).$

Case $A'_n = 0$ studied in *Tao (2013)*.

If A'_n is a Wigner matrix, contained in O'Rourke & Renfrew (2013).

Finite rank perturbation of the single ring model :

 $U_n D_n V_n^* + A_n'',$

with $D_n \ge 0$ diagonal, U_n, V_n independent Haar unitary, Benaych-Georges & Rochet (2013) and Guionnet-Zeitouni (2012) for $A''_n = 0$.

Well-conditioned decomposition

$$A_n = A'_n + A''_n$$
 with $\operatorname{rank}(A''_n) = r = O(1).$

Theorem Let $\Gamma \subset \mathbb{C} \setminus \operatorname{supp}(\beta)$ be a compact set with continuous boundary.

Assume that for all $z \in \Gamma$, there exists $\eta > 0$ such that $s_n(A'_n - z) \ge \eta$ for all $n \gg 1$.

Assume that for some $\varepsilon > 0$, for all $n \gg 1$,

$$\min_{z \in \partial \Gamma} \left| \frac{\det(A_n - z)}{\det(A'_n - z)} \right| \ge \varepsilon.$$

Then, a.s. for $n \gg 1$, M_n and A_n have the same number of eigenvalues in Γ .

An eigenvalue $\theta_n \to \theta$ of A_n is a stable outlier if for any $\delta > 0$, we can find $\Gamma \subset B(\theta, \delta)$ and $\varepsilon > 0$ such that for all $n \gg 1$,

$$\min_{z \in \partial \Gamma} \left| \frac{\det(A_n - z)}{\det(A'_n - z)} \right| \ge \varepsilon.$$

Counting multiplicities, to each stable outlier of A_n corresponds bijectively an eigenvalue at distance o(1) in M_n .

DIAGONAL JORDAN BLOCKS

$$A_n = \begin{pmatrix} C_{n-r} & 0\\ 0 & 0_r \end{pmatrix} = \begin{pmatrix} C_{n-r} & 0\\ 0 & I_r \end{pmatrix} + \begin{pmatrix} 0 & 0\\ 0 & -I_r \end{pmatrix}.$$

If $|z| \ge \varepsilon^{1/r} (1+|z|)$,

$$\left|\frac{\det(A_n-z)}{\det(A'_n-z)}\right| = \left|\prod_{k=1}^r \frac{-z}{1-z}\right| \geqslant \varepsilon.$$

$$A_n = \begin{pmatrix} C_{n-r} & 0\\ 0 & N_r \end{pmatrix} = \begin{pmatrix} C_{n-r} & 0\\ 0 & I_r \end{pmatrix} + \begin{pmatrix} 0 & 0\\ 0 & N_r - I_r \end{pmatrix}.$$

Again, if $|z| \ge \varepsilon^{1/r} (1+|z|)$, $|\det(A_n-z)/\det(A'_n-z)| \ge \varepsilon$.

Huge fluctuations : n = 500 is not enough to see the convergence of the 3 outliers to 0!!

FLUCTUATIONS OF STABLE OUTLIERS

DIAGONAL JORDAN BLOCKS

Assume $\theta_n \to \theta \in \mathbb{C} \setminus \text{supp}(\beta)$ and

$$A_n = \begin{pmatrix} \theta_n I_r & 0\\ 0 & \hat{A}_n \end{pmatrix}.$$

Theorem

Set $\varphi = \int \lambda^{-1} d\nu_{\theta}(\lambda)$. Suppose that for some $\eta > 0$ and $n \gg 1$, $s_n(\hat{A}_n - \theta) \ge \eta$ and $\frac{\mathbb{E}X_{11}^2}{n} \operatorname{Tr}\{(\hat{A}_n - \theta)^{-1}(\hat{A}_n^\top - \theta)^{-1}\} \to \psi$.

Then, a.s. for $n \gg 1$, M_n has exactly r eigenvalues $(\lambda_i)_{1 \leq i \leq r}$ in $B(\theta, \eta/2)$,

DIAGONAL JORDAN BLOCKS

Assume $\theta_n \to \theta \in \mathbb{C} \setminus \text{supp}(\beta)$ and

$$A_n = \begin{pmatrix} \theta_n I_r & 0\\ 0 & \hat{A}_n \end{pmatrix}.$$

Theorem

Set $\varphi = \int \lambda^{-1} d\nu_{\theta}(\lambda)$. Suppose that for some $\eta > 0$ and $n \gg 1$, $s_n(\hat{A}_n - \theta) \ge \eta$ and $\frac{\mathbb{E}X_{11}^2}{n} \operatorname{Tr}\{(\hat{A}_n - \theta)^{-1}(\hat{A}_n^\top - \theta)^{-1}\} \to \psi$.

Then, a.s. for $n \gg 1$, M_n has exactly r eigenvalues $(\lambda_i)_{1 \leq i \leq r}$ in $B(\theta, \eta/2)$, and

$$\sqrt{n}\left((\lambda_1-\theta_n),\ldots,(\lambda_r-\theta_n)\right)$$

converges in distribution towards the eigenvalues of

$$V = \sigma X_r + \sigma G \in M_r(\mathbb{C}),$$

where X_r is independent of G with iid complex Gaussian entries given by, $\mathbb{E}|Z_{ij}|^2 = \frac{\sigma^2 \varphi}{1 - \sigma^2 \varphi}$ and $\mathbb{E}Z_{ij}^2 = \frac{\sigma^2(\mathbb{E}X_{11}^2)\psi}{1 - \sigma^2 \psi}$.

Assume $\theta_n \to \theta \in \mathbb{C} \setminus \text{supp}(\beta)$ and $A_n = \begin{pmatrix} P_n J_n P_n^{-1} & 0\\ 0 & \hat{A}_n \end{pmatrix},$

with $||P_n - P|| \to 0$ for some $P \in \operatorname{GL}_r(\mathbb{C})$, and

$$J_n = \begin{pmatrix} \theta_n & 1 & & \\ & \theta_n & 1 & \\ & & \ddots & \ddots \end{pmatrix} = \theta_n I_r + N_r.$$

Assume $\theta_n \to \theta \in \mathbb{C} \setminus \text{supp}(\beta)$ and $A_n = \begin{pmatrix} P_n J_n P_n^{-1} & 0\\ 0 & \hat{A}_n \end{pmatrix},$

with $||P_n - P|| \to 0$ for some $P \in GL_r(\mathbb{C})$, and

$$J_n = \begin{pmatrix} \theta_n & 1 & & \\ & \theta_n & 1 & \\ & & \ddots & \ddots \end{pmatrix} = \theta_n I_r + N_r.$$

Theorem

Under the previous assumptions, a.s. for $n \gg 1$, M_n has exactly r eigenvalues $(\lambda_i)_{1 \leq i \leq r}$ in $B(\theta, \eta/2)$, and

$$n^{1/2r}\left((\lambda_1-\theta_n),\ldots,(\lambda_r-\theta_n)\right)$$

converges in distribution towards the roots of

$$z^r - e_r^* P^{-1} V P e_1.$$

For $\hat{A}_n = 0$ and X complex Ginibre contained in Benaych-Georges & Rochet (2013).

$$A_n = \begin{pmatrix} C_{n-r} & 0\\ 0 & N_r \end{pmatrix}$$

For n = 500 and r = 3, $n^{-1/2r} \simeq 0.35$!!

Take

$$N_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \end{pmatrix} = C_n - e_n e_1^*.$$

For any $|z| \leqslant 1 - \varepsilon$,

$$\frac{\det(N_n-z)}{\det(C_n-z)}\Big| = \frac{|z|^n}{|1-z^n|} \leqslant \frac{(1-\varepsilon)^n}{1-(1-\varepsilon)^n} = o(1).$$

In the orthonormal basis of eigenvectors of C_n , we get

$$C_n = U_n A'_n U_n^*$$
 and $N_n = U_n (A'_n + A''_n) U_n^*$

where

$$A'_n = \operatorname{diag}(e^{\frac{2i\pi}{n}}, \cdots, e^{\frac{2in\pi}{n}}) \quad \text{and} \quad A''_n = -f_n f_1^\top.$$

with $f_\ell = (e^{\frac{2i\pi\ell k}{n}}/\sqrt{n})_{1 \leq k \leq n}.$

 A_n'' is a delocalized perturbation of A_n' .

Theorem

Let $A_n = A'_n + A''_n$ be as above, $0 < \sigma < 1$ and assume that $\mathbb{P}(|X_{ij}| \ge t) \le \exp(-t^{\kappa})$ for some $\kappa > 0$. We set

$$\varphi(z,w) = \frac{1}{1 - z\bar{w}}.$$

The point process of eigenvalues of M_n in $\dot{B}(0, \sqrt{1-\sigma^2})$ converges weakly to the zeros of the Gaussian analytic function g(z) on $\dot{B}(0, \sqrt{1-\sigma^2})$ with kernel given by,

$$K(z,w) = \frac{\varphi(z,w)^2}{1 - \sigma^2 \varphi(z,w)}.$$

GAUSSIAN ANALYTIC FUNCTIONS

Hough, Krishnapur, Peres, Virág (2009).

A Gaussian analytic function on $\Gamma \subset \mathbb{C}$ is a random analytic function g such that for every z_1, \dots, z_n in Γ ,

 $(g(z_1), \dots, g(z_n))$

is a centered complex Gaussian vector with $\mathbb{E}g(z_i)g(z_j) = 0$.

The distribution of g is characterized by its kernel

 $K(z,w) = \mathbb{E}g(z)\bar{g}(w).$

Edelman-Kostlan's formula : the intensity of zeros of g is

$$\frac{1}{2\pi}\Delta\log K(z,z).$$

We have a general convergence result for unstable outliers when A'_n is diagonal and for all $z \in \Gamma$,

$$\left. \frac{\det(A_n - z)}{\det(A'_n - z)} \right| = o\left(\frac{1}{\sqrt{n}}\right).$$

We have a general convergence result for unstable outliers when A'_n is diagonal and for all $z \in \Gamma$,

$$\left. \frac{\det(A_n - z)}{\det(A'_n - z)} \right| = o\left(\frac{1}{\sqrt{n}}\right).$$

In the unbounded component of $\mathbb{C}\setminus \text{supp}(\beta)$, the above cannot hold.

We have a general convergence result for unstable outliers when A'_n is diagonal and for all $z \in \Gamma$,

$$\left. \frac{\det(A_n - z)}{\det(A'_n - z)} \right| = o\left(\frac{1}{\sqrt{n}}\right).$$

In the unbounded component of $\mathbb{C}\setminus \text{supp}(\beta)$, the above cannot hold.

For A'_n normal with radial limiting ESD $\mu_{A'_n}$, there is a generic way to create unstable outliers in the bounded components of $\mathbb{C} \setminus \operatorname{supp}(\beta)$.

LARGE NORM UNSTABLE OUTLIERS

In the unbounded component of $\mathbb{C}\setminus \text{supp}(\beta)$, it is possible to create unstable outliers when

$$A_n = A'_n + A''_n$$

with $||A_n''|| \ge \sqrt{n}$,

Observed in Rajan & Abbott (2006) and Tao (2011), for $A'_n = 0$ and a particular random choice of A''_n .

We have a general convergence result when A'_n diagonal, $A''_n = \sqrt{n}v_n u_n^*$, and $u_n^*(z - A'_n)^{-1}v_n$, $||u_n||_{\infty}$, $||v_n||_{\infty}$ of order $O(1/\sqrt{n})$.

LARGE UNSTABLE OUTLIERS

The eigenvalues in $\mathbb{C} \setminus B(0, \sqrt{1 + \sigma^2})$ of M_n when

$$A_n = \operatorname{diag}\left(e^{\frac{2i\pi}{n}}, \cdots, e^{\frac{2in\pi}{n}}\right) + \sqrt{n}f_nf_1^{\top}$$

converge vaguely to the zeros of $1+\sigma g$ where g is the Gaussian analytic function with kernel

$$H(z,w) = \frac{\varphi(z,w)^2}{1 + \sigma^2 \varphi(z,w)}, \quad \text{ with } \quad \varphi(z,w) = \frac{1}{1 - z\bar{w}}$$

LARGE UNSTABLE OUTLIERS

Theorem

Assume that $\mathbb{P}(|X_{ij}| \ge t) \le \exp(-t^{\kappa})$ for some $\kappa > 0$. Take

$$M_n = Y_n + \theta_n v_n u_n^*,$$

with $u_n^\top v_n = u_n^* v_n = 0$, $\theta_n \gg \sqrt{n}$ and $||u_n||_{\infty}, ||v_n||_{\infty} = O(1/\sqrt{n}).$

The point process of eigenvalues of M_n in $\mathbb{C}\setminus B(0,1)$ converges vaguely to the zeros of

$$g(z) = \sum_{k \ge 0} \gamma_k z^{-k},$$

with γ_k iid complex Gaussian variables with $\mathbb{E}|\gamma_k|^2 = 1$ and $\mathbb{E}\gamma_k^2 = (\mathbb{E}X_{11}^2)^{k+1}$.

LARGE UNSTABLE OUTLIERS

If $\mathbb{E}X_{11}^2 = 0$ then g is a GAF and its zeros is a determinantal point process, *Peres & Virág (2005)*.

n = 500 and $\theta_n = n^2$

(cropped image).

IDEAS OF PROOFS

SILVESTER'S IDENTITY

Following Benach-Georges & Rao (2011) we use the identity, for $P, Q^{\top} \in M_{n,r}(\mathbb{C}), B \in \mathrm{GL}_n(\mathbb{C}),$

 $\det(B + PQ) = \det(B) \det(I_r + QB^{-1}P).$

SILVESTER'S IDENTITY

Following Benach-Georges & Rao (2011) we use the identity, for $P, Q^{\top} \in M_{n,r}(\mathbb{C}), B \in \mathrm{GL}_n(\mathbb{C}),$

 $\det(B + PQ) = \det(B) \det(I_r + QB^{-1}P).$

Set $M'_n = \sigma Y_n + A'_n$, $R_n(z) = (zI_n - M'_n)^{-1}$ and $R'_n(z) = (zI_n - A'_n)^{-1}$. For r = 1, if $A''_n = v_n u_n^*$, we get $\frac{\det(zI_n - M_n)}{\det(zI_n - M'_n)} = 1 - u_n^* R_n(z) v_n$,

and

$$\frac{\det(zI_n - A_n)}{\det(zI_n - A'_n)} = 1 - u_n^* R'_n(z) v_n.$$

Noise collapsing

Recall $M'_n = \sigma Y_n + A'_n$, $R_n(z) = (zI_n - M'_n)^{-1}$ and $R'_n(z) = (zI_n - A'_n)^{-1}$.

We prove that for any $z \in \mathbb{C} \setminus \text{supp}(\beta)$,

$$u_n^* R_n(z) v_n = u_n^* R_n'(z) v_n + \frac{g_n(z)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

Hence,

$$\frac{\det(zI_n - M_n)}{\det(zI_n - M'_n)} = \frac{\det(zI_n - A_n)}{\det(zI_n - A'_n)} - \frac{g_n(z)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

Rouché's Theorem

Let $U \subset \mathbb{C}$ is a bounded open connected set. We endow $\mathcal{H}(U)$ the set of analytic functions on U with the distance

$$d(f,g) = \sum_{j \ge 1} 2^{-j} \frac{\|f - g\|_{L^{\infty}(K_j)}}{1 + \|f - g\|_{L^{\infty}(K_j)}}.$$

where K_j is an exhausting sequence of compact subsets of U. Then $\mathcal{H}(U)$ is a complete, separable metric space.

Rouché's Theorem

Let $U \subset \mathbb{C}$ is a bounded open connected set. We endow $\mathcal{H}(U)$ the set of analytic functions on U with the distance

$$d(f,g) = \sum_{j \ge 1} 2^{-j} \frac{\|f - g\|_{L^{\infty}(K_j)}}{1 + \|f - g\|_{L^{\infty}(K_j)}}.$$

where K_j is an exhausting sequence of compact subsets of U. Then $\mathcal{H}(U)$ is a complete, separable metric space.

Lemma

Let f_n be a tight sequence of random analytic functions which converges weakly to f for the finite dimensional convergence. If a.s. $f \not\equiv 0$ then the point process of zeros of f_n converges weakly to the point process of zeros of f.

Recall $M'_n = \sigma Y_n + A'_n$, $R_n(z) = (zI_n - M'_n)^{-1}$ and $R'_n(z) = (zI_n - A'_n)^{-1}$. We prove, for any $z \in \mathbb{C} \setminus \operatorname{supp}(\beta)$,

$$u_n^* R_n(z) v_n = u_n^* R'_n(z) v_n + \frac{g_n(z)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

We expand

$$R_n = R'_n + \sum_{k=1}^{\infty} (\sigma R'_n Y_n)^k R'_n.$$

Recall $M'_n = \sigma Y_n + A'_n$, $R_n(z) = (zI_n - M'_n)^{-1}$ and $R'_n(z) = (zI_n - A'_n)^{-1}$. We prove, for any $z \in \mathbb{C} \setminus \operatorname{supp}(\beta)$,

$$u_n^* R_n(z) v_n = u_n^* R'_n(z) v_n + \frac{g_n(z)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

We expand

$$R_n = R'_n + \sum_{k=1}^{\infty} (\sigma R'_n Y_n)^k R'_n.$$

(i) the series is a.s. convergent in norm precisely when $z \in \mathbb{C} \setminus \text{supp}(\beta)$,

Recall $M'_n = \sigma Y_n + A'_n$, $R_n(z) = (zI_n - M'_n)^{-1}$ and $R'_n(z) = (zI_n - A'_n)^{-1}$. We prove, for any $z \in \mathbb{C} \setminus \operatorname{supp}(\beta)$,

$$u_n^* R_n(z) v_n = u_n^* R'_n(z) v_n + \frac{g_n(z)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

We expand

$$R_n = R'_n + \sum_{k=1}^{\infty} (\sigma R'_n Y_n)^k R'_n.$$

(i) the series is a.s. convergent in norm precisely when $z \in \mathbb{C} \setminus \text{supp}(\beta)$,

(ii) a.s. $u^*P(B_1, \dots, B_k, Y)v \to 0$ if P is a non trivial polynomial in Y and $B_\ell = O(1)$.

Recall $M'_n = \sigma Y_n + A'_n$, $R_n(z) = (zI_n - M'_n)^{-1}$ and $R'_n(z) = (zI_n - A'_n)^{-1}$. We prove, for any $z \in \mathbb{C} \setminus \operatorname{supp}(\beta)$,

$$u_n^* R_n(z) v_n = u_n^* R'_n(z) v_n + \frac{g_n(z)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right).$$

We expand

$$R_n = R'_n + \sum_{k=1}^{\infty} (\sigma R'_n Y_n)^k R'_n.$$

(i) the series is a.s. convergent in norm precisely when $z \in \mathbb{C} \setminus \text{supp}(\beta)$,

(ii) a.s. $u^*P(B_1, \dots, B_k, Y)v \to 0$ if P is a non trivial polynomial in Y and $B_\ell = O(1)$.

(iii) for the $1/\sqrt{n}$ fluctuation : functional CLT for $z \mapsto \sqrt{n}(u_n^* R'_n(z) Y_n(z))^k R'_n(z) v_n + \text{tightness.}$

FINAL COMMENTS

- Inspiring simulations!

FINAL COMMENTS

- Inspiring simulations !
- The finite n effects in non-hermitian random matrices are truly surprising.

FINAL COMMENTS

- Inspiring simulations!
- The finite n effects in non-hermitian random matrices are truly surprising.
- Many situations not covered by our work, e.g.
 - * eigenvectors,
 - $^{*}~\sigma \rightarrow 0,$
 - * A_n'' has large rank,
 - * other polynomials $P(A_1, \cdots, A_k, Y)$,
 - * edge behavior,
 - * ...

THANK YOU FOR YOUR ATTENTION !

Outlier eigenvalues for deformed i.i.d. random matrices, with Mireille Capitaine - arXiv:1403.6001.