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Let M be a Riemannian manifold, with metric 〈·, ·〉 and resulting

volume form dV . If f ∈ C∞(M), the gradient ∇f = ∇Mf is the

vector field defined by

〈∇f,X〉 = df(X) = X(f), X ∈ Vec(M).
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Let M be a Riemannian manifold, with metric 〈·, ·〉 and resulting

volume form dV . If f ∈ C∞(M), the gradient ∇f = ∇Mf is the

vector field defined by

〈∇f,X〉 = df(X) = X(f), X ∈ Vec(M).

The Laplacian ∆ = ∆M is the operator on C∞(M) defined by

∫

M

f ∆g dV = −
∫

M

〈∇f,∇g〉 dV, f, g ∈ C∞(M).

Given some mild curvature assumptions, ∆M extends to a(n

unbounded) selfadjoint operator on L2(M,dV ).

If U is an isometry of M , then (∆f) ◦ U = ∆(f ◦ U). This means

∆ can be computed by the same expression in any orthonormal

basis. If M = R
n with its usual Euclidean metric, ∆ =

∑n
j=1

∂2

∂x2
j

.
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The heat equation on M , with initial condition f , is the PDE

∂u

∂t
=

1

2
∆u, u(0, x) = f(x).
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The heat equation on M , with initial condition f , is the PDE

∂u

∂t
=

1

2
∆u, u(0, x) = f(x).

If M is nice (e.g. bounded-below curvature), it has a unique solution

u(t, x) = e
t
2
∆f(x) for a wide range of functions f .
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If M is nice (e.g. bounded-below curvature), it has a unique solution

u(t, x) = e
t
2
∆f(x) for a wide range of functions f . In fact, there is

always a C∞(M) bounded function ρ = ρ(t, x, y) such that

e
t
2
∆f(x) =

∫

M
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The heat equation on M , with initial condition f , is the PDE

∂u

∂t
=

1

2
∆u, u(0, x) = f(x).

If M is nice (e.g. bounded-below curvature), it has a unique solution

u(t, x) = e
t
2
∆f(x) for a wide range of functions f . In fact, there is

always a C∞(M) bounded function ρ = ρ(t, x, y) such that

e
t
2
∆f(x) =

∫

M

f(y)ρ(t, x, y) dV (y), f ∈ L1(M).

The function ρ is called the heat kernel on M . On R
n,

ρ(t, x, y) = (2πt)−
n
2 e−

|x−y|2

2t .

This Gaussian tail behavior is universal; but in general there is no

formula for the heat kernel on any non-Euclidean manifold.
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Let G be a Lie group, with Lie algebra g. If 〈·, ·〉 is a real inner

product on g, by (right-)translation it gives rise to a left-invariant

Riemannian metric on G (which has positive curvature).
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Let G be a Lie group, with Lie algebra g. If 〈·, ·〉 is a real inner

product on g, by (right-)translation it gives rise to a left-invariant

Riemannian metric on G (which has positive curvature).

Given any vector ξ ∈ g, denote by ∂ξ the left-invariant vector field

∂ξf(x) =
d

dt
f(x exp(tξ))

∣

∣

∣

∣

t=0

.
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n, x exp(tξ) = x+ tξ, giving the usual derivative.)
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f(x exp(tξ))

∣

∣

∣

∣

t=0

.

(If G = g = R
n, x exp(tξ) = x+ tξ, giving the usual derivative.)

Fix any orthonormal basis β of g; then define

∆β =
∑

ξ∈β

∂2
ξ .

In fact, this does not depend on the choice of basis β; it is equal to

the Laplace operator on the Riemannian manifold G.
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Let G be a Lie group, with Lie algebra g. If 〈·, ·〉 is a real inner

product on g, by (right-)translation it gives rise to a left-invariant

Riemannian metric on G (which has positive curvature).

Given any vector ξ ∈ g, denote by ∂ξ the left-invariant vector field

∂ξf(x) =
d

dt
f(x exp(tξ))

∣

∣

∣

∣

t=0

.

(If G = g = R
n, x exp(tξ) = x+ tξ, giving the usual derivative.)

Fix any orthonormal basis β of g; then define

∆β =
∑

ξ∈β

∂2
ξ .

In fact, this does not depend on the choice of basis β; it is equal to

the Laplace operator on the Riemannian manifold G. And we can

compute with it!
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Because of the left-invariance of ∆G, the heat kernel ρ(t, x, y)
takes the form of a convolution kernel: letting ρt(x) = ρ(t, x, 1G),

ρ(t, x, y) = ρt(y
−1x)
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Because of the left-invariance of ∆G, the heat kernel ρ(t, x, y)
takes the form of a convolution kernel: letting ρt(x) = ρ(t, x, 1G),

ρ(t, x, y) = ρt(y
−1x) that is to say

e
t
2
∆Gf(x) = f ∗ ρt(x) =

∫

G

f(y)ρt(y
−1x) dy.

where dy denotes the (right-)Haar measure on G.
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Because of the left-invariance of ∆G, the heat kernel ρ(t, x, y)
takes the form of a convolution kernel: letting ρt(x) = ρ(t, x, 1G),

ρ(t, x, y) = ρt(y
−1x) that is to say

e
t
2
∆Gf(x) = f ∗ ρt(x) =

∫

G

f(y)ρt(y
−1x) dy.

where dy denotes the (right-)Haar measure on G.

• Since e
t
2
∆G(1) = 1, ρt is a probability density.

• Since e
s+t
2

∆G = e
s
2
∆Ge

t
2
∆G , ρs+t = ρs ∗ ρt.

We will also denote by dρt the heat kernel measure (with density

ρt). This measure is determined (by definition) by

∫

G

f dρt =
(

e
t
2
∆Gf

)

(1G), f ∈ Cc(G).
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The Brownian motion Bx0

t on a Riemannian manifold M is the

Markov process with generator 1
2∆M , started at x0 ∈ M .
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The Brownian motion Bx0

t on a Riemannian manifold M is the

Markov process with generator 1
2∆M , started at x0 ∈ M . This

abstract definition can be made much more concrete in the Lie group

case. The Brownian motion Bt on a Lie group G, started at 1G, is

the unique process satisfying

• t 7→ Bt is a continuous map from R+ into G a.s.

• For 0 ≤ s < t < ∞, B−1
s Bt has distribution ρt−s, and is

independent from (Br)0≤r≤s.
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The Brownian motion Bx0

t on a Riemannian manifold M is the

Markov process with generator 1
2∆M , started at x0 ∈ M . This

abstract definition can be made much more concrete in the Lie group

case. The Brownian motion Bt on a Lie group G, started at 1G, is

the unique process satisfying

• t 7→ Bt is a continuous map from R+ into G a.s.

• For 0 ≤ s < t < ∞, B−1
s Bt has distribution ρt−s, and is

independent from (Br)0≤r≤s.

There is an even more explicit representation, as a kind of projection

of the Brownian motion on the Lie algebra. Let β be an o.n. basis of

g, and

Wt =
∑

ξ∈β

W
(ξ)
t ξ, {W (ξ)

t }ξ∈β i.i.d. Brownian motions on R.

Then, in Stratonovich form, dBt = Bt ◦ dWt.
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Fix the inner product 〈ξ, η〉N = NℜTr(ξ∗η) on glN = MN (and

therefore on uN ⊂ MN ).
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Fix the inner product 〈ξ, η〉N = NℜTr(ξ∗η) on glN = MN (and

therefore on uN ⊂ MN ).

As a (real) orthonormal basis of glN , we can take the matrix units

{ 1√
N
Ejk}1≤j,k≤n ∪ { i√

N
Ejk}1≤j,k≤n, and so the Brownian

motion ZN (t) can be written as

[ZN (t)]jk =
1√
N

[Wjk(t) + iW ′
jk(t)]

where {Wjk,W
′
jk}1≤j,k≤N are independent Brownian motions.
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Fix the inner product 〈ξ, η〉N = NℜTr(ξ∗η) on glN = MN (and

therefore on uN ⊂ MN ).

As a (real) orthonormal basis of glN , we can take the matrix units

{ 1√
N
Ejk}1≤j,k≤n ∪ { i√

N
Ejk}1≤j,k≤n, and so the Brownian

motion ZN (t) can be written as

[ZN (t)]jk =
1√
N

[Wjk(t) + iW ′
jk(t)]

where {Wjk,W
′
jk}1≤j,k≤N are independent Brownian motions.

It is a routine exercise to find an o.n. basis for uN , and find that the

Brownian motion there has the form −iXN (t), where

XN (t) =
1

2
[ZN (t) + ZN (t)∗].
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There is a general procedure for converting Stratonovich integrals to

Itô integrals. In the case of g-valued Brownian motion Wt, this gives

the Itô SDE

dBt = Bt ◦ dWt = Bt dWt +
1

2
Bt

∑

ξ∈β
ξ2 dt.
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There is a general procedure for converting Stratonovich integrals to

Itô integrals. In the case of g-valued Brownian motion Wt, this gives

the Itô SDE

dBt = Bt ◦ dWt = Bt dWt +
1

2
Bt

∑

ξ∈β
ξ2 dt.

There is a “magic formula”: if β is an o.n. basis of uN , then for any

matrix A,
∑

ξ∈β
ξAξ = −tr(A)I = − 1

N
Tr(A).

In particular,
∑

ξ∈β ξ
2 = −I . Similarly, β′ = β ∪ iβ is an o.n. basis

for glN , and so it follows that
∑

ξ∈β′ ξ2 = −I − (i2)I = 0.
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There is a general procedure for converting Stratonovich integrals to

Itô integrals. In the case of g-valued Brownian motion Wt, this gives

the Itô SDE

dBt = Bt ◦ dWt = Bt dWt +
1

2
Bt

∑

ξ∈β
ξ2 dt.

There is a “magic formula”: if β is an o.n. basis of uN , then for any

matrix A,
∑

ξ∈β
ξAξ = −tr(A)I = − 1

N
Tr(A).

In particular,
∑

ξ∈β ξ
2 = −I . Similarly, β′ = β ∪ iβ is an o.n. basis

for glN , and so it follows that
∑

ξ∈β′ ξ2 = −I − (i2)I = 0. This

gives simple Itô equations for the BMs Ut on UN and Bt on GLN :

dUt = iUt dXt −
1

2
Ut dt, dBt = Bt dZt.
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Let (A , τ) be a W ∗-probability space sufficiently rich to contain an

infinite sequence of freely independent semicircular elements (e.g.

any free group factor). Then A contains free additive Brownian

motions: free semicircular Brownian motion (xt)t≥0 and free

circular Brownian motion (zt)t≥0. These are defined by

• x0 = z0 = 1.

• For 0 < s < t < ∞, xt − xs is semicircular with variance t− s;

zt − zs is circular with variance t− s.

• For 0 < s < t < ∞, xt − xs is freely independent from

(xr)0≤r≤s; zt − zs is freely independent from (zr)0≤r≤s.
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Let (A , τ) be a W ∗-probability space sufficiently rich to contain an

infinite sequence of freely independent semicircular elements (e.g.

any free group factor). Then A contains free additive Brownian

motions: free semicircular Brownian motion (xt)t≥0 and free

circular Brownian motion (zt)t≥0. These are defined by

• x0 = z0 = 1.

• For 0 < s < t < ∞, xt − xs is semicircular with variance t− s;

zt − zs is circular with variance t− s.

• For 0 < s < t < ∞, xt − xs is freely independent from

(xr)0≤r≤s; zt − zs is freely independent from (zr)0≤r≤s.

Note: if (xt)t≥0 and (yt)t≥0 are two freely independent free

semicircular Brownian motions, then zt =
1√
2
(xt + iyt) is a free

circular Brownian motion. Vice versa: if (zt)t≥0 is a free circular

Brownian motion then
√
2Re(zt) and

√
2Im(zt) are free

semicircular Brownian motions.
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Theorem. [Voiculescu, 1991] Let XN (t) and ZN (t) be the

Brownian motions on uN and glN . Then, for any times

t1, . . . , tn ≥ 0,

(XN
t1
, . . . , XN

tn
)

D−→(xt1 , . . . , xtn), and

(ZN
t1
, . . . , ZN

tn)
D−→(zt1 , . . . , ztn).
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Theorem. [Voiculescu, 1991] Let XN (t) and ZN (t) be the

Brownian motions on uN and glN . Then, for any times

t1, . . . , tn ≥ 0,

(XN
t1
, . . . , XN

tn
)

D−→(xt1 , . . . , xtn), and

(ZN
t1
, . . . , ZN

tn)
D−→(zt1 , . . . , ztn).

Note: this is convergence in noncommutative distribution, meaning

that if p is any fixed noncommutative polynomial in 2n variables,

Etr[p(ZN
t1
, ZN

t1

∗
, . . . , ZN

tn
, ZN

tn

∗
)] → τ [p(zt1 , z

∗
t1
, . . . , ztn , z

∗
tn
)].

It is also true that the random moments converge almost surely to

their means. This highlights the fact that these are really strong

laws of large numbers for these “flat” Brownian motions.
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In the mid 1990s, Roland Speicher and Philippe Biane (and others)

showed that the technology of stochastic integrals and stochastic

differential equations can be made sense of for the “stochastic

processes” xt and zt, as in the classical setting. That is, one can

solve equations like

dat = σ(t, at) dxt + µ(t, at) dt

subject to regularity constraints on the functions σ and µ.
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In the mid 1990s, Roland Speicher and Philippe Biane (and others)

showed that the technology of stochastic integrals and stochastic

differential equations can be made sense of for the “stochastic

processes” xt and zt, as in the classical setting. That is, one can

solve equations like

dat = σ(t, at) dxt + µ(t, at) dt

subject to regularity constraints on the functions σ and µ. In

particular, one can solve the precise analogs of the SDEs that define

the Brownian motions Ut and Bt on UN and GLN :

dut = iut dxt −
1

2
ut dt, dbt = bt dzt.

It is now natural to ask whether the same kind of convergence of

processes Ut → ut and Bt → bt holds true.
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Theorem. [Biane, 1997] Let UN
t be the Brownian motion on UN ,

and let ut be a free unitary Brownian motion, defined by

dut = iut dxt − 1
2ut dt. Then for any times t1, . . . , tn ≥ 0,

(UN
t1
, . . . , UN

tn )
D−→(ut1 , . . . , utn).
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Theorem. [Biane, 1997] Let UN
t be the Brownian motion on UN ,

and let ut be a free unitary Brownian motion, defined by

dut = iut dxt − 1
2ut dt. Then for any times t1, . . . , tn ≥ 0,

(UN
t1
, . . . , UN

tn )
D−→(ut1 , . . . , utn).

For the proof, Biane used an explicit characterization of the

irreducible representations of UN , and also made use of the spectral

theorem, both of which are unavailable for generic matrices in GLN .
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Theorem. [Biane, 1997] Let UN
t be the Brownian motion on UN ,

and let ut be a free unitary Brownian motion, defined by

dut = iut dxt − 1
2ut dt. Then for any times t1, . . . , tn ≥ 0,

(UN
t1
, . . . , UN

tn )
D−→(ut1 , . . . , utn).

For the proof, Biane used an explicit characterization of the

irreducible representations of UN , and also made use of the spectral

theorem, both of which are unavailable for generic matrices in GLN .

Theorem. [K, 2013] Let BN
t be Brownian motion on GLN , and let

bt be a free multiplicative Brownian motion, defined by dbt = bt dzt.
Then for any times t1, . . . , tn ≥ 0,

(BN
t1
, . . . , BN

tn
)

D−→(bt1 , . . . , btn).
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Example. Consider the function f(A) = tr(A2A∗) on GLN . We

use the “magic formulas”

∑

ξ∈βN

ξAξ = −tr(A)IN ,
∑

ξ∈βN

tr(Aξ)ξ = − 1

N2
A.

Let g(A) = tr(A)tr(AA∗). We can readily compute that

∆GLN
f = 4f + 4g
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Example. Consider the function f(A) = tr(A2A∗) on GLN . We

use the “magic formulas”

∑

ξ∈βN

ξAξ = −tr(A)IN ,
∑

ξ∈βN

tr(Aξ)ξ = − 1

N2
A.

Let g(A) = tr(A)tr(AA∗). We can readily compute that

∆GLN
f = 4f + 4g

∆GLN
g =

4

N2
f + 4g.

This 2× 2 system can be exponentiated by a (good) freshman, and

we see that

e
t
2
∆GLN f = e2t cosh(2t/N)f + e2tN sinh(2t/N)g
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Example. Consider the function f(A) = tr(A2A∗) on GLN . We

use the “magic formulas”

∑

ξ∈βN

ξAξ = −tr(A)IN ,
∑

ξ∈βN

tr(Aξ)ξ = − 1

N2
A.

Let g(A) = tr(A)tr(AA∗). We can readily compute that

∆GLN
f = 4f + 4g

∆GLN
g =

4

N2
f + 4g.

This 2× 2 system can be exponentiated by a (good) freshman, and

we see that

e
t
2
∆GLN f = e2t cosh(2t/N)f + e2tN sinh(2t/N)g

= e2tf + 2te2tg +O(1/N2).
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Let P denote the commutative C-algebra generated by the set of

finite words ε ∈ ⋃∞
n=0{1, ∗}n. For convenience, label the basis

elements vε. For example

P = v1 − 2v1∗1 + v∗1v1.
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Let P denote the commutative C-algebra generated by the set of

finite words ε ∈ ⋃∞
n=0{1, ∗}n. For convenience, label the basis

elements vε. For example

P = v1 − 2v1∗1 + v∗1v1.

Call such elements abstract trace polynomials. The reason is the

following. For any N ∈ N and any P ∈ P , define a function

PN : MN → C as follows: for any word ε = ε1 · · · εn, let

[vε]N (A) = tr(Aε1 · · ·Aεn)

then extend the map P 7→ PN to be an algebra homomorphism. For

example, with the above P ,

PN (A) = tr(A)− 2tr(AA∗A) + tr(A∗A)tr(A).

Such functions are called trace polynomials.
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Theorem. [Driver, Hall, K.] The space [P]N of trace polynomials is

a reducing subspace for ∆GLN
. There exist first- and second-order

differential operators D and L on P so that

∆GLN
[P ]N =

[(

D+
1

N2
L

)

P

]

N

.
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Theorem. [Driver, Hall, K.] The space [P]N of trace polynomials is

a reducing subspace for ∆GLN
. There exist first- and second-order

differential operators D and L on P so that

∆GLN
[P ]N =

[(

D+
1

N2
L

)

P

]

N

.

Also, for t ≥ 0,

e
t
2
∆GLN [P ]N =

[

e
t
2

(

D+ 1

N2L

)

P

]

N

.
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Theorem. [Driver, Hall, K.] The space [P]N of trace polynomials is

a reducing subspace for ∆GLN
. There exist first- and second-order

differential operators D and L on P so that

∆GLN
[P ]N =

[(

D+
1

N2
L

)

P

]

N

.

Also, for t ≥ 0,

e
t
2
∆GLN [P ]N =

[

e
t
2

(

D+ 1

N2L

)

P

]

N

.

The point is that e
t
2

(

D+ 1

N2L

)

= e
t
2
D +O

(

1
N2

)

. Since e
t
2
D is an

algebra homomorphism, this leads to the following core estimate.

Corollary. For any trace polynomials P,Q,

Cov(PN (BN
t ), QN (BN

t )) = O

(

1

N2

)

.
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Fix t > 0. We have dBt = Bt dZt and dbt = bt dzt. Because the

diffusion terms are linear, we can proceed by induction on the

degree of the moment. Using stochastic calculus, the difference can

be expressed as an integral of terms consisting of the difference

between lower-order moments (which → 0 by inductive hypothesis),

plus the covariance of the involved terms (which → 0 as above).
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Fix t > 0. We have dBt = Bt dZt and dbt = bt dzt. Because the

diffusion terms are linear, we can proceed by induction on the

degree of the moment. Using stochastic calculus, the difference can

be expressed as an integral of terms consisting of the difference

between lower-order moments (which → 0 by inductive hypothesis),

plus the covariance of the involved terms (which → 0 as above).

That’s convergence for a fixed t. A relatively straightforward

generalization of these techniques works for any finite collection of

independent BN
t1
, . . . , BN

tn
.
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Fix t > 0. We have dBt = Bt dZt and dbt = bt dzt. Because the

diffusion terms are linear, we can proceed by induction on the

degree of the moment. Using stochastic calculus, the difference can

be expressed as an integral of terms consisting of the difference

between lower-order moments (which → 0 by inductive hypothesis),

plus the covariance of the involved terms (which → 0 as above).

That’s convergence for a fixed t. A relatively straightforward

generalization of these techniques works for any finite collection of

independent BN
t1
, . . . , BN

tn
. Now, the increments of (BN

t )t≥0 are

independent, and the increments of (bt)t≥0 are freely independent;

one can put these together to prove convergence of the process, so

long as the increments of (BN
t )t≥0 are asymptotically free.
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Fix t > 0. We have dBt = Bt dZt and dbt = bt dzt. Because the

diffusion terms are linear, we can proceed by induction on the

degree of the moment. Using stochastic calculus, the difference can

be expressed as an integral of terms consisting of the difference

between lower-order moments (which → 0 by inductive hypothesis),

plus the covariance of the involved terms (which → 0 as above).

That’s convergence for a fixed t. A relatively straightforward

generalization of these techniques works for any finite collection of

independent BN
t1
, . . . , BN

tn
. Now, the increments of (BN

t )t≥0 are

independent, and the increments of (bt)t≥0 are freely independent;

one can put these together to prove convergence of the process, so

long as the increments of (BN
t )t≥0 are asymptotically free. This is

true – in fact, they are asymptotically second-order free, as we will

discuss next.
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The limit theorems presented above are laws of large numbers. The

next question is: what is the rate of convergence? And what “noise

signature” is left at that rate?
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The limit theorems presented above are laws of large numbers. The

next question is: what is the rate of convergence? And what “noise

signature” is left at that rate?

For the “flat” Brownian motions XN (t) and ZN (t), this was

answered by Speicher and Mingo and simultaneously by Chatterji in

the mid 2000s, for the case of “linear statistics”.

Theorem. [Mingo, Speicher] Let p1, . . . , pn be polynomials in one

variable. Let t1, . . . , tn ≥ 0. Then the random variables

N [tr(pj(X
N (tj)))− Etr(pj(X

N (tj)))], j = 1 . . . n

are, in the limit as N → ∞, jointly Gaussian (with a covariance that

is determined by p1, . . . , pn).
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The limit theorems presented above are laws of large numbers. The

next question is: what is the rate of convergence? And what “noise

signature” is left at that rate?

For the “flat” Brownian motions XN (t) and ZN (t), this was

answered by Speicher and Mingo and simultaneously by Chatterji in

the mid 2000s, for the case of “linear statistics”.

Theorem. [Mingo, Speicher] Let p1, . . . , pn be polynomials in one

variable. Let t1, . . . , tn ≥ 0. Then the random variables

N [tr(pj(X
N (tj)))− Etr(pj(X

N (tj)))], j = 1 . . . n

are, in the limit as N → ∞, jointly Gaussian (with a covariance that

is determined by p1, . . . , pn).

A similar result (involving polynomials in the variables and their

adjoints) holds for ZN (t).
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A partial answer to the fluctuations question for unitary Brownian

motion was given by Lévy and Maı̈da in 2010.
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A partial answer to the fluctuations question for unitary Brownian

motion was given by Lévy and Maı̈da in 2010.

Theorem. [Lévy, Maı̈da, 2010] Fix a time t > 0. Let f1, . . . , fn be

Lipschitz functions. Then the random variables

N [tr(fj(U
N (t)))− Etr(fj(U

N (t)))], j = 1 . . . n

are, in the limit as N → ∞, jointly Gaussian, with a covariance

determined by f1, . . . , fn.
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A partial answer to the fluctuations question for unitary Brownian

motion was given by Lévy and Maı̈da in 2010.

Theorem. [Lévy, Maı̈da, 2010] Fix a time t > 0. Let f1, . . . , fn be

Lipschitz functions. Then the random variables

N [tr(fj(U
N (t)))− Etr(fj(U

N (t)))], j = 1 . . . n

are, in the limit as N → ∞, jointly Gaussian, with a covariance

determined by f1, . . . , fn.

Note, since UN (t) is a normal matrix, f(UN (t)) can be made

sense of for any measurable function f on the unit circle, via

functional calculus.
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A partial answer to the fluctuations question for unitary Brownian

motion was given by Lévy and Maı̈da in 2010.

Theorem. [Lévy, Maı̈da, 2010] Fix a time t > 0. Let f1, . . . , fn be

Lipschitz functions. Then the random variables

N [tr(fj(U
N (t)))− Etr(fj(U

N (t)))], j = 1 . . . n

are, in the limit as N → ∞, jointly Gaussian, with a covariance

determined by f1, . . . , fn.

Note, since UN (t) is a normal matrix, f(UN (t)) can be made

sense of for any measurable function f on the unit circle, via

functional calculus. But this doesn’t allow for multiple times, since

that introduces real noncommutativity.
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A partial answer to the fluctuations question for unitary Brownian

motion was given by Lévy and Maı̈da in 2010.

Theorem. [Lévy, Maı̈da, 2010] Fix a time t > 0. Let f1, . . . , fn be

Lipschitz functions. Then the random variables

N [tr(fj(U
N (t)))− Etr(fj(U

N (t)))], j = 1 . . . n

are, in the limit as N → ∞, jointly Gaussian, with a covariance

determined by f1, . . . , fn.

Note, since UN (t) is a normal matrix, f(UN (t)) can be made

sense of for any measurable function f on the unit circle, via

functional calculus. But this doesn’t allow for multiple times, since

that introduces real noncommutativity. Using a different approach,

we can handle the more general UN case, and the GLN case,

simultaneously.
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Theorem. [Cébron, K, 2014] Let P1, . . . , Pn be trace polynomials.

Let t1, . . . , tn ≥ 0. Let ΞN (t) denote either UN (t) or BN (t).
Then the random variables

Xj = N [Pj(Ξ
N (t1), . . . ,Ξ

N (tn))− EPj(Ξ
N (t1), . . . ,Ξ

N (tn))]

for j = 1 . . . n are, in the limit as N → ∞, jointly Gaussian, with

covariance determined by P1, . . . , Pn.
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Theorem. [Cébron, K, 2014] Let P1, . . . , Pn be trace polynomials.

Let t1, . . . , tn ≥ 0. Let ΞN (t) denote either UN (t) or BN (t).
Then the random variables

Xj = N [Pj(Ξ
N (t1), . . . ,Ξ

N (tn))− EPj(Ξ
N (t1), . . . ,Ξ

N (tn))]

for j = 1 . . . n are, in the limit as N → ∞, jointly Gaussian, with

covariance determined by P1, . . . , Pn.

Recall that ∆GLN
∼ D+ 1

N2L. The fluctuations are therefore

controlled by the second-order operator L; in fact, by its carré du

champ operator

Γ(P,Q) = L(PQ)− L(P )Q− PL(Q).
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Theorem. [Cébron, K, 2014] Let P1, . . . , Pn be trace polynomials.

Let t1, . . . , tn ≥ 0. Let ΞN (t) denote either UN (t) or BN (t).
Then the random variables

Xj = N [Pj(Ξ
N (t1), . . . ,Ξ

N (tn))− EPj(Ξ
N (t1), . . . ,Ξ

N (tn))]

for j = 1 . . . n are, in the limit as N → ∞, jointly Gaussian, with

covariance determined by P1, . . . , Pn.

Recall that ∆GLN
∼ D+ 1

N2L. The fluctuations are therefore

controlled by the second-order operator L; in fact, by its carré du

champ operator

Γ(P,Q) = L(PQ)− L(P )Q− PL(Q).

Indeed, we can express the covariance of the asymptotically

Gaussian random vector (X1, . . . , Xn) as follows:
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Theorem. [Cébron, K, 2014] The asymptotic covariance matrix of

(X1, . . . , Xn) has (i, j)-entry σ(Pi, Pj), where the function σ is

determined as follows: given P,Q ∈ P , there is a trace polynomial

Γ̃(P,Q) in three variables such that, if at, bt, ct are three freely

independent multiplicative Brownian motions,

σ(P,Q) =

∫ t

0

[

Γ̃(P,Q)
]

(as, bt−s, ct−s) ds.
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Theorem. [Cébron, K, 2014] The asymptotic covariance matrix of

(X1, . . . , Xn) has (i, j)-entry σ(Pi, Pj), where the function σ is

determined as follows: given P,Q ∈ P , there is a trace polynomial

Γ̃(P,Q) in three variables such that, if at, bt, ct are three freely

independent multiplicative Brownian motions,

σ(P,Q) =

∫ t

0

[

Γ̃(P,Q)
]

(as, bt−s, ct−s) ds.

E.g. Suppose p, q are single-variable polynomials. Then

σ(tr(p), tr(q∗)) =

∫ t

0
τ
[

p′(bt−sas)q
′(ct−sas)

∗] ds.
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Theorem. [Cébron, K, 2014] The asymptotic covariance matrix of

(X1, . . . , Xn) has (i, j)-entry σ(Pi, Pj), where the function σ is

determined as follows: given P,Q ∈ P , there is a trace polynomial

Γ̃(P,Q) in three variables such that, if at, bt, ct are three freely

independent multiplicative Brownian motions,

σ(P,Q) =

∫ t

0

[

Γ̃(P,Q)
]

(as, bt−s, ct−s) ds.

E.g. Suppose p, q are single-variable polynomials. Then

σ(tr(p), tr(q∗)) =

∫ t

0
τ
[

p′(bt−sas)q
′(ct−sas)

∗] ds.

In the unitary case, we can compute that this converges (as t → ∞)

to 〈p, q〉H1/2
, agreeing with [Diaconis, Evans, 2001] in the Haar

unitary case.
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In alternate terminology (due to Collins, Mingo, Śniady, Speicher,

2006-2007), the fact that the fluctuations of (BN
t )t≥0 are Gaussian

says that any collection (BN
t1
, . . . , BN

tn) possesses a second-order

limit distribution.
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In alternate terminology (due to Collins, Mingo, Śniady, Speicher,

2006-2007), the fact that the fluctuations of (BN
t )t≥0 are Gaussian

says that any collection (BN
t1
, . . . , BN

tn) possesses a second-order

limit distribution. Since the increments of the process are

independent, it then follows (from the above work) that:

Theorem. The increments of of (BN
t )t≥0 are asymptotically

second-order free (and therefore asymptotically free).



Second Order Distribution and Freeness

• Citations

Heat Kernels

Large-N Limits

Trace Polynomials

Fluctuations

•XN
& ZN

•UN

•BN

• Covariance

• Second-Order

26 / 26

In alternate terminology (due to Collins, Mingo, Śniady, Speicher,

2006-2007), the fact that the fluctuations of (BN
t )t≥0 are Gaussian

says that any collection (BN
t1
, . . . , BN

tn) possesses a second-order

limit distribution. Since the increments of the process are

independent, it then follows (from the above work) that:

Theorem. The increments of of (BN
t )t≥0 are asymptotically

second-order free (and therefore asymptotically free).

As a final remark: much of the technology here applies more

generally than the Brownian motion. In the papers cited, everything

was done for a two-parameter family of Brownian motions

(corresponding to all unitarily-invariant inner products on GLN ); but,

in fact, similar techniques yield similar results for more general Lévy

processes and diffusion processes on GLN (and subgroups).
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In alternate terminology (due to Collins, Mingo, Śniady, Speicher,

2006-2007), the fact that the fluctuations of (BN
t )t≥0 are Gaussian

says that any collection (BN
t1
, . . . , BN

tn) possesses a second-order

limit distribution. Since the increments of the process are

independent, it then follows (from the above work) that:

Theorem. The increments of of (BN
t )t≥0 are asymptotically

second-order free (and therefore asymptotically free).

As a final remark: much of the technology here applies more

generally than the Brownian motion. In the papers cited, everything

was done for a two-parameter family of Brownian motions

(corresponding to all unitarily-invariant inner products on GLN ); but,

in fact, similar techniques yield similar results for more general Lévy

processes and diffusion processes on GLN (and subgroups). I’ll tell

you about that next time!
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