Matricial R-circular Systems and Random Matrices

Romuald Lenczewski

Instytut Matematyki i Informatyki Politechnika Wrocławska

UC Berkeley, March 2014

Motivations

Motivations:

- describe asymptotic distributions of random blocks
- construct new random matrix models
- unify concepts of noncommutative independence

Fundamental results

• If Y(u, n) is a standard complex Hermitian Gaussian random matrix, it converges under the trace to a semicircular operator

$$\lim_{n\to\infty} Y(u,n)\to \omega(u)$$

under $\tau(n) = \mathbb{E} \circ \operatorname{Tr}(n)$

② If Y(u, n) is a standard complex non-Hermitian Gaussian random matrix, it converges to a circular operator

$$\lim_{n\to\infty} Y(u,n) \to \eta(u)$$

under $\tau(n) = \mathbb{E} \circ \operatorname{Tr}(n)$.

Different approaches

- free probability and freeness
- operator-valued free probability and freeness with amalgamation
- matricially free probability and matricial freeness

Voiculescu's asymptotic freeness and generalizations

 Complex independent Hermitian Gaussian random matrices converge to a free semicircular family

$$\{Y(u,n): u \in \mathcal{U}\} \rightarrow \{\omega(u): u \in \mathcal{U}\}$$

2 Complex independent Non-Hermitian Gaussian random matrices converge to a free circular family

$$\{Y(u,n): u \in \mathcal{U}\} \rightarrow \{\eta(u): u \in \mathcal{U}\}$$

 Generalizations (Dykema, Schlakhtyenko, Hiai-Petz, Benaych-Georges and others)

Philosophy

By asymptotic freeness, large random matrix is a free random variable, so it is natural to

- decompose it into large blocks
- 2 look for a concept of 'matricial' independence for blocks
- find operatorial realizations for large blocks
- reduce computations to properties of these operators

Matricial decomposition

① decompose the set $[n] := \{1, ..., n\}$ into disjoint intervals

$$[n] = N_1 \cup \ldots \cup N_r$$

and set $n_i = |N_i|$,

use normalized partial traces

$$\tau_j(\mathbf{n}) = \mathbb{E} \circ \mathrm{Tr}_j(\mathbf{n})$$

where

$$\operatorname{Tr}_{j}(n)(A) = \frac{n}{n_{i}}\operatorname{Tr}(n)(D_{j}AD_{j})$$

and D_j is the $n_j \times n_j$ unit matrix embedded in $M_n(\mathbb{C})$ at the right place.

Matricial decomposition

lacktriangledown decompose random matrices Y(u, n) into independent blocks

$$S_{i,j}(u,n) = D_i Y(u,n) D_j$$

② decompose symmetric blocks $T_{i,j}(u,n)$, built from blocks of the same color:

$$Y(u,n) = \begin{pmatrix} S_{1,1}(u,n) & S_{1,2}(u,n) & \dots & S_{1,r}(u,n) \\ S_{2,1}(u,n) & S_{2,2}(u,n) & \dots & S_{2,r}(u,n) \\ & & & \ddots & & \\ S_{r,1}(u,n) & S_{r,2}(u,n) & \dots & S_{r,r}(u,n) \end{pmatrix}$$

Matricial freeness

In order to define a 'matricial' concept of independence,

1 replace families of variables and subalgebras by arrays

$${a_i, i \in I} \rightarrow (a_{i,j})_{(i,j) \in J}$$

$$\{A_i, i \in I\} \to (A_{i,j})_{(i,j) \in J}$$

e replace one distinguished state in a unital algebra by an array of states

$$\varphi \to (\varphi_{i,j})_{(i,j)\in J}$$

where we set $\varphi_{i,j} = \varphi_j$ (state 'under condition' j)

Matricial freeness

The definition of matricial freeness is based on two conditions

'freeness condition'

$$\varphi_{i,j}(a_1a_2\ldots a_n)=0$$

where $a_k \in \mathcal{A}_{i_k,j_k} \cap \mathrm{Ker} \varphi_{i_k,j_k}$ and neighbors come from different algebras

② 'matriciality condition': subalgebras are not unital, but they have internal units $1_{i,j}$, such that the unit condition

$$1_{i,j}w = w$$

holds only if w is a 'reduced word' matricially adapted to (i,j) and otherwise it is zero.

Some results

The concept of matricial freeness allows to

- unify the main notions of independence
- 2 give a unified approach to sums and products of a large class of independent random matrices
- find a unified combinatorial description of limit distributions (non-crossing colored partitions)
- derive explicit formulas for arbitrary mutliplicative convolutions of Marchenko-Pastur laws
- find random matrix models for boolean independence, monotone independence and s-freeness (noncommutative independence defined by subordination)
- o construct a natural random matrix model for free Meixner laws

Matricially free Fock space of tracial type

Definition

By the matricially free Fock space of tracial type we understand

$$\mathcal{M} = \bigoplus_{j=1}^r \mathcal{M}_j,$$

where each summand is of the form

$$\mathcal{M}_{j} = \mathbb{C}\Omega_{j} \oplus \bigoplus_{m=1}^{\infty} \bigoplus_{\substack{j_{1}, \dots, j_{m} \\ u_{1}, \dots, u_{m}}} \mathcal{H}_{j_{1}, j_{2}}(u_{1}) \otimes \ldots \otimes \mathcal{H}_{j_{m}, j}(u_{m}),$$

Creation operators

Definition

Define matricially free creation operators on $\mathcal M$ as partial isometries with the action onto basis vactors

$$\wp_{i,j}(u)\Omega_{j} = e_{i,j}(u)$$

$$\wp_{i,j}(u)(e_{j,k}(s)) = e_{i,j}(u) \otimes e_{j,k}(s)$$

$$\wp_{i,j}(u)(e_{j,k}(s) \otimes w) = e_{i,j}(u) \otimes e_{j,k}(s) \otimes w$$

for any $i, j, k \in [r]$ and $u, s \in \mathcal{U}$, where $e_{j,k}(s) \otimes w$ is a basis vector. Their actions onto the remaining basis vectors give zero.

Toeplitz-Cuntz-Krieger algebras

Relations

One square matrix of creation operators $(\wp_{i,j})$ gives an array of partial isometries satisfying relations

$$\sum_{j=1}^r \wp_{i,j} \wp_{i,j}^* = \wp_{k,i}^* \wp_{k,i} - \wp_i \text{ for any } k$$

$$\sum_{j=1}^{r} \wp_{k,j}^* \wp_{k,j} = 1 \text{ for any } k$$

where \wp_i is the projection onto $\mathbb{C}\Omega_j$. The corresponding C^* -algebras are Toeplitz-Cuntz-Krieger algebras .

Matricially free Gaussians

Arrays of matricially free Gaussians operators

$$\omega_{i,j}(u) = \sqrt{d_j}(\wp_{i,j}(u) + \wp_{i,j}^*(u))$$

play the role of matricial semicircular operators

$$[\omega(u)] = \begin{pmatrix} \omega_{1,1}(u) & \omega_{1,2}(u) & \dots & \omega_{1,r}(u) \\ \omega_{2,1}(u) & \omega_{2,2}(u) & \dots & \omega_{2,r}(u) \\ & & & \ddots & & \\ \omega_{r,1}(u) & \omega_{r,2}(u) & \dots & \omega_{r,r}(u) \end{pmatrix}$$

and generalize semicircular operators. From now on we incorporate scalaras like $\sqrt{d_i}$ or more general $\sqrt{b_{i,j}(u)}$ in the operators.

Free probability Hermitian version

Theorem [Voiculescu]

If Y(u, n) are Hermitian standard Gaussian independent random matrices with complex entries, then

$$\lim_{n\to\infty}Y(u,n)=\omega(u)$$

in the sense of mixed moments under the complete trace $\tau(n)$.

Asymptotic distributions of Hermitian symmetric blocks

Theorem

If Y(u, n) are Hermitian Gaussian independent random matrices with i.b.i.d. complex entries, then

$$\lim_{n\to\infty} T_{i,j}(u,n) = \widehat{\omega}_{i,j}(u)$$

in the sense of mixed moments under partial traces $au_j(n)$, where

$$\widehat{\omega}_{i,j}(u) = \begin{cases} \omega_{j,j}(u) & \text{if } i = j \\ \omega_{i,j}(u) + \omega_{i,j}(u) & \text{if } i \neq j \end{cases}$$

are symmetrized Gaussian operators.

Types of blocks

The symmetric blocks are called

- balanced if $d_i > 0$ and $d_i > 0$
- 2 unbalanced if $d_i = 0 \land d_i > 0$ or $d_i > 0 \land d_i = 0$
- 3 evanescent if $d_i = 0$ and $d_i = 0$

where the numbers

$$\lim_{n\to\infty}\frac{|N_j|}{n}=d_j\geqslant 0$$

are called asymptotic dimensions .

Special cases

Special cases

In the general formula for mixed moments, we get

- $T_{i,j}(u,n) \to \widehat{\omega}_{i,j}(u)$ if block is balanced
- 2 $T_{i,j}(u,n) \rightarrow \omega_{i,j}(u)$ if block is unbalanced, $j=0 \land i>0$
- **3** $T_{i,j}(u,n) \rightarrow \omega_{j,i}(u)$ if block is unbalanced, $j > 0 \land i = 0$
- \bullet $T_{i,j}(u,n) \rightarrow 0$ if block is evanescent

Free probability non-Hermitian version

Theorem [Voiculescu]

If Y(u, n) are standard complex non-Hermitian Gaussian independent random matrices, then

$$\lim_{n\to\infty}Y(u,n)=\eta(u)$$

in the sense of moments under $\tau(n)$, where each $\eta(u)$ is circular.

Non-Hermitian case

$\mathsf{Theorem}$

If Y(u, n) are non-Hermitian Gaussian independent random matrices with i.b.i.d. complex entries, then

$$\lim_{n\to\infty} T_{i,j}(u,n) = \eta_{i,j}(u)$$

where

$$\eta_{i,j}(u) = \widehat{\wp}_{i,j}(2u-1) + \widehat{\wp}_{i,j}^*(2u)$$

are called matricial circular operators and $\widehat{\wp}_{i,j}(s)$ are symmetrizations of $\wp_{i,j}(s)$ (two partial isometries for each $\eta_{i,j}(u)$).

Matricial realization of partial isometries

Lemma

We can identify partial isometries $\wp_{i,j}(u)$ with

$$\wp_{i,j}(u) = \ell(i,j,u) \otimes e(i,j) \in M_r(A)$$

where

- the family $\{\ell(i,j,u): i,j\in [r], u\in \mathcal{U}\}$ is a system of *-free creation operators w.r.t. state φ on \mathcal{A}
- ② $(e_{i,j})$ is a system of matrix units in $M_r(\mathbb{C})$
- **3** $\Psi_j = \varphi \otimes \psi_j$, where ψ_j is the state associated with $e(j) \in \mathbb{C}^r$.

Matricial realization - Hermitian case

Lemma

Consequently,

$$\omega_{i,j}(u) = \ell(i,j,u) \otimes e(i,j) + \ell(i,j,u)^* \otimes e(j,i)$$

$$\widehat{\omega}_{i,j}(u) = \begin{cases} g(i,j,u) \otimes e(i,j) + g(i,j,u)^* \otimes e(j,i) & \text{if } i < j \\ f(i,u) \otimes e(i,i) & \text{if } i = j \end{cases}$$

where

$$\{g(i,j,u): i,j\in[r], u\in\mathcal{U}\}, \quad \{f(i,u): i\in[r], u\in\mathcal{U}\}$$

are *-free generalized circular and semicircular systems, respectively.

Matricial realization - non-Hermitian case

Lemma

We can also identify matricial circular operators with

$$\eta_{i,j}(u) = \begin{cases} g(i,j,u) \otimes e(i,j) + g(j,i,u) \otimes e(j,i) & \text{if } i < j \\ g(i,i,u) \otimes e(i,i) & \text{if } i = j \end{cases}$$

Asymptotic realization of blocks

Theorem

If Y(u, n) are complex Gaussian independent random matrices with i.b.i.d. entries, then

$$\lim_{n\to\infty} S_{i,j}(u,n) = \zeta_{i,j}(u)$$

where

$$\zeta_{i,j}(u) = g(i,j,u) \otimes e(i,j)$$

are called matricial R-circular operators .

Example

Consider one off-diagonal $\zeta_{i,j}$ of the form

$$\zeta_{i,j} = (\ell_1 + \ell_2^*) \otimes e(i,j)$$

where $i \neq j$ and ℓ_1, ℓ_2 are free creation operators with covariances γ_1 and γ_2 , respectively. We have

$$\Psi_{j}(\zeta_{i,j}^{*}\zeta_{i,j}\zeta_{i,j}^{*}\zeta_{i,j}) = \varphi(\ell_{1}^{*}\ell_{1}\ell_{1}^{*}\ell_{1}) + \varphi(\ell_{1}^{*}\ell_{2}^{*}\ell_{2}\ell_{1}) = \gamma_{1}^{2} + \gamma_{1}\gamma_{2}$$

whereas all remaining *-moments of $\zeta_{i,j}$ in the state Ψ_j vanish.

Matricial freeness

$\mathsf{Theorem}$

The array of *-subalgebras $(\mathcal{M}_{i,j})$ of $M_r(\mathcal{A})$, each generated by

$$\{\ell(i,j,u)\otimes e(i,j):u\in\mathcal{U}\},\$$

with the unit

$$1_{i,j} = t(i,j) \otimes e(i,i) + 1 \otimes e(j,j)$$

where

$$t(i,j) = \left\{ \begin{array}{ll} \sum_{u \in \mathcal{U}} \ell(i,j,u) \ell(i,j,u)^* & \text{if } i \neq j \\ 0 & \text{if } i = j \end{array} \right.$$

is matricially free with respect to $(\Psi_{i,j})$, where $\Psi_{j,j} = \varphi \otimes \psi_j$.

Symmetric matricial freeness

Theorem

The array $(\mathcal{M}_{i,j})$ of *-subalgebras of $M_r(\mathcal{A})$, each generated by

$$\{\ell(i,j,u)\otimes e(i,j),\ell(j,i,u)\otimes e(j,i):u\in\mathcal{U}\}$$

and the symmetrized unit

$$1_{i,j} = 1 \otimes e(i,i) + 1 \otimes e(j,j),$$

is symmetrically matricially free with respect to $(\Psi_{i,j})$.

Symmetric matricial freeness

Corollary

The array $(\mathcal{M}_{i,j})$ of *-subalgebras of $M_r(\mathcal{A})$ such that one of the following cases holds:

- **①** each $\mathcal{M}_{i,j}$ is generated by $\{\widehat{\omega}_{i,j}(u): u \in \mathcal{U}\}$,
- ② each $\mathcal{M}_{i,j}$ is generated by $\{\eta_{i,j}(u): u \in \mathcal{U}\}$,
- **3** each $\mathcal{M}_{i,j}$ is generated by $\{\zeta_{i,j}(u): u \in \mathcal{U}\}$,

is symmetrically matricially free with respect to $(\Psi_{i,j})$.

Adapted partitions

If $a_k = c_k \otimes e(i_k, j_k) \in M_r(\mathcal{A})$ for k = 1, ..., m, where $c_k \in \mathcal{A}$, we will denote by

$$\mathcal{NC}_m(a_1,\ldots,a_m)$$

the set of non-crossing partitions of [m] which are adapted to $(e(i_1, j_1), \dots, e(i_m, j_m))$ which means that this tuple is cyclic

$$j_1 = i_2, j_2 = i_3, \dots, j_n = i_1$$

together with all tuples associated with the blocks of π . Its subset consisting of pair partitions will be denoted $\mathcal{NC}_m^2(a_1,\ldots,a_m)$.

Example

For (e(i,j),e(j,i),e(i,j),e(j,i)), where $i \neq j$, there are three non-crossing partitions adapted to it:

$$\{\{1,2,3,4\}\},\ \{\{1,4\},\{2,3\}\},\ \{\{1,2\},\{3,4\}\}.$$

In turn, the partitions

$$\{\{1,2,5\},\{3,4\}\},\ \{\{1,2,3,4,5\}\}\ \{\{1,2,3\},\{4,5\}\}$$

are the only non-crossing partitions adapted to the tuple (e(i,j),e(j,k),e(k,i),e(i,m),e(m,i)), where $i\neq j\neq k\neq i\neq m$.

Combinatorics of mixed *-moments

Lemma

With the above notations, let $a_k = \zeta_{i_k,j_k}^{\epsilon_k}(u_k)$, where $i_k,j_k \in [r]$, $u_k \in \mathcal{U}$, and $\epsilon_k \in \{1,*\}$ for $j \in [m]$ and $m \in \mathbb{N}$. Then

$$\Psi_j(a_1 \dots a_m) = \sum_{\pi \in \mathcal{NC}_m^2(a_1, \dots, a_m)} b_j(\pi, f)$$

where j is equal to the second index of last matrix unit (associated with a_m) and f is the unique coloring of π adapted to (a_1, \ldots, a_m) ,

$$b_j(\pi,f) = \prod_k b_j(\pi_k,f)$$

with $b_j(\pi_k) = b_{c(k),c(o(k))}(u)$, where c(k), c(o(k)), j are colors assigned to π_k , its nearest outer block $\pi_{o(k)}$ and to the imaginary block. In the remaining cases, the moment vanishes.

Cyclic cumulants

Definition

A family of multilinear functions $\kappa_{\pi}[\;.\;;j]$, where $j\in[r]$, of matricial variables $a_k=c_k\otimes e(i_k,j_k)\in M_r(\mathcal{A})$ is cyclically multiplicative over the blocks π_1,\ldots,π_s of $\pi\in\mathcal{NC}_m(a_1,\ldots,a_m)$ if

$$\kappa_{\pi}[a_1,\ldots,a_m;q]=\prod_{k=1}^s\kappa(\pi_k)[a_1,\ldots,a_m;j(k)],$$

for any a_1, \ldots, a_m , where

$$\kappa(\pi_k)[a_1,\ldots,a_m;j(k)] = \kappa_s(a_{q_1},\ldots,a_{q_s};j_{q_s})$$

for the block $\pi_k = (q_1 < \ldots < q_n)$, where $\{\kappa_s(.;j) : s \geqslant 1, j \in [r]\}$ is a family of multilinear functions. If $\pi \notin \mathcal{NC}_m(a_1,\ldots,a_m)$, we set $\kappa_\pi[a_1,\ldots,a_m;j] = 0$ for any j.

Cyclic cumulants

Definition

By the cyclic cumulants we shall understand the family of multilinear cyclically multiplicative functionals over the blocks of non-crossing partitions

$$\pi \to \kappa_{\pi}[.;j],$$

defined by r moment-cumulant formulas

$$\Psi_j(a_1 \ldots a_m) = \sum_{\pi \in \mathcal{NC}_m(a_1, \ldots, a_m)} \kappa_{\pi}[a_1, \ldots, a_m; j],$$

where $j \in [r]$ and $\Psi_i = \varphi \otimes \psi_i$.

Example

Take

$$\zeta_{i,j} = (\ell_1 + \ell_2^*) \otimes e(i,j) \text{ and } \zeta_{i,j}^* = (\ell_1^* + \ell_2) \otimes e(j,i),$$

where $i \neq j$. The non-trivial second order cumulants are

$$\begin{array}{lcl} \kappa_{2}(\zeta_{i,j}^{*},\zeta_{i,j};j) & = & \Psi_{j}(\zeta_{i,j}^{*}\zeta_{i,j}) = \varphi(\ell_{1}^{*}\ell_{1}) = \gamma_{1} \\ \kappa_{2}(\zeta_{i,j},\zeta_{i,j}^{*};i) & = & \Psi_{i}(\zeta_{i,j}\zeta_{i,j}^{*}) = \varphi(\ell_{2}^{*}\ell_{2}) = \gamma_{2} \end{array}$$

whereas all higher order cumulants vanish. For instance,

$$\begin{array}{lcl} \kappa_{2}(\zeta_{i,j}^{*},\zeta_{i,j},\zeta_{i,j}^{*};j) & = & \Psi_{j}(\zeta_{i,j}^{*}\zeta_{i,j}\zeta_{i,j}^{*}\zeta_{i,j}) \\ & - & \kappa_{2}(\zeta_{i,j}^{*},\zeta_{i,j};j)\kappa_{2}(\zeta_{i,j}^{*},\zeta_{i,j};j) \\ & & -\kappa_{2}(\zeta_{i,j}^{*},\zeta_{i,j};j)\kappa_{2}(\zeta_{i,j},\zeta_{i,j}^{*};i) \\ & = & \gamma_{1}^{2} + \gamma_{1}\gamma_{2} - \gamma_{1}^{2} - \gamma_{1}\gamma_{2} = 0, \end{array}$$

Cyclic R-transforms

Cyclic R-transforms

Let $\zeta:=(\zeta_{i,j})$ and $\zeta^*:=(\zeta_{i,j}^*)$. Cyclic R-transforms of this pair of arrays are formal power series in $z:=(z_{i,j})$ and $z^*:=(z_{i,j}^*)$ of the form

$$R_{\zeta,\zeta^*}(z,z^*;j)$$

$$=\sum_{n=1}^{\infty}\sum_{\substack{i_1,\ldots,i_n\\j_1,\ldots,j_n}}\sum_{\epsilon_1,\ldots,\epsilon_n}\kappa_n(\zeta_{i_1,j_1}^{\epsilon_1},\ldots,\zeta_{i_n,j_n}^{\epsilon_n};j)z_{i_1,j_1}^{\epsilon_1}\ldots z_{i_n,j_n}^{\epsilon_n},$$

where $i_1, \ldots, i_n, j, j_1, \ldots j_n \in [r]$ and $\epsilon_1, \ldots, \epsilon_n \in \{1, *\}$.

Cyclic R-transforms of R-circular systems

$\mathsf{Theorem}$

If $\zeta := (\zeta_{i,j})$ is the square array of matricial R-circular operators and $\zeta^* := (\zeta_{i,j}^*)$, then its cyclic R-transforms are of the form

$$R_{\zeta,\zeta^*}(z,z^*;j) = \sum_{i=1}^r (b_{i,j}z_{i,j}^*z_{i,j} + b_{i,j}z_{j,i}z_{j,i}^*)$$

where $j \in [r]$, where $b_{i,j} = \kappa_2(\xi_{i,j}^*, \xi_{i,j}^*; j) = \kappa_2(\xi_{j,i}, \xi_{i,j}^*; j)$.

Cyclic R-transforms of single R-circular operators

$\mathsf{Theorem}$

If $\zeta := \zeta_{i,j}$, where $i \neq j$, then non-trivial cyclic R-transforms of the pair $\{\zeta, \zeta^*\}$ are of the form

$$R_{\zeta,\zeta^*}(z,z^*;j) = b_{i,j}z_{i,j}^*z_{i,j}$$

 $R_{\zeta,\zeta^*}(z,z^*;i) = b_{j,i}z_{i,j}z_{i,j}^*$

and if $\zeta := \zeta_{i,i}$, then

$$R_{\zeta,\zeta^*}(z,z^*;j) = b_{j,j}(z_{j,j}^*z_{j,j} + z_{j,j}z_{j,j}^*)$$

Cyclic R-transforms of single R-circular operators

Corollary

If $b_{i,j}=d_i$ for any i,j, then $c:=\sum_{i,j}\zeta_{i,j}$ is circular with respect to $\Psi=\sum_{j=1}^r d_j\Psi_j$ and the corresponding R-transform takes the form

$$R_{c,c^*}(z_1,z_2) = \sum_{j=1}^r d_j R_{\zeta,\zeta^*}(z,z^*;j) = z_1 z_2 + z_2 z_1,$$

where $R_{\zeta,\zeta^*}(z,z^*;j)$ are the cyclic R-transforms considered above in which all entries of arrays z and z^* are identified with z_1 and z_2 , respectively.