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What this talk is about

Take

N =


0 1 0 · · ·
0 0 1 · · ·
...

...
. . .

. . .

0 0 . . .

 ∈Mn(R),

and U ∈ O(n).

What are the eigenvalues of UNU∗ ?
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What this talk is about

Simulation for n = 2000 and U Haar distributed on O(n).



What this talk is about

Simulation for n = 30 and U Haar distributed on O(n).

Could a smoothed analysis explain this ?

von Neumann & Goldstine (1947), Edelman, Spielman & Teng

(2001).



Deformed iid random matrices

Consider the non-hermitian random matrix model

M = σY +A,

where A is an n× n matrix, σ > 0 and

Y =
X√
n
,

with (Xij)i,j>1 iid complex variables

EXij = 0, E|Xij |2 = 1, E|Xij |4 <∞.



Experimental mathematics



Circulant matrix

A = Cn =


0 1 0 · · ·
0 0 1 · · ·
...

...
. . .

. . .

1 0 . . .

 , n = 500, σ2 = 1/2.



Nilpotent matrix

A = Nn =


0 1 0 · · ·
0 0 1 · · ·
...

...
. . .

. . .

0 0 . . .

 , n = 500, σ2 = 1/2.



Outliers with diagonal Jordan blocks

A =

(
Cn−r 0

0 0r

)
, r = 3, n = 500, σ2 = 1/2.



Outliers with full Jordan block

A =

(
Cn−r 0

0 Nr

)
, r = 3, n = 500, σ2 = 1/2.



Convergence of spectral distributions



The two spectra

If B ∈Mn(C) has eigenvalues λ1(B), . . . , λn(B), then

µB =
1

n

n∑
k=1

δλk(B)

is the empirical distribution of the eigenvalues.

The singular values of B will be denoted by

0 6 sn(B) 6 . . . 6 s1(B) = ‖B‖.

We get

µBB∗ =
1

n

n∑
k=1

δs2k(B).



The two spectra

If B ∈Mn(C) has eigenvalues λ1(B), . . . , λn(B), then

µB =
1

n

n∑
k=1

δλk(B)

is the empirical distribution of the eigenvalues.

The singular values of B will be denoted by

0 6 sn(B) 6 . . . 6 s1(B) = ‖B‖.

We get

µBB∗ =
1

n

n∑
k=1

δs2k(B).



Convergence of the spectral distributions

We will consider a sequence An ∈Mn(C) such that, as n→∞,

‖An‖ = O(1),

and for all z ∈ C, weakly,

µ(An−z)(An−z)∗
w−→ νz,

for some probability measure νz on R+.

Example : An converges in ?-moments to an operator a in a

tracial non-commutative probability space (A, τ), i.e. for all
ε` ∈ {1, ∗},

1

n
Tr(Aε1n . . . Aεkn )→ τ(aε1 . . . aεk),

then νz is the distribution of (a− z)(a− z)∗.
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Convergence of the spectral distributions

Recall

Mn = σYn +An.

Theorem (�niady (2002), Dozier & Silverstein (2007), Tao & Vu
(2010))

There exists a probability measure β on C such that, a.s.

µMn

w−→ β.

For any z ∈ C, there exists a probability measure µz on R+ such

that, a.s.

µ(Mn−z)(Mn−z)∗
w−→ µz.



Brown's spectral measure

If An converges in ?-moments to an operator a. Set

b = σc+ a,

where c is a circular element free of a.

Then,

- µz is the distribution of (b− z)(b− z)∗,

- β is the Brown's spectral measure of b, i.e. in D′(C),

β = − 1

4π
∆

∫ ∞
0

log(λ)dµz(λ).

Haagerup & Larsen (2000), Biane & Lehner (2001), Bordenave,

Chafaï & Caputo (2013), . . . .



Support of Brown's measure

We have

supp(β) =

{
z ∈ C : 0 ∈ supp(νz) or

∫
λ−1dνz(λ) > σ−2

}
,

provided that

supp(β) = {z ∈ C : 0 ∈ supp(µz)}

(holds e.g. if a is a normal operator, always holds ?).

We will assume that the above formula holds and study the

eigenvalues of Mn in C\supp(β).



No Outlier



Well-conditioned matrix

Theorem
Let Γ ⊂ C\supp(β) be a compact set with continuous boundary.

Assume that for all z ∈ Γ, there exists η > 0 such that

sn(An − z) > η for all n� 1.

Then, a.s. for all n� 1, Mn has no eigenvalue in Γ.

In fact, more is true, for some δ > 0 a.s. for all n� 1,
sn(Mn − z) > δ for all z ∈ Γ.



Well-conditioned matrix

Take the normal matrix

An = Cn.

The support of β is an annulus

supp(β) =
{
z ∈ C :

√
(1− σ2)+ 6 |z| 6

√
1 + σ2

}
.

The singular values of An − z are equal to

|e
2iπk
n − z| > |1− |z||.



Badly-conditioned matrix

Take the nilpotent matrix

An = Nn.

Then β is unchanged but, if |z| < 1, sn(An − z) = o(1).



Stable Outliers



Related works

Decompose

An = A′n +A′′n

with rank(A′′n) = r = O(1).

Case A′n = 0 studied in Tao (2013).

If A′n is a Wigner matrix, contained in O'Rourke & Renfrew

(2013).

Finite rank perturbation of the single ring model :

UnDnV
∗
n +A′′n,

with Dn > 0 diagonal, Un, Vn independent Haar unitary,

Benaych-Georges & Rochet (2013) and Guionnet-Zeitouni

(2012) for A′′n = 0.



Well-conditioned decomposition

An = A′n +A′′n with rank(A′′n) = r = O(1).

Theorem
Let Γ ⊂ C\supp(β) be a compact set with continuous boundary.

Assume that for all z ∈ Γ, there exists η > 0 such that

sn(A′n − z) > η for all n� 1.

Assume that for some ε > 0, for all n� 1,

min
z∈∂Γ

∣∣∣∣det(An − z)
det(A′n − z)

∣∣∣∣ > ε.

Then, a.s. for n� 1, Mn and An have the same number of

eigenvalues in Γ.



Stable outliers

An eigenvalue θn → θ of An is a stable outlier if for any δ > 0,
we can �nd Γ ⊂ B(θ, δ) and ε > 0 such that for all n� 1,

min
z∈∂Γ

∣∣∣∣det(An − z)
det(A′n − z)

∣∣∣∣ > ε.

Counting multiplicities, to each stable outlier of An corresponds

bijectively an eigenvalue at distance o(1) in Mn.



Diagonal Jordan Blocks

An =

(
Cn−r 0

0 0r

)
=

(
Cn−r 0

0 Ir

)
+

(
0 0
0 −Ir

)
.

If |z| > ε1/r(1 + |z|),∣∣∣∣det(An − z)
det(A′n − z)

∣∣∣∣ =

∣∣∣∣∣
r∏

k=1

−z
1− z

∣∣∣∣∣ > ε.



Full Jordan Block

An =

(
Cn−r 0

0 Nr

)
=

(
Cn−r 0

0 Ir

)
+

(
0 0
0 Nr − Ir

)
.

Again, if |z| > ε1/r(1 + |z|), |det(An − z)/det(A′n − z)| > ε.

Huge �uctuations : n = 500 is not enough to see the convergence

of the 3 outliers to 0 ! !



Fluctuations of Stable Outliers



Diagonal Jordan Blocks

Assume θn → θ ∈ C\supp(β) and

An =

(
θnIr 0

0 Ân

)
.

Theorem
Set ϕ =

∫
λ−1dνθ(λ). Suppose that for some η > 0 and n� 1,

sn(Ân − θ) > η and
EX2

11
n Tr{(Ân − θ)−1(Â>n − θ)−1} → ψ.

Then, a.s. for n� 1, Mn has exactly r eigenvalues (λi)16i6r in

B(θ, η/2),

and

√
n ((λ1 − θn), . . . , (λr − θn))

converges in distribution towards the eigenvalues of

V = σXr + σG ∈Mr(C),

where Xr is independent of G with iid complex Gaussian entries
given by, E|Zij |2 = σ2ϕ

1−σ2ϕ
and EZ2

ij =
σ2(EX2

11)ψ
1−σ2ψ

.
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.



Full Jordan Block

Assume θn → θ ∈ C\supp(β) and

An =

(
PnJnP

−1
n 0

0 Ân

)
,

with ‖Pn − P‖ → 0 for some P ∈ GLr(C), and

Jn =

θn 1
θn 1

. . .
. . .

 = θnIr +Nr.

Theorem
Under the previous assumptions, a.s. for n� 1, Mn has exactly

r eigenvalues (λi)16i6r in B(θ, η/2), and

n1/2r ((λ1 − θn), . . . , (λr − θn))

converges in distribution towards the roots of

zr − e∗rP−1V Pe1.
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Full Jordan Block

For Ân = 0 and X complex Ginibre contained in

Benaych-Georges & Rochet (2013).

An =

(
Cn−r 0

0 Nr

)

For n = 500 and r = 3, n−1/2r ' 0.35 ! !



Unstable Outliers



Nilpotent matrix

Take

Nn =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

 = Cn − ene∗1.

For any |z| 6 1− ε,∣∣∣∣det(Nn − z)
det(Cn − z)

∣∣∣∣ =
|z|n

|1− zn|
6

(1− ε)n

1− (1− ε)n
= o(1).



Nilpotent matrix

In the orthonormal basis of eigenvectors of Cn, we get

Cn = UnA
′
nU
∗
n and Nn = Un(A′n +A′′n)U∗n

where

A′n = diag(e
2iπ
n , · · · , e

2inπ
n ) and A′′n = −fnf>1 .

with f` = (e
2iπ`k
n /
√
n)16k6n.

A′′n is a delocalized perturbation of A′n.



Nilpotent matrix

Theorem
Let An = A′n +A′′n be as above, 0 < σ < 1 and assume that

P(|Xij | > t) 6 exp(−tκ) for some κ > 0. We set

ϕ(z, w) =
1

1− zw̄
.

The point process of eigenvalues of Mn in B̊(0,
√

1− σ2)
converges weakly to the zeros of the Gaussian analytic function

g(z) on B̊(0,
√

1− σ2) with kernel given by,

K(z, w) =
ϕ(z, w)2

1− σ2ϕ(z, w)
.



Gaussian analytic functions

Hough, Krishnapur, Peres, Virág (2009).

A Gaussian analytic function on Γ ⊂ C is a random analytic

function g such that for every z1, · · · , zn in Γ,

(g(z1), ..., g(zn))

is a centered complex Gaussian vector with Eg(zi)g(zj) = 0.

The distribution of g is characterized by its kernel

K(z, w) = Eg(z)ḡ(w).

Edelman-Kostlan's formula : the intensity of zeros of g is

1

2π
∆ logK(z, z).



Unstable outliers

We have a general convergence result for unstable outliers when

A′n is diagonal and for all z ∈ Γ,∣∣∣∣det(An − z)
det(A′n − z)

∣∣∣∣ = o

(
1√
n

)
.

In the unbounded component of C\supp(β), the above cannot
hold.

For A′n normal with radial limiting ESD µA′n , there is a generic

way to create unstable outliers in the bounded components of

C\supp(β).
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Large norm unstable outliers



Large unstable outliers

In the unbounded component of C\supp(β), it is possible to
create unstable outliers when

An = A′n +A′′n

with ‖A′′n‖ >
√
n,

Observed in Rajan & Abbott (2006) and Tao (2011), for A′n = 0
and a particular random choice of A′′n.

We have a general convergence result when A′n diagonal,

A′′n =
√
nvnu

∗
n, and u

∗
n(z −A′n)−1vn, ‖un‖∞, ‖vn‖∞ of order

O(1/
√
n).



Large unstable outliers

The eigenvalues in C\B(0,
√

1 + σ2) of Mn when

An = diag
(
e

2iπ
n , · · · , e

2inπ
n

)
+
√
nfnf

>
1

converge vaguely to the zeros of 1 + σg where g is the Gaussian

analytic function with kernel

H(z, w) =
ϕ(z, w)2

1 + σ2ϕ(z, w)
, with ϕ(z, w) =

1

1− zw̄
.



Large unstable outliers

Theorem
Assume that P(|Xij | > t) 6 exp(−tκ) for some κ > 0. Take

Mn = Yn + θnvnu
∗
n,

with u>n vn = u∗nvn = 0, θn �
√
n and

‖un‖∞, ‖vn‖∞ = O(1/
√
n).

The point process of eigenvalues of Mn in C\B(0, 1) converges
vaguely to the zeros of

g(z) =
∑
k>0

γkz
−k,

with γk iid complex Gaussian variables with E|γk|2 = 1 and

Eγ2
k = (EX2

11)k+1.



Large unstable outliers

If EX2
11 = 0 then g is a GAF and its zeros is a determinantal

point process, Peres & Virág (2005).

n = 500 and θn = n2 (cropped image).



Ideas of proofs



Silvester's identity

Following Benach-Georges & Rao (2011) we use the identity, for

P,Q> ∈Mn,r(C), B ∈ GLn(C),

det(B + PQ) = det(B) det(Ir +QB−1P ).

Set M ′n = σYn +A′n,

Rn(z) = (zIn −M ′n)−1 and R′n(z) = (zIn −A′n)−1.

For r = 1, if A′′n = vnu
∗
n, we get

det(zIn −Mn)

det(zIn −M ′n)
= 1− u∗nRn(z)vn,

and
det(zIn −An)

det(zIn −A′n)
= 1− u∗nR′n(z)vn.
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Noise collapsing

Recall M ′n = σYn +A′n, Rn(z) = (zIn −M ′n)−1 and

R′n(z) = (zIn −A′n)−1.

We prove that for any z ∈ C\supp(β),

u∗nRn(z)vn = u∗nR
′
n(z)vn +

gn(z)√
n

+ o

(
1√
n

)
.

Hence,

det(zIn −Mn)

det(zIn −M ′n)
=

det(zIn −An)

det(zIn −A′n)
− gn(z)√

n
+ o

(
1√
n

)
.



Rouché's Theorem

Let U ⊂ C is a bounded open connected set. We endow H(U)
the set of analytic functions on U with the distance

d(f, g) =
∑
j>1

2−j
‖f − g‖L∞(Kj)

1 + ‖f − g‖L∞(Kj)
.

where Kj is an exhausting sequence of compact subsets of U .
Then H(U) is a complete, separable metric space.

Lemma
Let fn be a tight sequence of random analytic functions which

converges weakly to f for the �nite dimensional convergence. If

a.s. f 6≡ 0 then the point process of zeros of fn converges weakly

to the point process of zeros of f .
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More on noise collapsing

Recall M ′n = σYn +A′n, Rn(z) = (zIn −M ′n)−1 and

R′n(z) = (zIn −A′n)−1. We prove, for any z ∈ C\supp(β),

u∗nRn(z)vn = u∗nR
′
n(z)vn +

gn(z)√
n

+ o

(
1√
n

)
.

We expand

Rn = R′n +

∞∑
k=1

(σR′nYn)kR′n.

(i) the series is a.s. convergent in norm precisely when

z ∈ C\supp(β),

(ii) a.s. u∗P (B1, · · · , Bk, Y )v → 0 if P is a non trivial

polynomial in Y and B` = O(1).

(iii) for the 1/
√
n �uctuation : functional CLT for

z 7→
√
n(u∗nR

′
n(z)Yn(z))kR′n(z)vn + tightness.
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Final comments

- Inspiring simulations !

- The �nite n e�ects in non-hermitian random matrices are

truly surprising.

- Many situations not covered by our work, e.g.

* eigenvectors,

* σ → 0,

* A′′
n has large rank,

* other polynomials P (A1, · · · , Ak, Y ),

* edge behavior,

* . . .
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Thank you for your attention !

Outlier eigenvalues for deformed i.i.d. random matrices, with

Mireille Capitaine - arXiv:1403.6001.


