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q-deformed Araki-Woods algebras q-Fock space

(HR, 〈·, ·〉) be a real Hilbert space and {Ut}t∈R ⊂ B(HR) a strongly
continuous one-parameter group of orthogonal transformations.

HC := HR ⊗R C = HR + iHR, extend inner product to be C-linear in
second coordinate, and extend {Ut}t∈R to unitary transformations.

{Ut}t∈R has a generator A: A ≥ 0, non-singular, and Ait = Ut for all
t ∈ R.

Examples. (i) Ut = 1 and A = 1. (ii):

Ut =

(
cos(t log λ) − sin(t log λ)
sin(t log λ) cos(t log λ)

)
A =

(
λ+λ−1

2 −i λ−λ
−1

2

i λ−λ
−1

2
λ+λ−1

2

)
.

Define a new inner product

〈f , g〉U =

〈
2

1 + A−1
f , g

〉
, f , g ∈ HC,

and let H = HC
‖·‖U .

Brent Nelson (UCLA) Free monotone transport without a trace March 27, 2014 2 / 21



q-deformed Araki-Woods algebras q-Fock space

(HR, 〈·, ·〉) be a real Hilbert space and {Ut}t∈R ⊂ B(HR) a strongly
continuous one-parameter group of orthogonal transformations.

HC := HR ⊗R C = HR + iHR, extend inner product to be C-linear in
second coordinate, and extend {Ut}t∈R to unitary transformations.

{Ut}t∈R has a generator A: A ≥ 0, non-singular, and Ait = Ut for all
t ∈ R.

Examples. (i) Ut = 1 and A = 1. (ii):

Ut =

(
cos(t log λ) − sin(t log λ)
sin(t log λ) cos(t log λ)

)
A =

(
λ+λ−1

2 −i λ−λ
−1

2

i λ−λ
−1

2
λ+λ−1

2

)
.

Define a new inner product

〈f , g〉U =

〈
2

1 + A−1
f , g

〉
, f , g ∈ HC,

and let H = HC
‖·‖U .

Brent Nelson (UCLA) Free monotone transport without a trace March 27, 2014 2 / 21



q-deformed Araki-Woods algebras q-Fock space

(HR, 〈·, ·〉) be a real Hilbert space and {Ut}t∈R ⊂ B(HR) a strongly
continuous one-parameter group of orthogonal transformations.

HC := HR ⊗R C = HR + iHR, extend inner product to be C-linear in
second coordinate, and extend {Ut}t∈R to unitary transformations.

{Ut}t∈R has a generator A: A ≥ 0, non-singular, and Ait = Ut for all
t ∈ R.

Examples. (i) Ut = 1 and A = 1. (ii):

Ut =

(
cos(t log λ) − sin(t log λ)
sin(t log λ) cos(t log λ)

)
A =

(
λ+λ−1

2 −i λ−λ
−1

2

i λ−λ
−1

2
λ+λ−1

2

)
.

Define a new inner product

〈f , g〉U =

〈
2

1 + A−1
f , g

〉
, f , g ∈ HC,

and let H = HC
‖·‖U .

Brent Nelson (UCLA) Free monotone transport without a trace March 27, 2014 2 / 21



q-deformed Araki-Woods algebras q-Fock space

(HR, 〈·, ·〉) be a real Hilbert space and {Ut}t∈R ⊂ B(HR) a strongly
continuous one-parameter group of orthogonal transformations.

HC := HR ⊗R C = HR + iHR, extend inner product to be C-linear in
second coordinate, and extend {Ut}t∈R to unitary transformations.

{Ut}t∈R has a generator A: A ≥ 0, non-singular, and Ait = Ut for all
t ∈ R.

Examples. (i) Ut = 1 and A = 1. (ii):

Ut =

(
cos(t log λ) − sin(t log λ)
sin(t log λ) cos(t log λ)

)
A =

(
λ+λ−1

2 −i λ−λ
−1

2

i λ−λ
−1

2
λ+λ−1

2

)
.

Define a new inner product

〈f , g〉U =

〈
2

1 + A−1
f , g

〉
, f , g ∈ HC,

and let H = HC
‖·‖U .

Brent Nelson (UCLA) Free monotone transport without a trace March 27, 2014 2 / 21



q-deformed Araki-Woods algebras q-Fock space

(HR, 〈·, ·〉) be a real Hilbert space and {Ut}t∈R ⊂ B(HR) a strongly
continuous one-parameter group of orthogonal transformations.

HC := HR ⊗R C = HR + iHR, extend inner product to be C-linear in
second coordinate, and extend {Ut}t∈R to unitary transformations.

{Ut}t∈R has a generator A: A ≥ 0, non-singular, and Ait = Ut for all
t ∈ R.

Examples. (i) Ut = 1 and A = 1. (ii):

Ut =

(
cos(t log λ) − sin(t log λ)
sin(t log λ) cos(t log λ)

)
A =

(
λ+λ−1

2 −i λ−λ
−1

2

i λ−λ
−1

2
λ+λ−1

2

)
.

Define a new inner product

〈f , g〉U =

〈
2

1 + A−1
f , g

〉
, f , g ∈ HC,

and let H = HC
‖·‖U .

Brent Nelson (UCLA) Free monotone transport without a trace March 27, 2014 2 / 21



q-deformed Araki-Woods algebras q-Fock space

For −1 < q < 1, the q-Fock space Fq(H) is the completion of
CΩ⊕

⊕∞
n=1H⊗n with respect to the inner product

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉U,q := δn=m

∑
π∈Sn

qi(π)
n∏

k=1

〈
fk , gπ(k)

〉
U
.

For each f ∈ H, define the left q-creation operator lq(f ) ∈ B(Fq(H))
densely by

lq(f )Ω = f , and

lq(f )g1 ⊗ · · · ⊗ gn = f ⊗ g1 ⊗ · · · ⊗ gn.

Its adjoint, the left q-annihilation operator lq(f )∗ is densely defined by

lq(f )∗Ω = 0, and

lq(f )∗g1 ⊗ · · · ⊗ gn =
n∑

k=1

qk−1 〈f , gk〉U g1 ⊗ · · · ⊗ ĝk ⊗ · · · ⊗ gn.
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q-deformed Araki-Woods algebras q-quasi-free states

Denote sq(f ) = lq(f ) + lq(f )∗, f ∈ H. When q = 0, this is
semicircular.

The q-deformed Araki-Woods algebra is then defined as

Γq(HR,Ut)′′ = W ∗(sq(f ) : f ∈ HR) ⊂ B(Fq(H)).

For q = 0 we simply write Γ(HR,Ut)′′ and call it the free
Araki-Woods factor.

The vector-state corresponding to Ω, ϕ(= ϕq,U), is faithful and
non-degenerate on Γq(HR,Ut)′′, and is called a q-quasi-free state, or
a free quasi-free state when q = 0.

The modular automorphism group {σϕt } of ϕ is well known:

σϕz (sq(ej )) =
N∑

k=1

[Aiz ]jksq(ek), z ∈ C,

where {ej} ⊂ HR is an o.n. basis.
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q-deformed Araki-Woods algebras The state of things

Let N = dimHR.

q = 0 q 6= 0

Ut = 1

Ut 6= 1
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q-deformed Araki-Woods algebras The state of things

Let N = dimHR.

q = 0 q 6= 0

Ut = 1

Ut 6= 1

L(FN)

the free group factor

with N generators

[Guionnet, Shlyakhtenko

2013]: for N < ∞ there

is a constant C(N) > 0

so that for |q| < C(N)

this is isomorphic to L(FN)

via transport arguments
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Let N = dimHR.

q = 0 q 6= 0

Ut = 1

Ut 6= 1

L(FN)

the free group factor

with N generators

Γq(HR)

the q-deformed

free group factor

[Shlyakhtenko 1997]:

factoriality and type

classification are ob-

tained, latter determined

by spectrum(A)
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Let N = dimHR.

q = 0 q 6= 0

Ut = 1

Ut 6= 1

L(FN)

the free group factor

with N generators

Γq(HR)

the q-deformed

free group factor

Γ(HR,Ut)′′

free Araki-Woods factor

[Hiai 2003]: factoriality

and type classification are

obtained for A with either

infinitely many mutually

orthogonal eigenvectors or no

eigenvectors (i.e. N = ∞)
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q-deformed Araki-Woods algebras Combinatorics

Fix an orthonormal basis {en} of HR, it will still be a normalized basis
for H but not orthogonal unless Ut = 1.

Denote sq(en) = Xn(= X
(q)
n ) and want to compute ϕ on monomials

in C 〈{Xn}〉.
The combinatorics associated to this task makes interesting
transistions as we vary Ut and q.
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q-deformed Araki-Woods algebras Combinatorics

Example 1.1 (Free group factor; top-left corner)

Suppose Ut = 1 for all t ∈ R and q = 0.

Wish to compute ϕ(X1X 2
2 X 3

1 ).
Draw

1 2 2 1 1 1

Pair up nodes of the same color and connect them with strings so that
strings do not cross. In this case there are two such diagrams:

1 2 2 1 1 1

1 2 2 1 1 1

Each such diagram contributes a term of 1 so that ϕ(X1X 2
2 X 3

1 ) = 2.
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q-deformed Araki-Woods algebras Combinatorics

Example 1.2 (q-deformed free group factor; top-right corner)

Suppose Ut = 1 for all t ∈ R and q 6= 0.

Again we compute ϕ(X1X 2
2 X 3

1 ).
Same setup as before, but now strings may cross:

1 2 2 1 1 1

1 2 2 1 1 1

1 2 2 1 1 1

A crossing adds a factor of q to the weight of a diagram, so here
ϕ(X1X2X2X 3

1 ) = 2 + q.
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q-deformed Araki-Woods algebras Combinatorics

Example 1.3 (Free Araki-Woods factor; bottom-left corner)

Now let Ut be non-trivial and q = 0.

We will compute ϕ(X1X2X2X1).
Setup is again the same:

1 2 2 1

However, now pairings can be made regardless of color:

1 2 2 1 1 2 2 1

When nodes corresponding to the vectors ej and ek are connected (form
left to right), the diagram gains a factor of 〈ej , ek〉U . So here

ϕ(X1X2X2X1) = 1 + 〈e1, e2〉U 〈e2, e1〉U .
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q-deformed Araki-Woods algebras Combinatorics

Example 1.4 (q-deformed Araki-Woods algebra; bottom-right corner)

Finally let Ut be non-trivial and q 6= 0.

We again compute ϕ(X1X2X2X1).
The transition to non-zero q is the same as before: strings may cross and
each contributes a factor of q.

1 2 2 1 1 2 2 1

1 2 2 1

So here

ϕ(X1X2X2X1) = 1 + 〈e1, e2〉U 〈e2, e1〉U + q 〈e1, e2〉U 〈e2, e1〉U .
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Free transport Differential operators

Let N <∞ and {Ut : t ∈ R} with generator A.

Fix −1 < q < 1, and write Xj = X
(q)
j and ϕ = ϕq,U . Denote

P = C 〈X1, . . . ,XN〉.

For each j = 1, . . . ,N we define the σ-difference quotient
∂j : P →P ⊗Pop and the σ-cyclic derivative Dj : P →P by

∂j (Xk1 · · ·Xkn ) =
n∑

l=1

[
2

1 + A

]
kl j

Xk1 · · ·Xkl−1
⊗ Xkl+1

· · ·Xkn ,

and

Dj (Xk1 · · ·Xkn ) =
n∑

l=1

[
2

1 + A

]
jkl

σϕ−i (Xkl+1
· · ·Xkn )Xk1 · · ·Xkl−1

,

respectively.
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Free transport Differential operators

Example 2.1

Let αjk =
[

2
1+A

]
jk

then

∂1(X1X2X1) = α111⊗ X2X1 + α21X1 ⊗ X1 + α11X1X2 ⊗ 1,

and

D1(X1X2X1) = α11σ
ϕ
−i (X2X1) + α12σ

ϕ
−i (X1)X1 + α11X1X2.

Special example:

V0 =
1

2

N∑
j ,k=1

[
1 + A

2

]
jk

XkXj .

An easy computation shows Dj V0 = Xj .
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Free transport The Schwinger-Dyson equation

Let ψ be a state defined on P and let V ∈P. We say that ψ satisfies
the Schwinger-Dyson equation with potential V if for each j = 1, . . . ,N

ψ(Dj V · P) = ψ ⊗ ψop(∂j P)

for all P ∈P, and we call ψ the free Gibbs state with potential V ,
ψ = ϕV .

In particular, ϕ0,U is the free Gibbs state with potential V0, where V0 is as
above.
Since Dj V0 = Xj , this is immediate from considering the diagrams in our
earlier examples.
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Free transport The Schwinger-Dyson equation

We collect everything in vector and matrix notation:

X := (X1, . . . ,XN) ∈PN ;

for P ∈P

DP := (D1P, . . . ,DNP) ∈PN ;

and for G ∈PN we define JσG ∈ MN×N(P ⊗Pop) by

[JσG ]jk = ∂k (Gj )

for each j , k ∈ {1, . . . ,N}.
So the Schwinger-Dyson equation with potential V reads:

ψ(DV · G ) = ψ ⊗ ψop ⊗ Tr(JσG )

Brent Nelson (UCLA) Free monotone transport without a trace March 27, 2014 14 / 21



Free transport The Schwinger-Dyson equation

Theorem 2.2 (N. 2013)

For |q| sufficiently small (depending on N and ‖A‖) ϕq,U satisfies the
Schwinger-Dyson equation with a potential Vq ∈ Γq(HR,Ut)′′:

ϕq,U(DVq#P) = ϕq,U ⊗ ϕop
q,U ⊗ Tr(JσP) (1)

for all P ∈ C
〈

X
(q)
1 , . . . ,X

(q)
N

〉N
.

Moreover, Vq → V0 as |q| → 0 (with respect to a particular Banach norm).

Theorem 2.3 (Guionnet, Maurel-Segala 2006)

For potentials V sufficiently close to V0 (with respect to particular Banach
norm), the free Gibbs state with potential V is unique.
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Free transport Banach Spaces

For P ∈P we write

P =

deg P∑
n=0

N∑
j1,...,jn=1

c(j1, . . . , jn)Xj1 · · ·Xjn =

deg P∑
n=0

πn(P),

and define

‖P‖R :=

deg P∑
n=0

N∑
j1,...,jn=1

|c(j1, . . . , jn)|Rn

and P(R) = P
‖·‖R .

Define σ-cyclic rearrangements by

ρ(Xj1 · · ·Xjn ) := σϕ−i (Xjn )Xj1 · · ·Xjn−1 ,

and define

‖P‖R,σ :=

deg P∑
n=0

sup
kn∈Z
‖ρkn (πn(P))‖R

and P(R,σ) = Pfinite
‖·‖R,σ

.
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Free transport Banach Spaces

Denote

P(R)
ϕ := P(ϕ) ∩ Γq(HR,Ut)′′ϕ P(R,σ)

ϕ = P(R,σ) ∩ Γq(HR,Ut)′′ϕ,

and

P
(R,σ)
c.s. := {P ∈P(R,σ) : ρ(P) = P}.

Vq ∈P
(R,σ)
c.s. for sufficiently small |q|.

The map

S :=
∑
n≥1

1

n

n−1∑
k=0

ρk ◦ πn,

is a contraction

P(R,σ)
ϕ

S−→P
(R,σ)
c.s.
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Free transport Transport

Classically, transport is a map T : (X , µ)→ (Z , ν) so that T∗(µ) = ν.
Yields a measure-preserving embedding L∞(Z , ν) ↪→ L∞(X , µ) via
f 7→ f ◦ T .

Given N-tuples X1, . . . ,XN ∈ (A, ϕ) and Z1, . . . ,ZN ∈ (B, ψ) write
X = (X1, . . . ,XN) and Z = (Z1, . . . ,ZN) and let ϕX and ψZ be their
respective joint laws.

Transport from ϕX to ψZ is an N-tuple
Y1, . . . ,YN ∈W ∗(X1, . . . ,XN) whose joint law with respect to ϕ,
ϕY , is the same as ψZ .

Its existence implies W ∗(Z1, . . . ,ZN) ↪→W ∗(X1, . . . ,XN) via
Zj 7→ Yj , and the embedding is state preserving.
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Free transport Transport

Theorem 2.4 (N. 2013)

For ‖V − V0‖R,σ sufficiently small, there exists
Y1, . . . ,YN ∈P(R) ⊂ Γ(HR,Ut)′′ whose law with respect to ϕ0,U is the
free Gibbs state with potential V .

Moreover, each Yj = Gj (X
(0)
1 , . . . ,X

(0)
N ) and

G = (G1, . . . ,GN) : (P(R))N → (P(R))N

is invertible.
Consequently, for |q| sufficiently small (depending on N and ‖A‖) there is
a state preserving isomorphism

Γq(HR,Ut)′′ ∼= Γ(HR,Ut)′′

X
(q)
j 7−→ Gj (X

(0)
1 , . . . ,X

(0)
N )

(G−1)k (X
(q)
1 , . . . ,X

(q)
N ) ←− [ X

(0)
k
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Free transport Constructing transport

Define F : P
(R,σ)
c.s. →P

(R,σ)
ϕ by

F (g) =−W (X + Dg)− 1

4
{(1 + A)#Dg}#Dg

+
∑
m≥1

(−1)m+1

m
(1⊗ ϕop) ◦ Tr

(
A#

[
JσDg#JσX−1

]m)
+
∑
m≥1

(−1)m+1

m
(ϕ⊗ 1) ◦ Tr

(
A−1#

[
JσDg#JσX−1

]m)
,

where W = V − V0.

Then S πn≥1F has a fixed point g ∈P
(R,σ)
c.s. and setting

Y = X + Dg

yields Y1, . . . ,YN whose law with respect to ϕ is the free Gibbs state with
potential V .
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Free transport Planar tangles

F is equivalent to a planar tangle:

F (g) =−W (X + Dg)− 1

4
{(1 + A)#Dg}#Dg

+
∑
m≥1

(−1)m+1

m
(1⊗ ϕop) ◦ Tr

(
A#

[
JσDg#JσX−1

]m)
+
∑
m≥1

(−1)m+1

m
(ϕ⊗ 1) ◦ Tr

(
A−1#

[
JσDg#JσX−1

]m)
,

where the term in red corresponds to:
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F is equivalent to a planar tangle:

F (g) =−W (X + Dg)− 1

4
{(1 + A)#Dg}#Dg

+
∑
m≥1

(−1)m+1

m
(1⊗ ϕop) ◦ Tr

(
A#

[
JσDg#JσX−1

]m)
+
∑
m≥1

(−1)m+1

m
(ϕ⊗ 1) ◦ Tr

(
A−1#

[
JσDg#JσX−1

]m)
,

where the term in red corresponds to:

ϕ

g g · · · g g
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