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Classical Exchangeability

Definition

A sequence of (classical) random variables x1, x2, . . . is said to be
exchangeable if

E(xi(1)xi(2) · · ·xi(n)) = E(xσ(i(1))xσ(i(2)) · · ·xσ(i(n)))

for every n ∈ N, i(1), . . . , i(n) ∈ N and every permutation σ of N.

That is, if the joint distribution of x1, x2 . . . is invariant under
re-orderings.
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De Finetti’s Theorem

Theorem [de Finetti, 1937]

A sequence of random variables x1, x2, . . . is exchangeable if and only
if the random variables are conditionally independent and identically
distributed over its tail σ-algebra.

Definition

The tail σ-algebra is the intersection of the σ-algebras generated by
{xN , xN+1, . . .} as N goes to ∞.

Thus, the expectation E can be seen as an integral (w.r.t. a
probability measure on the tail algebra) — that is, as a sort of convex
combination — of expectations with respect to which the random
variables x1, x2, . . . are independent and identically distributed
(i.i.d.).
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Symmetric states

Størmer extended this result to the realm of C∗–algebras.

Definition

Consider the minimal tensor product B =
⊗∞

1 A of a C∗–algebra A
with itself infinitely many times. A state on B is said to be
symmetric if it is invariant under the action of the group S∞ by
permutations of tensor factors.

Note that the set SS(A) of symmetric states on B is a closed,
convex set in the set S(B) of all states on B.

Theorem [Størmer, 1969]

The extreme points of SS(A) are the infinite tensor product states,
i.e. those of the form ⊗∞1 φ for φ ∈ S(A) a state of A. Moreover,
SS(A) is a Choquet simplex, so every symmetric state on B is an
integral w.r.t. a unique probability measure of infinite tensor product
states.
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The quantum permutation group of Shuzhou Wang [1998]

The quantum permutation group As(n)

As(n) is the universal unital C∗–algebra generated by a family of
projections (ui,j)1≤i,j≤n subject to the relations

∀i
∑
j

ui,j = 1 and ∀j
∑
i

ui,j = 1. (1)

It is a compact quantum group (with comultiplication, counit and
antipode).

Abelianization of As(n)

The universal unital C∗–algebra generated by commuting projections
ũi,,j satisfying the relations analogous to (1) is isomorphic to C(Sn),
the continuous functions of the permutation group Sn, with
ũi,j = 1{permutations sending j 7→i}. Thus, C(Sn) is a quotient of As(n)
by a ∗-homomorphism sending ui,j to ũi,j .
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ũi,j = 1{permutations sending j 7→i}. Thus, C(Sn) is a quotient of As(n)
by a ∗-homomorphism sending ui,j to ũi,j .
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Fully noncommutative version of permutation invariance

Invariance under quantum permutations

In a C∗-noncommutative probability space (A, φ), the joint
distribution of family x1, . . . , xn ∈ A is invariant under quantum
permtuations if the natural coaction of As(n) leaves the distribution
unchanged. Concretely, this amounts to:

φ(xi(1) · · ·xi(k))1

=
∑

1≤j(1),...,j(k)≤n

ui(1),j(1) · · ·ui(k),j(k)φ(xj(1) · · ·xj(k))

∈ C1 ⊆ As(n).

Invariance under quantum permutations implies invariance under
usual permuations

by taking the quotient from As(n) onto C(Sn).
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Quantum exchangeable random variables and the tail
algebra

Definition [Köstler, Speicher ’09]

In a C∗-noncommutative probability space, a sequence of random
variables (xi)

∞
i=1 is quantum exchangeable if for every n, the joint

distribution of x1, . . . , xn is invariant under quantum permutations.

The tail algebra of the sequence is

T =

∞⋂
N=1

W ∗({xN , xN+1, . . .}).

Proposition [Köstler ’10] (existence of conditional expectation)

Let (xi)
∞
i=1 be a quantum exchangeable sequence in a

W∗-noncommutative probability space (M, φ) where φ is faithful and
suppose M is generated by the xi. Then there is a unique faithful,
φ–preserving conditional expectation E from M onto T .
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Definition [Köstler, Speicher ’09]

In a C∗-noncommutative probability space, a sequence of random
variables (xi)

∞
i=1 is quantum exchangeable if for every n, the joint

distribution of x1, . . . , xn is invariant under quantum permutations.

The tail algebra of the sequence is

T =

∞⋂
N=1

W ∗({xN , xN+1, . . .}).
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Quantum exchangeable ⇔ free with amalgamation over
tail algebra.

Theorem [Köstler, Speicher ’09] (A noncommutative analogue of
de Finneti’s thoerem)

(xi)
∞
i=1 is a quantum exchangeable sequence if and only if the random

variables are exchangeable and are free with respect to the conditional
expectation E (i.e., with amalgamation over the tail algebra).

Theorem [DK]

Given any countably generated von Neumann algebra A and any
faithful state ψ on A, there is a W∗–noncommutative probability
space (M, φ) with φ faithful and with a sequence (xi)

∞
i=1 of random

variables that is quantum exchangeable with respect to φ, and so
that their tail algebra T is a copy of A so that φ�T is equal to ψ.

Dykema (TAMU) Quantum Symmetric States Large N, 2014 9 / 22



Quantum exchangeable ⇔ free with amalgamation over
tail algebra.
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Change in perspective

Generalize in the direction of C∗-algebras, like Størmer did

Instead of considering individual random variables, we consider a
unital C∗–algebra A and a state ψ on the universal unital free
product C∗–algebra A = ∗∞1 A, with corresponding embeddings
λi : A→ A, (i ≥ 1).

Definition

A state ψ is symmetric if it is invariant under the action of the
symmetric group on A.

Let ψ be a state on A and let πψ be the GNS representation and Mψ

the von Neumann algebra generated by the image of πψ.

Proposition [DKW]

If ψ is symmetric, then there is a conditional expectation from Mψ

onto the tail algebra Tψ =
⋂∞
N=1W

∗(
⋃∞
i=N πψ ◦ λi(A)).
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Definition [DKW]

A state ψ of A is quantum symmetric if the ∗–homomorphisms λi are
quantum exchangeable with respect to ψ, in the sense that, for all
n ∈ N, a1, . . . , ak ∈ A and 1 ≤ i(1), . . . , i(k) ≤ n,

ψ(λi(1)(a1) · · ·λi(k)(ak))1

=
∑

1≤j(1),...,j(k)≤n

ui(1),j(1) · · ·ui(k),j(k)ψ(λj(1)(a1) · · ·λj(k)(ak))

∈ C1 ⊆ As(n).

Theorem [DKW]

Let ψ be a state of A. Then ψ is quantum symmetric if and only if it
is symmetric and the images πψ ◦ λi(A) of the copies of A in the von
Neumann algebra Mψ are free with respect to Eψ (i.e., with
amalgamation over the tail algebra).
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Remarks

• We don’t require faithfulness of ψ on A, nor of ψ̂ on Mψ, nor of
Eψ on Mψ.

• Our proof are similar to those in [Köstler, Speicher ’09].

• Also Stephen Curran [’09] considered quantum exchangeability
for sequences of ∗–homomorphisms of ∗-algebras and proved
freeness with amalgamation; he did require faithfulness of a
state, and used different ideas for his proofs.
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Notation

Let QSS(A) denote the set of quantum symmetric states on
A = ∗∞1 A. It is a closed, convex subset of the set of all states on A.

Goals

To investigate QSS(A) as a compact, convex subset of S(A), to
characterize its extreme points and to study certain convex subsets:

• the tracial quantum symmetric states
TQSS(A) = QSS(A) ∩ TS(A)
• the central quantum symmetric states

ZQSS(A) = {ψ ∈ QSS(A) | Tψ ⊆ Z(Mψ)}
• the tracial central quantum symmetric states

ZTQSS(A) = ZQSS(A) ∩ TQSS(A).
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Description of QSS(A) in terms of a single copy of A

There is a bijection V(A)! QSS(A)

where V(A) is the set of all quintuples (B,D, E, σ, ρ) such that

• 1B ∈ D ⊆ B is a von Neumann subalgebra and E : B → D is a
normal conditional expectation

• σ : A→ B is a unital ∗–homomorphism

• ρ is a normal state on D such that the state ρ ◦ E of B has
faithful GNS representation

• B =W ∗(σ(A) ∪ D)
• D is the smallest unital von Neumann subalgebra of B such that
E(d0σ(a1)d1 · · ·σ(an)dn) ∈ D for all a1, . . . , an ∈ A and all
d0, . . . , dn ∈ D.

The bijection takes (B,D, E, σ, ρ) ∈ V(A), constructs the W∗–free
product (M, F ) = (∗D)∞1 (B, E) with amalgamation over D, and
yields the quantum symmetric state ρ ◦ E ◦ (∗∞1 σ) on A = ∗∞1 A.
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Description of QSS(A) (2)

The correspondence V(A)→ QSS(A)

The bijection takes (B,D, E, σ, ρ) ∈ V(A), constructs the W∗–free
product (M, F ) = (∗D)∞1 (B, E) with amalgamation over D, and
yields the quantum symmetric state ρ ◦ E ◦ (∗∞1 σ) on A = ∗∞1 A.

Under the bijection:

from (B,D, E, σ, ρ) D M ∗∞1 σ F ρ ◦ F

from GNS rep of ψ Tψ Mψ πψ Eψ ψ̂
(tail alg.) (exp. onto

tail alg.)

Technically, we need to let V(A) be the set of equivalence classes of
quintuples, up to a natural notion of equivalence. Also, to avoid set
theoretic difficulties we need to (and we can) restrict to B that are
represented on some specific Hilbert space.
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Theorem [DKW]

ψ ∈ QSS(A) is an extreme point of QSS(A) if and only if the
restriction of ψ̂ to the tail algebra is a pure state.

Since the restriction of ψ̂ to the tail algebra Tψ is a normal state, this
is equivalent to its support projection being a minimal projection of
Tψ.
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Central quantum symmetric states

Recall ψ ∈ ZQSS(A) means the tail algebra Tψ lies in the center of
Mψ, and ZTQSS(A) is the set of tracial ones.

Theorem [DKW]

• ZQSS(A) is a closed face of QSS(A) and is a Choquet simplex
whose extreme points are the free product states:

∂e(ZQSS(A)) = {∗∞1 φ | φ ∈ S(A)}

• ZTQSS(A) is a closed face of ZQSS(A) and is a Choquet
simplex whose extreme points are the free product traces:

∂e(ZTQSS(A)) = {∗∞1 τ | τ ∈ TS(A)}.

Choquet’s theorem, then, implies that every element of ZQSS(A) is
the barycenter of a unique probability measure on ∂e(ZQSS(A)), and
likewise for ZTQSS(A). These are Bauer simplices, because their
sets of extreme points are closed.
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Tracial quantum symmetric states

Proposition [DKW]

TQSS(A) is in correspondence with the set of quintuples
(B,D, E, σ, ρ) ∈ V(A) such that ρ ◦ E is a trace on B (which, then,
must be faithful).

In [DKW] we also found a (somewhat clumsy) characterization of the
exteme points of TQSS(A).
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Tracial quantum symmetric states (2)

A better characterization of extreme points of TQSS(A):

Theorem [DDM]

Let ψ ∈ TQSS(A) correspond to quintuple (B,D, E, σ, ρ). (This
implies Mψ

∼= (∗D)∞1 B and the tail algebra Tψ corresponds to D.)
Then the following are equivalent:

• ψ is an extreme point of TQSS(A)

• ψ is an extreme point of TS(A)

• D ∩ Z(B) = C1.

Corollary [DDM]

TQSS(A) is a Choquet simplex and is a face of TS(A).

The key to the proof is to show Z((∗D)∞1 B) = Z(B) ∩ D.
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Tracial quantum symmetric states (3)

Theorem [DDM]

The extreme points of TQSS(A) form a dense subset of TQSS(A).

Thus, if A is separable and A 6= C, then TQSS(A) is the Poulsen
simplex (the unique metrizable simplex of more than one point whose
extreme points are dense).

Key idea of proof: perturb an arbitrary ψ ∈ TQSS(A) with a
multiplicative free Brownian motion to get extreme points in
TQSS(A).
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Key idea of proof: perturb an arbitrary ψ ∈ TQSS(A) with a
multiplicative free Brownian motion to get extreme points in
TQSS(A).
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Tracial quantum symmetric states (3)

Let ψ ∈ TQSS(A), and let (B,D, E, σ, ρ) be the corresponding
quintuple. (Thus, we have σ : A→ B, (Mψ, Eψ) = (∗D)∞1 (B, E),
and the tail algebra is D.)

Let (Ut)t≥0 be a multiplicative free Brownian motion in L(F∞), let

B̃ = B ∗ L(F∞) and let σt(·) = U∗t σ(·)Ut.

By the free L∞ Burkholder–Gundy inequality [Biane, Speicher ’98],
limt→0+ ‖Ut − 1‖ = 0.
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Tracial quantum symmetric states (4)

Recall, ψ! (B,D, E, σ, ρ).
We have B̃ = B ∗ L(F∞) and σt(·) = U∗t σ(·)Ut.

We let Ẽ = E ◦ EB̃B : B̃ → D, where EB̃B is the canonical conditional

expectation from B̃ onto B. We let

(M̃, F̃ ) = (∗D)∞1 (B̃, Ẽ)

and consider the state ψt = ρ ◦ F̃ ◦ (∗∞1 σt) on A.

Using freeness, we have ψt ∈ TQSS(A), and using Ut → 1, we have
ψt → ψ in weak∗ topology as t→ 0.

We show that the tail algebra of ψt is a subalgebra of D.

Using results of [Voiculescu ’99] on liberation Fisher information, it
follows that D ∩ σt(A)′ = C1. Thus, the center of Mψt is trivial and
ψt is an extreme point of TQSS(A).
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