Quantum Symmetric States

Ken Dykema

Department of Mathematics Texas A&M University College Station, TX, USA.

Free Probability and the Large N limit IV, Berkeley, March 2014

[DK] K. Dykema, C. Köstler, "Tail algebras of quantum exchangeable random variables," arXiv:1202.4749, to appear in Proc. AMS.

[DKW] K. Dykema, C. Köstler, J. Williams, "Quantum symmetric states on universal free product C*-algebras," arXiv:1305.7293, to appear in Trans. AMS.

[DDM] Y. Dabrowski, K. Dykema, K. Mukherjee, "The simplex of tracial quantum symmetric states," arXiv:1401.4692.

Definition

A sequence of (classical) random variables x_1, x_2, \ldots is said to be *exchangeable* if

$$\mathbb{E}(x_{i(1)}x_{i(2)}\cdots x_{i(n)}) = \mathbb{E}(x_{\sigma(i(1))}x_{\sigma(i(2))}\cdots x_{\sigma(i(n))})$$

for every $n \in \mathbf{N}$, $i(1), \ldots, i(n) \in \mathbf{N}$ and every permutation σ of \mathbf{N} .

Definition

A sequence of (classical) random variables x_1, x_2, \ldots is said to be *exchangeable* if

$$\mathbb{E}(x_{i(1)}x_{i(2)}\cdots x_{i(n)}) = \mathbb{E}(x_{\sigma(i(1))}x_{\sigma(i(2))}\cdots x_{\sigma(i(n))})$$

for every $n \in \mathbf{N}$, $i(1), \ldots, i(n) \in \mathbf{N}$ and every permutation σ of \mathbf{N} .

That is, if the joint distribution of $x_1, x_2 \dots$ is invariant under re-orderings.

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Definition

The tail σ -algebra is the intersection of the σ -algebras generated by $\{x_N, x_{N+1}, \ldots\}$ as N goes to ∞ .

Theorem [de Finetti, 1937]

A sequence of random variables x_1, x_2, \ldots is exchangeable if and only if the random variables are conditionally independent and identically distributed over its tail σ -algebra.

Definition

The tail σ -algebra is the intersection of the σ -algebras generated by $\{x_N, x_{N+1}, \ldots\}$ as N goes to ∞ .

Thus, the expectation \mathbb{E} can be seen as an integral (w.r.t. a probability measure on the tail algebra) — that is, as a sort of convex combination — of expectations with respect to which the random variables x_1, x_2, \ldots are independent and identically distributed (i.i.d.).

Dykema (TAMU)

Symmetric states

Størmer extended this result to the realm of C*-algebras.

Definition

Consider the minimal tensor product $B = \bigotimes_{1}^{\infty} A$ of a C*-algebra A with itself infinitely many times. A state on B is said to be *symmetric* if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Symmetric states

Størmer extended this result to the realm of C*-algebras.

Definition

Consider the minimal tensor product $B = \bigotimes_{1}^{\infty} A$ of a C*-algebra A with itself infinitely many times. A state on B is said to be *symmetric* if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Note that the set SS(A) of symmetric states on B is a closed, convex set in the set S(B) of all states on B.

Symmetric states

Størmer extended this result to the realm of C*-algebras.

Definition

Consider the minimal tensor product $B = \bigotimes_{1}^{\infty} A$ of a C*-algebra A with itself infinitely many times. A state on B is said to be *symmetric* if it is invariant under the action of the group S_{∞} by permutations of tensor factors.

Note that the set SS(A) of symmetric states on B is a closed, convex set in the set S(B) of all states on B.

Theorem [Størmer, 1969]

The extreme points of SS(A) are the infinite tensor product states, i.e. those of the form $\otimes_1^{\infty} \phi$ for $\phi \in S(A)$ a state of A. Moreover, SS(A) is a Choquet simplex, so every symmetric state on B is an integral w.r.t. a *unique* probability measure of infinite tensor product states.

Dykema (TAMU)

The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group $A_s(n)$

 $A_s(n)$ is the universal unital C*–algebra generated by a family of projections $(u_{i,j})_{1\leq i,j\leq n}$ subject to the relations

$$\forall i \sum_{j} u_{i,j} = 1 \text{ and } \forall j \sum_{i} u_{i,j} = 1.$$
 (1)

It is a compact quantum group (with comultiplication, counit and antipode).

The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group $A_s(n)$

 $A_s(n)$ is the universal unital C*–algebra generated by a family of projections $(u_{i,j})_{1\leq i,j\leq n}$ subject to the relations

$$\forall i \sum_{j} u_{i,j} = 1 \text{ and } \forall j \sum_{i} u_{i,j} = 1.$$
 (1)

It is a compact quantum group (with comultiplication, counit and antipode).

Abelianization of $A_s(n)$

The universal unital C^{*}-algebra generated by *commuting* projections $\tilde{u}_{i,,j}$ satisfying the relations analogous to (1) is isomorphic to $C(S_n)$, the continuous functions of the permutation group S_n , with $\tilde{u}_{i,j} = 1_{\{\text{permutations sending } j \mapsto i\}}$. Thus, $C(S_n)$ is a quotient of $A_s(n)$ by a *-homomorphism sending $u_{i,j}$ to $\tilde{u}_{i,j}$.

Invariance under quantum permutations

In a C*-noncommutative probability space (A, ϕ) , the joint distribution of family $x_1, \ldots, x_n \in A$ is *invariant under quantum permtuations* if the natural coaction of $A_s(n)$ leaves the distribution unchanged. Concretely, this amounts to:

$$\phi(x_{i(1)}\cdots x_{i(k)}) 1 = \sum_{1 \le j(1),\dots,j(k) \le n} u_{i(1),j(1)}\cdots u_{i(k),j(k)}\phi(x_{j(1)}\cdots x_{j(k)}) \in \mathbf{C} 1 \subseteq A_s(n).$$

Invariance under quantum permutations

In a C*-noncommutative probability space (A, ϕ) , the joint distribution of family $x_1, \ldots, x_n \in A$ is *invariant under quantum permtuations* if the natural coaction of $A_s(n)$ leaves the distribution unchanged. Concretely, this amounts to:

$$\phi(x_{i(1)}\cdots x_{i(k)}) 1 = \sum_{1 \le j(1),\dots,j(k) \le n} u_{i(1),j(1)}\cdots u_{i(k),j(k)}\phi(x_{j(1)}\cdots x_{j(k)}) \\ \in \mathbf{C}1 \subseteq A_s(n)$$

Invariance under quantum permutations implies invariance under usual permuations

by taking the quotient from $A_s(n)$ onto $C(S_n)$.

Dykema (TAMU)

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^{\infty}$ is *quantum exchangeable* if for every n, the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^{\infty}$ is *quantum exchangeable* if for every n, the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

The tail algebra of the sequence is

$$\mathcal{T} = \bigcap_{N=1}^{\infty} W^*(\{x_N, x_{N+1}, \ldots\}).$$

Quantum exchangeable random variables and the tail algebra

Definition [Köstler, Speicher '09]

In a C*-noncommutative probability space, a sequence of random variables $(x_i)_{i=1}^{\infty}$ is *quantum exchangeable* if for every n, the joint distribution of x_1, \ldots, x_n is invariant under quantum permutations.

The tail algebra of the sequence is

$$\mathcal{T} = \bigcap_{N=1}^{\infty} W^*(\{x_N, x_{N+1}, \ldots\}).$$

Proposition [Köstler '10] (existence of conditional expectation)

Let $(x_i)_{i=1}^{\infty}$ be a quantum exchangeable sequence in a W*-noncommutative probability space (\mathcal{M}, ϕ) where ϕ is faithful and suppose \mathcal{M} is generated by the x_i . Then there is a unique faithful, ϕ -preserving conditional expectation E from \mathcal{M} onto \mathcal{T} .

Dykema (TAMU)

Quantum Symmetric States

Quantum exchangeable \Leftrightarrow free with amalgamation over tail algebra.

Theorem [Köstler, Speicher '09] (A noncommutative analogue of de Finneti's thoerem)

 $(x_i)_{i=1}^{\infty}$ is a quantum exchangeable sequence if and only if the random variables are exchangeable and are free with respect to the conditional expectation E (i.e., with amalgamation over the tail algebra).

Quantum exchangeable \Leftrightarrow free with amalgamation over tail algebra.

Theorem [Köstler, Speicher '09] (A noncommutative analogue of de Finneti's thoerem)

 $(x_i)_{i=1}^{\infty}$ is a quantum exchangeable sequence if and only if the random variables are exchangeable and are free with respect to the conditional expectation E (i.e., with amalgamation over the tail algebra).

Theorem [DK]

Given any countably generated von Neumann algebra \mathcal{A} and any faithful state ψ on \mathcal{A} , there is a W^{*}-noncommutative probability space (\mathcal{M}, ϕ) with ϕ faithful and with a sequence $(x_i)_{i=1}^{\infty}$ of random variables that is quantum exchangeable with respect to ϕ , and so that their tail algebra \mathcal{T} is a copy of \mathcal{A} so that $\phi \upharpoonright_{\mathcal{T}}$ is equal to ψ .

Generalize in the direction of C*-algebras, like Størmer did

Instead of considering individual random variables, we consider a unital C^* -algebra A and a state ψ on the universal unital free product C*-algebra $\mathfrak{A}=*^\infty_1 A$, with corresponding embeddings $\lambda_i:A\to\mathfrak{A},\ (i\geq 1).$

Definition

A state ψ is symmetric if it is invariant under the action of the symmetric group on $\mathfrak{A}.$

Let ψ be a state on \mathfrak{A} and let π_{ψ} be the GNS representation and \mathcal{M}_{ψ} the von Neumann algebra generated by the image of π_{ψ} .

Proposition [DKW]

If ψ is symmetric, then there is a conditional expectation from \mathcal{M}_{ψ} onto the *tail algebra* $\mathcal{T}_{\psi} = \bigcap_{N=1}^{\infty} W^*(\bigcup_{i=N}^{\infty} \pi_{\psi} \circ \lambda_i(A)).$

Definition [DKW]

A state ψ of \mathfrak{A} is *quantum symmetric* if the *-homomorphisms λ_i are quantum exchangeable with respect to ψ , in the sense that, for all $n \in \mathbb{N}$, $a_1, \ldots, a_k \in A$ and $1 \leq i(1), \ldots, i(k) \leq n$,

$$\psi(\lambda_{i(1)}(a_1)\cdots\lambda_{i(k)}(a_k))1 = \sum_{1\leq j(1),\dots,j(k)\leq n} u_{i(1),j(1)}\cdots u_{i(k),j(k)}\psi(\lambda_{j(1)}(a_1)\cdots\lambda_{j(k)}(a_k))$$

$$\in \mathbf{C}1 \subseteq A_s(n).$$

Theorem [DKW]

Let ψ be a state of \mathfrak{A} . Then ψ is quantum symmetric if and only if it is symmetric and the images $\pi_{\psi} \circ \lambda_i(A)$ of the copies of A in the von Neumann algebra \mathcal{M}_{ψ} are free with respect to E_{ψ} (i.e., with amalgamation over the tail algebra).

Remarks

- We don't require faithfulness of ψ on \mathfrak{A} , nor of $\hat{\psi}$ on \mathcal{M}_{ψ} , nor of E_{ψ} on \mathcal{M}_{ψ} .
- Our proof are similar to those in [Köstler, Speicher '09].
- Also Stephen Curran ['09] considered quantum exchangeability for sequences of *-homomorphisms of *-algebras and proved freeness with amalgamation; he did require faithfulness of a state, and used different ideas for his proofs.

Notation

Let $\mathrm{QSS}(A)$ denote the set of quantum symmetric states on $\mathfrak{A}=*^\infty_1A.$ It is a closed, convex subset of the set of all states on $\mathfrak{A}.$

Goals

To investigate QSS(A) as a compact, convex subset of $S(\mathfrak{A})$, to characterize its extreme points and to study certain convex subsets:

- the tracial quantum symmetric states $TQSS(A) = QSS(A) \cap TS(\mathfrak{A})$
- the central quantum symmetric states $\operatorname{ZQSS}(A) = \{ \psi \in \operatorname{QSS}(A) \mid \mathcal{T}_{\psi} \subseteq Z(\mathcal{M}_{\psi}) \}$
- the tracial central quantum symmetric states $\operatorname{ZTQSS}(A) = \operatorname{ZQSS}(A) \cap \operatorname{TQSS}(A).$

Description of $\ensuremath{\mathrm{QSS}}(A)$ in terms of a single copy of A

There is a bijection $\mathcal{V}(A) \iff QSS(A)$

where $\mathcal{V}(A)$ is the set of all quintuples $(\mathcal{B},\mathcal{D},E,\sigma,\rho)$ such that

- $1_{\mathcal{B}} \in \mathcal{D} \subseteq \mathcal{B}$ is a von Neumann subalgebra and $E : \mathcal{B} \to \mathcal{D}$ is a normal conditional expectation
- $\sigma: A \to \mathcal{B}$ is a unital *-homomorphism
- ρ is a normal state on $\mathcal D$ such that the state $\rho\circ E$ of $\mathcal B$ has faithful GNS representation
- $\mathcal{B} = W^*(\sigma(A) \cup \mathcal{D})$
- \mathcal{D} is the smallest unital von Neumann subalgebra of \mathcal{B} such that $E(d_0\sigma(a_1)d_1\cdots\sigma(a_n)d_n) \in \mathcal{D}$ for all $a_1,\ldots,a_n \in A$ and all $d_0,\ldots,d_n \in \mathcal{D}$.

The bijection takes $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}-free product $(\mathcal{M}, F) = (*_{\mathcal{D}})_1^{\infty}(\mathcal{B}, E)$ with amalgamation over \mathcal{D} , and yields the quantum symmetric state $\rho \circ E \circ (*_1^{\infty} \sigma)$ on $\mathfrak{A} = *_1^{\infty} A$.

Description of QSS(A) (2)

The correspondence $\mathcal{V}(A) \to \text{QSS}(A)$

The bijection takes $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}-free product $(\mathcal{M}, F) = (*_{\mathcal{D}})_{1}^{\infty}(\mathcal{B}, E)$ with amalgamation over \mathcal{D} , and yields the quantum symmetric state $\rho \circ E \circ (*_{1}^{\infty} \sigma)$ on $\mathfrak{A} = *_{1}^{\infty} A$.

Under the bijection:

from $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$	\mathcal{D}	\mathcal{M}	$*_1^{\infty}\sigma$	F	$\rho \circ F$
from GNS rep of ψ	\mathcal{T}_ψ (tail alg.)	\mathcal{M}_ψ	π_ψ	E_ψ (exp. onto tail alg.)	$\hat{\psi}$

Description of QSS(A) (2)

The correspondence $\mathcal{V}(A) \to \text{QSS}(A)$

The bijection takes $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho) \in \mathcal{V}(A)$, constructs the W^{*}-free product $(\mathcal{M}, F) = (*_{\mathcal{D}})_{1}^{\infty}(\mathcal{B}, E)$ with amalgamation over \mathcal{D} , and yields the quantum symmetric state $\rho \circ E \circ (*_{1}^{\infty} \sigma)$ on $\mathfrak{A} = *_{1}^{\infty} A$.

Under the bijection:

from $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$	$\mid \mathcal{D}$	\mathcal{M}	$*_1^{\infty}\sigma$	F	$\rho \circ F$
from GNS rep of ψ	\mathcal{T}_{ψ}	\mathcal{M}_ψ	π_ψ	E_{ψ}	$\hat{\psi}$
	(tail alg.)			(exp. onto tail alg.)	
				tun dig.)	

Technically, we need to let $\mathcal{V}(A)$ be the set of equivalence classes of quintuples, up to a natural notion of equivalence. Also, to avoid set theoretic difficulties we need to (and we can) restrict to \mathcal{B} that are represented on some specific Hilbert space.

Dykema (TAMU)

Quantum Symmetric States

Theorem [DKW]

 $\psi\in {\rm QSS}(A)$ is an extreme point of ${\rm QSS}(A)$ if and only if the restriction of $\hat\psi$ to the tail algebra is a pure state.

Theorem [DKW]

 $\psi\in {\rm QSS}(A)$ is an extreme point of ${\rm QSS}(A)$ if and only if the restriction of $\hat\psi$ to the tail algebra is a pure state.

Since the restriction of $\hat{\psi}$ to the tail algebra \mathcal{T}_{ψ} is a normal state, this is equivalent to its support projection being a minimal projection of \mathcal{T}_{ψ} .

Central quantum symmetric states

Recall $\psi \in \text{ZQSS}(A)$ means the tail algebra \mathcal{T}_{ψ} lies in the center of \mathcal{M}_{ψ} , and ZTQSS(A) is the set of tracial ones.

Theorem [DKW]

• ZQSS(A) is a closed face of QSS(A) and is a Choquet simplex whose extreme points are the free product states:

$$\partial_e(\mathrm{ZQSS}(A)) = \{*_1^\infty \phi \mid \phi \in S(A)\}$$

• ZTQSS(A) is a closed face of ZQSS(A) and is a Choquet simplex whose extreme points are the free product traces:

$$\partial_e(\operatorname{ZTQSS}(A)) = \{ *_1^{\infty} \tau \mid \tau \in TS(A) \}.$$

Central quantum symmetric states

Recall $\psi \in \text{ZQSS}(A)$ means the tail algebra \mathcal{T}_{ψ} lies in the center of \mathcal{M}_{ψ} , and ZTQSS(A) is the set of tracial ones.

Theorem [DKW]

• ZQSS(A) is a closed face of QSS(A) and is a Choquet simplex whose extreme points are the free product states:

 $\partial_e(\mathrm{ZQSS}(A)) = \{*_1^\infty \phi \mid \phi \in S(A)\}$

• ZTQSS(A) is a closed face of ZQSS(A) and is a Choquet simplex whose extreme points are the free product traces:

$$\partial_e(\operatorname{ZTQSS}(A)) = \{ *_1^{\infty} \tau \mid \tau \in TS(A) \}.$$

Choquet's theorem, then, implies that every element of ZQSS(A) is the barycenter of a unique probability measure on $\partial_e(ZQSS(A))$, and likewise for ZTQSS(A).

Central quantum symmetric states

Recall $\psi \in \text{ZQSS}(A)$ means the tail algebra \mathcal{T}_{ψ} lies in the center of \mathcal{M}_{ψ} , and ZTQSS(A) is the set of tracial ones.

Theorem [DKW]

• ZQSS(A) is a closed face of QSS(A) and is a Choquet simplex whose extreme points are the free product states:

 $\partial_e(\mathrm{ZQSS}(A)) = \{ *_1^\infty \phi \mid \phi \in S(A) \}$

• ZTQSS(A) is a closed face of ZQSS(A) and is a Choquet simplex whose extreme points are the free product traces:

$$\partial_e(\operatorname{ZTQSS}(A)) = \{ *_1^{\infty} \tau \mid \tau \in TS(A) \}.$$

Choquet's theorem, then, implies that every element of ZQSS(A) is the barycenter of a unique probability measure on $\partial_e(ZQSS(A))$, and likewise for ZTQSS(A). These are Bauer simplices, because their sets of extreme points are closed.

Dykema (TAMU)

Proposition [DKW]

$$\begin{split} &\mathrm{TQSS}(A) \text{ is in correspondence with the set of quintuples} \\ &(\mathcal{B},\mathcal{D},E,\sigma,\rho)\in\mathcal{V}(A) \text{ such that }\rho\circ E \text{ is a trace on }\mathcal{B} \text{ (which, then, must be faithful).} \end{split}$$

Proposition [DKW]

$$\begin{split} &\mathrm{TQSS}(A) \text{ is in correspondence with the set of quintuples} \\ &(\mathcal{B},\mathcal{D},E,\sigma,\rho)\in\mathcal{V}(A) \text{ such that } \rho\circ E \text{ is a trace on } \mathcal{B} \text{ (which, then, must be faithful).} \end{split}$$

In [DKW] we also found a (somewhat clumsy) characterization of the exteme points of TQSS(A).

A better characterization of extreme points of TQSS(A):

Theorem [DDM]

Let $\psi \in TQSS(A)$ correspond to quintuple $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$. (This implies $\mathcal{M}_{\psi} \cong (*_{\mathcal{D}})_{1}^{\infty} \mathcal{B}$ and the tail algebra \mathcal{T}_{ψ} corresponds to \mathcal{D} .) Then the following are equivalent:

- ψ is an extreme point of TQSS(A)
- ψ is an extreme point of $TS(\mathfrak{A})$
- $\mathcal{D} \cap Z(\mathcal{B}) = \mathbf{C}1.$

A better characterization of extreme points of TQSS(A):

Theorem [DDM]

Let $\psi \in TQSS(A)$ correspond to quintuple $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$. (This implies $\mathcal{M}_{\psi} \cong (*_{\mathcal{D}})_{1}^{\infty} \mathcal{B}$ and the tail algebra \mathcal{T}_{ψ} corresponds to \mathcal{D} .) Then the following are equivalent:

- ψ is an extreme point of $\mathrm{TQSS}(A)$
- ψ is an extreme point of $TS(\mathfrak{A})$
- $\mathcal{D} \cap Z(\mathcal{B}) = \mathbf{C}1.$

Corollary [DDM]

 $\mathrm{TQSS}(A)$ is a Choquet simplex and is a face of $TS(\mathfrak{A})$.

A better characterization of extreme points of TQSS(A):

Theorem [DDM]

Let $\psi \in TQSS(A)$ correspond to quintuple $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$. (This implies $\mathcal{M}_{\psi} \cong (*_{\mathcal{D}})_{1}^{\infty} \mathcal{B}$ and the tail algebra \mathcal{T}_{ψ} corresponds to \mathcal{D} .) Then the following are equivalent:

- ψ is an extreme point of TQSS(A)
- ψ is an extreme point of $TS(\mathfrak{A})$
- $\mathcal{D} \cap Z(\mathcal{B}) = \mathbf{C}1.$

Corollary [DDM]

TQSS(A) is a Choquet simplex and is a face of $TS(\mathfrak{A})$.

The key to the proof is to show $Z((*_{\mathcal{D}})_1^{\infty}\mathcal{B}) = Z(\mathcal{B}) \cap \mathcal{D}.$

Theorem [DDM]

The extreme points of TQSS(A) form a dense subset of TQSS(A).

Theorem [DDM]

The extreme points of TQSS(A) form a dense subset of TQSS(A).

Thus, if A is separable and $A \neq \mathbf{C}$, then $\mathrm{TQSS}(A)$ is the Poulsen simplex (the unique metrizable simplex of more than one point whose extreme points are dense).

Theorem [DDM]

The extreme points of TQSS(A) form a dense subset of TQSS(A).

Thus, if A is separable and $A \neq \mathbf{C}$, then $\mathrm{TQSS}(A)$ is the Poulsen simplex (the unique metrizable simplex of more than one point whose extreme points are dense).

Key idea of proof: perturb an arbitrary $\psi \in TQSS(A)$ with a multiplicative free Brownian motion to get extreme points in TQSS(A).

Let $\psi \in \mathrm{TQSS}(A)$, and let $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$ be the corresponding quintuple. (Thus, we have $\sigma : A \to \mathcal{B}$, $(\mathcal{M}_{\psi}, E_{\psi}) = (*_{\mathcal{D}})_1^{\infty}(\mathcal{B}, E)$, and the tail algebra is \mathcal{D} .)

Let $(U_t)_{t\geq 0}$ be a multiplicative free Brownian motion in $L(F_{\infty})$, let $\widetilde{\mathcal{B}} = \mathcal{B} * L(F_{\infty})$ and let $\sigma_t(\cdot) = U_t^* \sigma(\cdot) U_t$.

Let $\psi \in \mathrm{TQSS}(A)$, and let $(\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$ be the corresponding quintuple. (Thus, we have $\sigma : A \to \mathcal{B}$, $(\mathcal{M}_{\psi}, E_{\psi}) = (*_{\mathcal{D}})_1^{\infty}(\mathcal{B}, E)$, and the tail algebra is \mathcal{D} .)

Let $(U_t)_{t\geq 0}$ be a multiplicative free Brownian motion in $L(F_{\infty})$, let $\widetilde{\mathcal{B}} = \mathcal{B} * L(F_{\infty})$ and let $\sigma_t(\cdot) = U_t^* \sigma(\cdot) U_t$.

By the free L^{∞} Burkholder–Gundy inequality [Biane, Speicher '98], $\lim_{t\to 0^+} \|U_t - 1\| = 0.$

Recall, $\psi \iff (\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$. We have $\widetilde{\mathcal{B}} = \mathcal{B} * L(\mathbf{F}_{\infty})$ and $\sigma_t(\cdot) = U_t^* \sigma(\cdot) U_t$.

Recall, $\psi \iff (\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$. We have $\widetilde{\mathcal{B}} = \mathcal{B} * L(\mathbf{F}_{\infty})$ and $\sigma_t(\cdot) = U_t^* \sigma(\cdot) U_t$. We let $\widetilde{E} = E \circ E_{\mathcal{B}}^{\widetilde{\mathcal{B}}} : \widetilde{\mathcal{B}} \to \mathcal{D}$, where $E_{\mathcal{B}}^{\widetilde{\mathcal{B}}}$ is the canonical conditional expectation from $\widetilde{\mathcal{B}}$ onto \mathcal{B} . We let

$$(\widetilde{\mathcal{M}}, \widetilde{F}) = (*_{\mathcal{D}})_1^{\infty} (\widetilde{\mathcal{B}}, \widetilde{E})$$

and consider the state $\psi_t = \rho \circ \widetilde{F} \circ (*_1^{\infty} \sigma_t)$ on \mathfrak{A} .

Recall, $\psi \iff (\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$. We have $\widetilde{\mathcal{B}} = \mathcal{B} * L(\mathbf{F}_{\infty})$ and $\sigma_t(\cdot) = U_t^* \sigma(\cdot) U_t$. We let $\widetilde{E} = E \circ E_{\mathcal{B}}^{\widetilde{\mathcal{B}}} : \widetilde{\mathcal{B}} \to \mathcal{D}$, where $E_{\mathcal{B}}^{\widetilde{\mathcal{B}}}$ is the canonical conditional expectation from $\widetilde{\mathcal{B}}$ onto \mathcal{B} . We let

$$(\widetilde{\mathcal{M}}, \widetilde{F}) = (*_{\mathcal{D}})_1^{\infty} (\widetilde{\mathcal{B}}, \widetilde{E})$$

and consider the state $\psi_t = \rho \circ \widetilde{F} \circ (*_1^{\infty} \sigma_t)$ on \mathfrak{A} .

Using freeness, we have $\psi_t \in TQSS(A)$, and using $U_t \to 1$, we have $\psi_t \to \psi$ in weak^{*} topology as $t \to 0$.

Recall, $\psi \iff (\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$. We have $\widetilde{\mathcal{B}} = \mathcal{B} * L(\mathbf{F}_{\infty})$ and $\sigma_t(\cdot) = U_t^* \sigma(\cdot) U_t$. We let $\widetilde{E} = E \circ E_{\mathcal{B}}^{\widetilde{\mathcal{B}}} : \widetilde{\mathcal{B}} \to \mathcal{D}$, where $E_{\mathcal{B}}^{\widetilde{\mathcal{B}}}$ is the canonical conditional expectation from $\widetilde{\mathcal{B}}$ onto \mathcal{B} . We let

$$(\widetilde{\mathcal{M}}, \widetilde{F}) = (*_{\mathcal{D}})_1^{\infty} (\widetilde{\mathcal{B}}, \widetilde{E})$$

and consider the state $\psi_t = \rho \circ \widetilde{F} \circ (*_1^{\infty} \sigma_t)$ on \mathfrak{A} .

Using freeness, we have $\psi_t \in TQSS(A)$, and using $U_t \to 1$, we have $\psi_t \to \psi$ in weak^{*} topology as $t \to 0$.

We show that the tail algebra of ψ_t is a subalgebra of \mathcal{D} .

Recall, $\psi \iff (\mathcal{B}, \mathcal{D}, E, \sigma, \rho)$. We have $\widetilde{\mathcal{B}} = \mathcal{B} * L(\mathbf{F}_{\infty})$ and $\sigma_t(\cdot) = U_t^* \sigma(\cdot) U_t$. We let $\widetilde{E} = E \circ E_{\mathcal{B}}^{\widetilde{\mathcal{B}}} : \widetilde{\mathcal{B}} \to \mathcal{D}$, where $E_{\mathcal{B}}^{\widetilde{\mathcal{B}}}$ is the canonical conditional expectation from $\widetilde{\mathcal{B}}$ onto \mathcal{B} . We let

$$(\widetilde{\mathcal{M}}, \widetilde{F}) = (*_{\mathcal{D}})_1^{\infty} (\widetilde{\mathcal{B}}, \widetilde{E})$$

and consider the state $\psi_t = \rho \circ \widetilde{F} \circ (*_1^{\infty} \sigma_t)$ on \mathfrak{A} .

Using freeness, we have $\psi_t \in TQSS(A)$, and using $U_t \to 1$, we have $\psi_t \to \psi$ in weak^{*} topology as $t \to 0$.

We show that the tail algebra of ψ_t is a subalgebra of \mathcal{D} .

Using results of [Voiculescu '99] on liberation Fisher information, it follows that $\mathcal{D} \cap \sigma_t(A)' = \mathbb{C}1$. Thus, the center of \mathcal{M}_{ψ_t} is trivial and ψ_t is an extreme point of $\mathrm{TQSS}(A)$.