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Thanks!!! and apologies...
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A plan for the talk

Recurrence for discrete time unitary evolutions CMP 320 2013
pp-543-569. F.A. Grünbaum, L. Velazquez, A. Werner and R.
Werner.

Quantum recurrence of a subspace and operator valued Schur
functions CMP (published online Mar 19 2014) J. Bourgain, F.A.
Grünbaum, L. Velazquez and J. Wilkening

Ask the audience for help with a few questions about the literature.
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In the case of classical random walks the notion of recurrence goes
back at least to Polya (1921).

In the case of Quantum walks a de�nition has been proposed by M.
Stefanak, T. Kiss and I. Jex in 2008. This de�nition has been used
by several workers in the area of Quantum walks.

We introduce a di�erent notion of recurrence which brings lots of
classical analysis into use.
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We consider discrete time quantum dynamical systems speci�ed by
a unitary operator U and an initial state vector φ. In each step the
unitary is followed by a PROJECTIVE MEASUREMENT

checking whether the system has returned to the initial state. We
call the system recurrent if this eventually happens with probability
one.

In the presence of recurrence we study the distribution of the "�rst
arrival time" , showing that (rather surprinsingly) its EXPECTED
VALUE is always an INTEGER (or in�nite) for which we give a
topological interpretation.

A key role in our theory is played by the �rst arrival amplitudes,
which turn out to be the (complex conjugated) Taylor coe�cients
of the Schur function of the spectral measure. This provides a
dynamical interpretation for these quantities, which appears to be
new.

These terms will be de�ned below.
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People working on Quantum walks, starting with Y. Aharonov et.al.
( Phys. Rev, A,1993) have used either "path counting" methods or
Fourier methods. In the �rst case it is a good idea to be Dick
Feynman, in the second case you are restricted to translation
invariant situations.

The idea of using spectral methods was proposed in
M.J. Cantero, F. A. Grünbaum, L. Moral, L. Velázquez, Matrix

valued Szegö polynomials and quantum random walks,
quant-ph/0901.2244,

Comm. Pure and Applied Math, vol. LXIII, pp 464�507, 2010.
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With the more recent work on recurrence we �nd that many of the
tools of probability, operator theory, complex analysis, OPUC, can
be used as tools to discover new phenomena for quantum walks,
which apparently had not been noticed so far.

Equally important is the fact that natural questions from the point
of view of quantum walks lead to apparently open problems in the
beautiful line of work started a long time ago by people like I. Schur
and earlier workers.
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Recurrence in the quantum case.

We consider quantum dynamical systems speci�ed by a unitary
operator U

and an initial state vector φ.

Any statement we make applies to the pair (U, φ)
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The entire discussion of recurrence properties for a given state φ,
will depend only on the scalar measure µ(du) = 〈φ|E (du)φ〉 on the
unit circle, which is obtained from the projection valued spectral
measure E of U.

The moments of the scalar valued measure µ, i.e. its Fourier
coe�cients

µn =

∫
µ(du) un = 〈φ|Unφ〉, n ∈ Z. (1)

have a nice dynamical interpretation (going all the way to
Heisenberg and Born) : they give the amplitudes of a return to φ
in n units of time. The probabilities pn will be the moduli squared
of these amplitudes.
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An important tool is the Carathéodory function F of the
orthogonality measure µ, de�ned by

F (z) =

∫
T

t + z

t − z
dµ(t), |z | < 1. (2)

F is analytic on the open unit disc with Taylor series

F (z) = 1 + 2
∞∑
j=1

µjz
j , µj =

∫
T
z jdµ(z), (3)

whose coe�cients provide the moments µj of the measure µ.
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Another tool in the theory of OP on the unit circle is the so called
Schur function related to F (z) and thus to µ, by

f (z) = z−1(F (z)− 1)(F (z) + 1)−1, |z | < 1.

we have

F (z) = (1 + zf (z))(1− zf (z))−1, |z | < 1.

Just as F (z) maps the unit disk to the right half plane, f (z) maps
the unit disk to itself.
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We will see later that there are ways of writing down the Schur
function that connects it with notions that have appeared in other
�elds with names such as "characteristic function" or "transfer
function" going back to work of people like Livsic, Brodskii,
Sz-Nagy, Foias, Lax-Phillips, etc. etc.
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A very important fact is that f (z) is INNER, i.e. the limiting values
of its modulus on the unit circe are 1, exactly when µ has zero
density with respect to Lebesgue measure, i.e. is purely singular. In
this case µ can have a singular continuous part and maybe point
masses.
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I will be asking later for extensions of this result in the case of
operator valued Schur functions associated to a subspace, in
particular in the case of in�nite dimensional subspaces.
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Now we concentrate on our de�nition of

recurrence for a general Quantum walk , i.e. the

recent work with Velazquez, Werner and Werner.

GVWW
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We consider quantum dynamical systems speci�ed by a unitary
operator U and an initial state vector φ. In each step the unitary is
followed by a PROJECTIVE MEASUREMENT checking
whether the system has returned to the initial state. We call the
system recurrent if this eventually happens with probability one.

Immediately, this presents us with a problem, which is typical for
many generalizations of classical concepts to the quantum world:
The de�nition as given for Markov chains clearly requires some
MONITORING of the process: we have to check after every step
whether the particle has returned. But this monitoring, if it is to
give any non-trivial information about the system, necessarily
changes the dynamics. Therefore, there are two options: We can
either try to reformulate the problem in such a way that the
monitoring is not needed, or else we include the monitoring into the
description.
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The main di�erence between the approach of Stefanak, T. Kiss and
I. Jex (SJK,2008) and the one of Grünbaum, Velazquez, Werner
and Werner (GVWW,2012) is that the �rst one avoids monitoring
while ours take monitoring into account explicitly.
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GVWW recurrence

Ũ = (1I− |φ〉〈φ|)U. (4)

an = 〈φ|UŨn−1φ〉, n ≥ 1. (5)
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The total probability for events up to and including the nth step,
i.e., detection at step k ≤ n or survival, thus adds up as

1 =
n∑

k=1

|ak |2 + ‖Ũnφ‖2.

The return probability is therefore

R =
∞∑
n=1

|an|2 = 1− lim
n→∞

‖Ũnφ‖2. (6)

Accordingly, we call the pair (U, φ) recurrent if R = 1, and
transient otherwise.
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We use the moment generating or Stieltjes function

µ̂(z) =
∞∑
n=0

µnz
n =

∫
µ(dt)

1− tz
, (7)
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We get

â(z) =
∞∑
n=1

�nz
n =

∞∑
n=0

〈φ|UŨnφ〉zn+1

=
µ̂(z)− 1

µ̂(z)
(8)

= z f (z). (9)

We use the convention that, for an analytic function g , the analytic
function with the conjugated Taylor coe�cients is denoted by g ,
i.e., g(z) = g(z).

That is, the Schur function is essentially the generating

function for the �rst arrival amplitudes.

F. Alberto Grünbaum Recurrence properties of Quantum Walks



The expected value for the �rst return time: a

topological interpretation in terms of the Schur

function
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τ =
∞∑
n=1

|an|2 n. (10)

g(t) = e it f (e it) =
∞∑
n=1

ane
int (11)

has modulus one for all real t. So g(t) winds around the origin an
integer number w(g) of times as t goes from 0 to 2π. Locally we
can write g(t) = exp(iγ(t)), so the angular velocity is

∂tγ(t) =
∂tg(t)

ig(t)
= g(t)

1

i
∂tg(t). (12)

Integrating this over one period t ∈ [0, 2π], we get 2πw(g), so

w(g) =
1

2π

∫ 2π

0

dt g(t)
1

i
∂tg(t) =

∞∑
n=0

an (nan) = τ. (13)
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When is the pair (U, φ) recurrent according to the GVWW
de�nition?

Decompose the scalar valued orthogonality measure into its singular
and its absolutely continuous parts.

If the second one is missing, and only then, the process is GVWW
recurrent.
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The dynamical interpretation of the Taylor coe�cients of the Schur
function are the source of many nice games.

This is an expression I would love to be able to share with I. Schur
and R. Feynman

µn = ān + ān−1µ1 + · · ·+ ā1µn−1

Here an denote the Taylor coe�cients of zf (z) and µn are the
moments of the measure.

This is a quantum analog of the renewal equation that one has in
the classical case.
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A challenge:

Does the factorization into inner-outer functions have any
probabilistic interpretation?

F. Alberto Grünbaum Recurrence properties of Quantum Walks



Before going much further, recall...

ANYONE THAT HAS NOT BEEN SHOCKED BY QUANTUM

MECHANICS HAS NOT UNDERSTOOD IT

Niels Bohr

F. Alberto Grünbaum Recurrence properties of Quantum Walks



a �rst summary

The �rst return probabilities in our approach are the squared
moduli of the Taylor coe�cients of the so-called Schur function of
the measure, which so far did not seem to have a direct dynamical
interpretation.

Our main result is that the process is recurrent i� the Schur
function is �inner�, i.e., has modulus one on the unit circle.

Furthermore, we show that the winding number of this function has
the direct interpretation as the expected time of �rst arrival, which
is hence an integer ( or plus in�nity).
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There are extensions of all the notions above, including the renewal
equation, topological interpretations, etc.... in the case when one
considers SITE to SITE recurrence, ignoring the value of the spin.
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The notion of monitored recurrence for discrete-time quantum
processes taking the initial state as an absorbing state is extended
to absorbing subspaces of arbitrary �nite dimension.

The generating function approach leads to a connection with the
well-known theory of operator-valued Schur functions. This is
the cornerstone of a spectral characterization of subspace
recurrence.

The spectral decomposition of the unitary step operator driving the
evolution yields a spectral measure, which we project onto the
subspace to obtain a new spectral measure that is purely singular i�
the subspace is recurrent, and consists of a pure point spectrum
with a �nite number of masses precisely when all states in the
subspace have a �nite expected return time.
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We emphasize the di�erence between the �rst V -return
probabilities and the quantities ‖PUnψ‖2, which also represent the
probability of �nding the system in the subspace V , but performing
the projective measurement only in the n-th step, i.e. without any
intermediate monitoring of the process. To distinguish both kind of
probabilities we will refer to ‖PUnψ‖2 as the n-step V -return

probability of ψ.
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First V -return probabilities and V -return probabilities can be
written as ‖anψ‖2 and ‖µnψ‖2 respectively, where an and µn are
the operators on V given by

an = PUŨn−1P n-step �rst V -return amplitude operator,

µn = PUnP n-step V -return amplitude operator.
(14)
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Connections with transfer functions, characteristic

functions, etc.
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The values of µV , FV and fV must be considered as operators on
V so that, for instance, FV (0) is the identity operator on V . From
the spectral decomposition of U we �nd that the the moments of a
spectral measure provide the power expansion of the corresponding
U-Carathéodory function,

FV (z) = P(U + z1H)(U − z1H)−1P.
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The analog of this result for the power expansion of U-Schur
functions is not so trivial and was obtained recently. It states that

fV (z) = P(U−zP̃)−1P =
∑
n≥1

a
†
V ,n z

n−1, aV ,n = PU(P̃U)n−1P, P̃ = 1H−P.

(15)

This expression reveals a connection with the "transfer or
characteristic function" of Livsic and other authors.
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Following the quantum terminology, we will refer to the operator
coe�cients aV ,n as the �rst return amplitudes of V . The
generating function of these amplitudes

aV (z) =
∑
n≥1

aV ,nz
n = zUP(1V−zP̃U)−1P = zf

†
V (z), g †(z) = g(z)†,

(16)
will be called the �rst return generating function of V .
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A very important quantum mechanical role is played by a certain
type of factorization of unitaries, of which I show an example below.
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show "overlapping factorizations".
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A question for the audience:

Does this kind of overlapping factorization show up in other areas?
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This notion of subspace recurrence also links the concept of
expected return time to an Aharonov-Anandan phase that, in
contrast to the case of state recurrence, can be non-integer.

Even more surprising is the fact that averaging such geometrical
phases over the absorbing subspace yields an integer with a
topological meaning, so that the averaged expected return time is
always a rational number.

Moreover, state recurrence can occasionally give higher return
probabilities than subspace recurrence, a fact that reveals once
more the counterintuitive behavior of quantum systems.
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In particular, if V is recurrent and its inner Schur function f (z) has
an analytic extension to a neighborhood of the closed unit disk,
e.g. if f (z) is a rational inner function, then we can write

τ(ψ) =

∫ 2π

0

〈ψ(θ)|∂θψ(θ)〉 dθ
2πi

, ψ(θ) = â(e iθ)ψ, (17)

where ψ(θ), θ ∈ [0, 2π], traces out a closed curve on the sphere SV
due to the unitarity of â(e iθ). This simple result has a nice
interpretation since it relates τ(ψ) to a kind of Berry's
geometrical phase . More precisely, the expected V -return time

of a state ψ ∈ SV is −1/2π times the Aharonov-Anandan phase

associated with the loop â(e iθ)ψ : S1 → SV .
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In the case of state recurrence, one proves that the states ψ with a
�nite expected return time are characterized by a �nitely supported
spectral measure µψ(dλ), thus by a rational inner Schur function
fψ(z). Further, one also �nds that τ(ψ) must be a positive integer
whenever it is �nite because of its topological meaning: τ(ψ) is the
winding number of âψ(e iθ) : S1 → S1, where âψ(z) = zfψ(z) is the
�rst return generating function of ψ.

F. Alberto Grünbaum Recurrence properties of Quantum Walks



In contrast to a winding number, the Aharonov-Anandan phase is
not necessarily an integer because it re�ects a geometric rather
than a topological property of a closed curve. The expression above
for τ(ψ) is reparametrization invariant, and changes by an integer
under closed S1 gauge transformations ψ(θ)→ ψ̃(θ) = e iς(θ)ψ(θ),
ψ̃(2π) = ψ̃(0). This means that τ(ψ) is a geometric property of
the unparametrized image of ψ(θ) in SV , while e

i2πτ(ψ) is a
geometric property of the corresponding closed curve in the
projective space of rays of SV whose elements are the true physical
states of V . In fancier language, SV is a �ber bundle over such a
projective space with structure group S1, and e−i2πτ(ψ) is the
holonomy transformation associated with the usual connection
given by the parallel transport de�ned by 〈ψ(t)|∂tψ(t)〉 = 0.

As a consequence, we cannot expect for τ(ψ) to be an integer for
subspaces V of dimension greater than one.
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The following theorem characterizes the subspaces V with a �nite
averaged expected V -return time and gives a formula for this
average.
It can be considered as the extension to subspaces of the results
given earlier.
A key ingredient will be the determinant detT of an operator T on
V , that is, the determinant of any matrix representation of T .

F. Alberto Grünbaum Recurrence properties of Quantum Walks



Consider a unitary step U and a �nite-dimensional subspace V with
spectral measure µ(dλ), Schur function f (z) and �rst V -return
generating function â(z) = zf †(z). Then, the following statements
are equivalent:

1. All the states of V are V -recurrent with a �nite expected
V -return time.

2. All the states of V are recurrent with a �nite expected return
time.

3. µ(dλ) is a sum of �nitely many mass points.

4. f (z) is rational inner.

5. det f (z) is rational inner.
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Under any of these conditions, the average of the expected
V -return time is

−
∫
SV

τ(ψ) dψ =
K

dimV

with K a positive integer that can be computed equivalently as

K =
∑
k

dim(EkV ) =
∑
k

rankµ({λk}) = deg det â(e iθ), (18)

where λk are the mass points of µ(dλ), Ek = E ({λk}) are the
orthogonal projectors onto the corresponding eigenspaces of
U =

∫
λE (dλ) and deg det â(e iθ) is the degree of

det â(e iθ) : S1 → S1, i.e. its winding number, which coincides
with the number of the zeros of det â(z) inside the unit disk,
counting multiplicity.
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THE RELATION BETWEEN STATE RECURRENCE and

SUBSPACE RECURRENCE, in the spirit of N. Bohr
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Consider the walk in the non-negative integers with a constant coin
given by

C =

( √
c

√
1− c√

1− c −
√
c

)
(19)
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Comparing two probabilities as a function of the initial state

cos t |0〉 ⊗ |↑〉 +sin t |0〉 ⊗ |↓〉
Constant coin in the non-negative integers, c = 6/10

state recurrence probability
subspace recurrence probability

0 0.25 0.5 0.75

0.6

0.7

0.8

0.9

1

Figure: haha

labelpayo�graph
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Now for the same coin on the integers.
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Comparing state and site return probabilities for the one

dimensional case as a function of t
Using complex combinations

state return probability
site return probability

0 0.25 0.5 0.75
0.4

0.44

0.48

0.52

0.56

y

Figure: haha

labelpayo�graph
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An important point:
One can use the CGMV technology to study (at least some) higher
dimensional walks.

This is illustrated below in the case of some well known two
dimensional walks.
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The next plot involves the 2 dim Grover walk on the square lattice.
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Now the Fourier walk, i.e. the unitary is the DFT for M=4, but the
initial state is a combination of spin east, spin north and the third
dimension is a combination of spin west and spin south

The details of the di�erent four choices are in the next slide.

The value of s is (as usual) s = π/4.

The value of N is N = 120.
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Here is one example on an HEXAGONAL LATTICE, the coin is
the DFT3.

The value of N is N = 30 and the initial state is given by

1/sqrt(2)cost[1, 0, (1 + i)/sqrt(2)] + isint[0, 1, 0]
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With the same crazy state as in the previous hexagonal case, we do
Grover.

We choose N = 60.
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