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Introduction

Topology might be called the theory of space, not just the usual Euclidean space R3 in which
we appear to live, but those far more bizarre and abstract. A space starts with a set on which you
wish to place some notion of points being “near” to each other, without necessary actually having
a notion of distance like Euclidean space. This notion is a called a topology, and a set together
with a topology is called a topological space.

The definition of a topology is rather simple: it is a collection of subsets known as its open
sets satisfying certain axioms. In Euclidean space, the open sets consist of the union of open
balls about points. The axioms required of a topology aim to make the definition of a continuous
function between topological spaces reasonable. In topology, a function is said to be continuous if
the inverse image of every open set is open. This matches with the usual definition of continuity
of maps between Euclidean spaces.

The key objects in the study of topology, or more specifically its foundational branch known as
point-set topology that is our focus, are topological spaces and continuous functions. Among the
topological spaces considered are the spaces found in multivariable calculus: Rn, spheres, tori, and
other real manifolds (which are spaces that look locally like Rn). Some might say that topology
aims to study geometric objects while essentially forgetting about geometry: that is, in topology,
a circle and a square are in some sense viewed as the same thing, because there exists a bijection
from the square to the circle that is both continuous and has a continuous inverse. To a topologist,
any collection of points, all separated from each other, is a perfectly good space too.

Consider for instance the topological space R2, i.e., the plane. Around every point in the plane
are centered discs without their boundaries: these are open sets. The open sets in R2 are arbitrary
unions of these open disks. Suppose f : R2 → R2 sends x to y. To say that f is continuous at x
is to say that given an open disk B centered at y, the inverse image f−1(B) contains an open ball
centered at x. Then f is continuous if it is continuous at every point. But looking closely at the
definition of a continuous function between topological spaces, one sees that this is in fact the
same definition: f is continuous if and only if f−1(U) is open for every open set U in R2. The key
point here is that any open set U contains an open disk about any point that it contains.

There are several key notions that will arise in our study of point-set topology, among them
separability, closure, connectedness, and compactness.

• Spaces can have rather strange topologies. For instance, on any set X , one could put the
“trivial” topology that the only open sets are ∅ and X . The only continuous functions
from this space X to any other space are constant. In topological terms, this space is
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6 INTRODUCTION

highly inseparable, and so we often put requirements on our spaces that prevent this, e.g.,
that the space be what is known as Hausdorff. A space is Hausdorff if given any two
distinct points, one can find open sets containing each point that do not intersect each
other. In some sense, this means we can separate the two points from each other. Any
space with the trivial topology and at least two elements cannot be Hausdorff.

• As for closure, we should define what it means for a set to be closed, which is exactly
to say that its complement will be open. In R2, a closed disk, i.e., a disk including its
boundary, is closed. And in fact, that brings us quickly to the notion of closure of a set,
which is to say the smallest closed set containing a given set. In R2, the closure of an
open disk is the closed disk that is the open disk and its boundary.

• A space is connected if it is not a disjoint union of two nonempty open sets, which is to
say it has no nonzero subsets which are both open and closed. Then R2 is connected,
but inside it, the union of open disks of radius 1 about 0 and 2 is not. Some spaces are
highly disconnected: for instance, for any set X , we may put on it the “discrete” topology,
whereby every subset is open. With this topology, every open set is also closed, and so
every point is what is known as a connected component. The whole space itself is then
called totally disconnected.

• In R2, a set is compact if it is closed and bounded, the latter meaning that the whole set
is contained within a large enough disk about the origin. In fact, the abstract definition is
rather different: it says that a space is compact if whenever it is a union of some collection
of open sets, only finitely many of these open sets are needed. To see why these might
be the same, try thinking about a closed interval [a,b] in R. Cover it by a union of open
intervals, and since each has some finite length, only finitely many of them are needed to
cover.

Among the most important of topological spaces are metric spaces, which are sets with a
distance function satisfying the triangle inequality. We define a topology on a metric space by
again considering the open balls of varying radius about a point and defining an arbitrary open set
to be a union of these. When we consider this underlying topological space, we may then forget
about the metric. So, one should consider a metric space as being more than just a topological
space: i.e., it has a notion of distance that a topological space itself does not. This notion of
distance is crucial for many applications in analysis, but it is also useful to have the flexibility to
work with spaces that have no natural metric. A topological space that has a metric that gives rise
to the original topology is called metrizable.

Toward the end of these notes, we will turn from point-set topology to the very beginnings of
algebraic topology, which motivated many of the latter definitions. In particular, we shall explain
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the notion of homotopy, which allows one to transform one space into another. From the perspec-
tive of homotopy theory, two spaces are homotopic if one can be continuously transformed into
another. From the perspective of homotopy, a closed disk in R2 is just a point, in that it its radius
can be shrunk at a continuous rate until it becomes a point. This perspective is, for instance, quite
useful for classifying compact surfaces by how many “holes” they have: a sphere and a torus are
topologically different as they are not homotopic. The first object of abstract algebra that can be
used to measure this difference is known as the fundamental group, and it consists of “homotopy
classes” of loops on a space beginning and ending at a fixed point. For instance, the fundamental
group of a circle is just the integers, with the integer determined by how many times a loop wraps
around the circle and in what direction.





CHAPTER 1

Topological spaces

1.1. Topologies

We begin by defining topological spaces.

DEFINITION 1.1.1. A topology on a set X is a set T of subsets of X such that

i. the empty set ∅ and the set X are contained in T ,

ii. if U is a subset of T , then
⋃

U∈U U ∈T , and

iii. if U1, . . . ,Un ∈T for some n≥ 1, then U1∩·· ·∩Un ∈T .

In other words, a topology T is a collection of subsets of X containing ∅,X and which is
closed under arbitrary unions and finite intersections.

DEFINITION 1.1.2. A topological space is a pair (X ,T ) consisting of a set X and a topology
T on X .

DEFINITION 1.1.3. Let X be a set.

a. The discrete topology on X is the topology equal to the set of all subsets (i.e., the power set)
of X . We say that a topological space X is discrete if its topology is the discrete topology on X .

b. The trivial topology on X is the topology {∅,X}.

DEFINITION 1.1.4. Let (X ,T ) be a topological space. A subset U of a topological space X is
called open if U ∈T .

TERMINOLOGY 1.1.5. We often omit the notation of a topology T on a topological space X
and simply refer to X as a topological space when its topology T is understood. At times, we
say that a topological space X is endowed with (or has) a topology T . We sometimes refer to a
topological space more simply as a space.

DEFINITION 1.1.6. An element of a topological space X is called a point of X .

EXAMPLE 1.1.7. A topological space X has the discrete topology if and only if every subset
of X is open.

EXAMPLES 1.1.8.

a. Let X = {a,b} be a two-point set. Then there are 4 distinct topologies on X , all equal to
{∅,X}∪S, where S is some subset of {{a},{b}}.
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10 1. TOPOLOGICAL SPACES

b. Let X = {a,b,c} be a three-point set. Then {∅,{a},{b},X} is not a topology on X , as it
is not closed under unions, while {∅,{a,b},{a,c},X} is not a topology on X , as it is not closed
under finite intersections.

DEFINITION 1.1.9. A set X has a topology under which a nonempty subset U is open if and
only if its complement X −U = {x ∈ X | x /∈ U} is finite. This topology is known as the finite
complement topology on X .

EXAMPLE 1.1.10. The Euclidean topology on R is the unique topology under which a set is
open if it is a union of open intervals. This is a topology as both ∅ and R are open intervals, any
union of unions of open intervals is a union of open intervals, and any finite intersection of open
intervals is an open interval (which, as the reader will check, implies that any finite intersection of
unions of open intervals is a union of open intervals).

DEFINITION 1.1.11. If T and T ′ are topologies on a set X with T ⊆ T ′, we say that T ′ is
finer (or stronger) than T , and T is coarser (or weaker) than T ′. If, in addition, T 6=T ′, we say
that T ′ is strictly finer (or strictly stronger) than T , and T is strictly coarser (or strictly weaker)
than T ′.

REMARK 1.1.12. We think of a topology with more open sets as being finer in that we think
of open sets as separating points from each other, so a topology with more open sets is more
“fine-grained”, in a sense. The discrete topology is the finest topology on any set, while the trivial
topology is the coarsest.

REMARK 1.1.13. The terminology of a “finer” topology including one that may be the same
is in some sense unfortunate, but it is the most standard usage.

EXAMPLE 1.1.14. Consider the three-point set X = {a,b,c} with topologies T1 = {∅,X},
T2 = {∅,{a},X}, T3 = {∅,{a},{b},{a,b},X}, and T4 the discrete topology. Then Ti+1 is
strictly finer than Ti for each 1 ≤ i ≤ 3. If we set T ′

3 = {∅,{a},{a,b},{a,c},X}, then T ′
3 is

strictly finer than T1 and T2 and strictly coarser than T4 but has no such relation with T3.

DEFINITION 1.1.15. An open neighborhood of a point x in a topological space X is an open
set containing x. We say that an open neighborhood V of x is an open neighborhood of V in a
subset A if V is contained in A.

LEMMA 1.1.16. A subset U of a topological space X is open if and only if every point of U
has an open neighborhood in U.

PROOF. If U is open and x ∈U , then U is an open neighborhood of x in U . Conversely, if
every point x of a subset U of X has an open neighborhood Vx in U , then U =

⋃
x∈U Vx, so U is

open as a union of open sets in X . �

At times, we may wish to speak of closed neighborhoods, in which case the following defini-
tion is useful.
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DEFINITION 1.1.17. A neighborhood of a point x in a topological space X is any subset of X
containing an open neighborhood of x.

PROPOSITION 1.1.18. A set of subsets T of X is a topology on X if and only if ∅,X ∈T , the
set T is closed under arbitrary unions, and for all U1, . . . ,Un ∈ T with n ≥ 1 and x ∈

⋂n
i=1Ui,

there exists an open neighborhood of x contained in
⋂n

i=1Ui.

PROOF. Suppose that U1, . . . ,Un ∈T for some n≥ 1, and set W =
⋂n

i=1Ui. If T is a topology,
then W is open, so we may take W to be the open neighborhood of the proposition. If on the
other hand we have that for each x ∈W , there exists an open neighborhood Vx of x in W , then
W =

⋃
x∈W Vx is an element of T if T is closed under unions. Thus, T is a topology under the

conditions of the proposition. �

NOTATION 1.1.19. Given a set X and a subset A, we write Ac for the complement X −A of A
when X is understood.

DEFINITION 1.1.20. A subset A of a topological space X is closed, or a closed subset of X , if
its complement X−A is a open.

EXAMPLES 1.1.21.

a. Every subset of a discrete space is closed.

b. The only closed subsets of a space X with the trivial topology are ∅ and X .

c. In R with its Euclidean topology, closed intervals are closed subsets, as are their finite
unions. Some but not all infinite unions of closed intervals are also closed: e.g., the set Z of
integers inside R is an infinite union of closed intervals of length zero that is closed.

PROPOSITION 1.1.22. Let X be a set. A set T of subsets of X forms topology on X if and only
if the set C = {Uc |U ∈T } has the properties that it contains ∅ and X, intersections of elements
of C are contained in C , and finite unions of elements of C are contained in C .

PROOF. Let T be a set of subsets of X and C be the set of complements of elements of T .
We have ∅= Xc and X = Xc, so ∅,X ∈ C if and only if ∅,X ∈T . We have(⋂

A∈C
A

)c

=
⋃

A∈C
Ac,

so C is closed under intersections if and only if T is closed under unions. If A1, . . . ,An ∈ C for
some n≥ 1, then (

n⋃
i=1

Ai

)c

=
n⋂

i=1

Ac
i ,

so C is closed under finite unions if and only if T is closed under finite intersections. Thus, T is
a topology if and only if C satisfies the conditions of the proposition. �
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1.2. Subspaces

DEFINITION 1.2.1. Let (X ,T ) be a topological space and A be a subset of X . The subspace
topology on A is the set TA = {U ∩A |U ∈T } of subsets of A.

DEFINITION 1.2.2. A topological space A with underlying set a subset of a topological space
X is called a subspace if its topology is the subspace topology from X .

We verify that the subspace topology on a topological space is in fact a topology.

PROPOSITION 1.2.3. Let X be a topological space and A be a subset of X. Then the subspace
topology on A is a topology on A.

PROOF. Let T denote the topology on X and TA the subspace topology on A. We have
∅=∅∩A ∈TA and A = X ∩A ∈TA, so TA satisfies property (i) of a topology.

If V ⊆TA, then for each V ∈ V , there exists UV ∈T with V =UV ∩A. We then have⋃
V∈V

V =
⋃

V∈V
(UV ∩A) =

( ⋃
V∈V

UV

)
∩A ∈TA

since
⋃

V∈V UV ∈T as T is a topology. Thus, TA satisfies property (ii) of a topology.
If V1, . . . ,Vn ∈ TA for some n ≥ 1, then Vi = Ui∩A for some Ui ∈ T for 1 ≤ i ≤ n. We then

have
n⋂

i=1

Vi =
n⋂

i=1

(Ui∩A) =

(
n⋂

i=1

Ui

)
∩A ∈TA,

since
⋂n

i=1Ui ∈T as T is a topology. Thus, TA satisfies property (iii) of a topology. �

The subspace topology on an open subset of a topological space is a subset of the topology on
the space.

PROPOSITION 1.2.4. If X is a topological space and U is an open subset of X, then the sub-
space topology on U is the set of open subsets of X that are contained in U.

PROOF. If V is an open subset of U , then V = W ∩U for some open subset W of X , so V is
open in X as an intersection of two of its open subsets. Conversely, if V is an open subset of X
contained in U , then V =V ∩U , so V is open in U as well. �

EXAMPLES 1.2.5.

a. Every subspace of a discrete space X is discrete.

b. The subspace topology on an open interval (a,b)∈R with a< b consists of ∅ and all unions
of open intervals (a′,b′) with a≤ a′ ≤ b′ ≤ b.

c. Consider the four-point set X = {a,b,c,d} with the topology {∅,{a},{b},{a,b},X}. Then
the subspace topology on {a,b} is the discrete topology, while the subspace topology on {c,d} is
the trivial topology.
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The reader may check the following lemma.

LEMMA 1.2.6. Let A be a closed subset of a topological space X. Then the closed sets of A
under the subspace topology are exactly the intersections of closed subsets of X with A.

TERMINOLOGY 1.2.7. An open (resp., closed) subset of a topological space X , when endowed
with the subspace topology, is called an open (resp., closed) subspace of X .

1.3. Bases

DEFINITION 1.3.1. A subset B of a topology T on a topological space X is said to be a base,
or basis, for the topology T on X if every open set U ∈T is a (possibly empty) union of elements
of B.

EXAMPLE 1.3.2. The set of open intervals in R is a base for the Euclidean topology on R.

EXAMPLE 1.3.3. If X is a set with the discrete topology, then the set {{x} | x ∈ X} is a base of
the topology on X .

DEFINITION 1.3.4. We say that a set S of subsets of X covers a subset A of X if A⊆
⋃

S∈S S,
and S is a cover of A if S covers A.

THEOREM 1.3.5. Let X be a set, and let B be a set of subsets of X such that

i. B covers X and

ii. for every U,V ∈B and x ∈U ∩V , there exists W ∈B with x ∈W and W ⊆U ∩V .

Then the collection

T =

{ ⋃
U∈C

U | C ⊆B

}
of arbitrary unions of elements of B is a topology on X, and B is a base for the topology T .
Moreover, if X is a topological space and B is a base of open sets in X, then T is the topology on
X.

PROOF. If T is a topology, then B will by definition be a base, so we need only verify that T

is a topology. Note that ∅ is the empty union of elements of B and X ∈ T by property (i) of B.
We also have that T is closed under arbitrary unions, as its elements are just the arbitrary unions
of elements of B. To check that T is closed under finite intersections, it suffices by recursion to
show that it is closed under intersections of two elements, so let U1,U2 ∈ T . Any x ∈U1 ∩U2

lies in the intersection of some V1 ∈B contained in U1 and some V2 ∈B contained in U2. So, by
property (ii) of B, there exists W ∈B with

x ∈W ⊆V1∩V2 ⊆U1∩U2.

Since B ⊂T , we have W ∈T as well. By Proposition 1.1.18, the set T is a topology on X .
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If X is a topological space with topology T ′ and B is a base of open sets in X , then both T

above and the topology T ′ are the set of unions of elements of B, the first by definition of T , and
the second by definition of a base, so T = T ′. �

DEFINITION 1.3.6. The topology T on a set X given by arbitrary unions of elements of a set
of subsets B of X satisfying the two conditions of Theorem 1.3.5 is called the topology generated
by the base B. We say that B generates the topology T .

We may now easily define the Euclidean topology on Rn.

EXAMPLE 1.3.7. The Euclidean topology on Rn is the topology generated by the base consist-
ing of open balls in Rn of finite radius. To see this is a topology, one need only note that around
any point inside any nonempty intersection of two open balls, there exists another open ball.

DEFINITION 1.3.8. Let X be a topological space. A base of open neighborhoods of a point x
is a set Bx of open neighborhoods of x such that for every open neighborhood U of x in X , there
exists V ∈Bx with V ⊆U . An element of Bx is said to be a basic open neighborhood of x.

LEMMA 1.3.9. Let X be a topological space, and for each x ∈ X, let Bx be a base of open
neighborhoods of x. Then B =

⋃
x∈X Bx is a base for the topology on X.

PROOF. Since each Bx is nonempty, we have X =
⋃

U∈B U . If U ∈Bx and V ∈By for some
x,y ∈ X and z ∈U ∩V , then there exists W ∈Bz with W ⊆U ∩V . By Theorem 1.3.5, B is a base
for a topology T ′ on X . We have T ′ ⊆ T since every set in B is open and T is closed under
unions. We claim that T ′ is in fact the original topology T .

Let W ∈ T . For x ∈W , since Bx is a base of open neighborhoods of x, there exists Ux ∈Bx

with Ux ⊆W . Then W ∈T ′ by Lemma 1.1.16. Thus T = T ′. �

EXAMPLE 1.3.10. In Rn, the set of open balls centered at a point x forms a base of open
neighborhoods of x.

In fact, any set of subsets of X with union X gives rise to a topology on X .

DEFINITION 1.3.11. A set S of open subsets of a topological space X is called a subbase, or
subbasis, for the topology on X if every proper open set in X is a union of finite intersections of
elements of S .

The following is an simple consequence of Theorem 1.3.5.

PROPOSITION 1.3.12. Let S be a set of subsets of X. Let B be the set consisting of X and
all finite intersections of elements of S . Then B is a base for a topology on X for which S is a
subbase.

EXAMPLE 1.3.13. The set of all intervals (a,∞) and (−∞,b) with a,b ∈R is a subbase for the
Euclidean topology on R.
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1.4. Closure

There is a smallest closed set containing a given subset of a topological space, known as its
closure.

DEFINITION 1.4.1. The closure A of a subset A of a topological space X is the intersection of
all closed subsets of X containing A.

LEMMA 1.4.2. The closure A of a subset A of X is the smallest closed subset of X containing
A in the sense that A is closed and contains A and, if B is a closed subset of X with A ⊆ B, then
A⊆ B.

PROOF. First, we remark that A is closed as an intersection of closed sets and contains A, as
all of these closed sets contain A. Moreover, if B is closed and contains A, then B contains the
intersection A of all closed sets containing A, since B is one of the sets over which the intersection
is taken. �

EXAMPLE 1.4.3. The closure of an open interval (a,b) in R is the closed interval [a,b], as
[a,b] is a closed set containing (a,b), and none of (a,b), [a,b), and (a,b] is closed.

We have the following alternative characterization of the closure.

PROPOSITION 1.4.4. Let A be a subset of a topological space X. Then x ∈ A if and only if
every (open) neighborhood of x in X has nonempty intersection with A.

PROOF. We have x ∈ A if and only if x ∈ B for all closed sets B containing A. The latter holds
if and only if x /∈ U for all open sets U ⊆ Ac. And this holds if and only if every open set U
containing x is not contained in Ac, hence has nonempty intersection with A. �

EXAMPLE 1.4.5. If x ∈ (a,b), then clearly every open neighborhood of x intersects (a,b), in
particular in x. Any open interval of the form (a−ε,a+ε) intersects (a,b) in {a+δ | 0 < δ < ε}.
Similarly, any interval (b− ε,b+ ε) intersects (a,b) in {b− δ | 0 < δ < ε}. On the other hand,
if x > b or x < a, then there exists a sufficiently small interval centered at x that does not intersect
(a,b). Since every open neighborhood of a point in R contains an open interval (centered at the
point), Proposition 1.4.4 again tells us that the closure of (a,b) is [a,b].

DEFINITION 1.4.6. A subset A of a topological space X is dense in X if A = X .

EXAMPLE 1.4.7. The rational numbers Q are dense in R with its Euclidean topology. That
is, every open interval containing a real number contains a rational number, being that the interval
has finite nonzero length.

We also have the notion of an interior of a set.

DEFINITION 1.4.8. The interior A◦ of a subset A of a topological space X is the union of all
open sets of X contained in A.
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Note that A◦ = (Ac)c by its definition. We then have the following as a consequence of
Lemma 1.4.2.

LEMMA 1.4.9. The interior of a subset A of a topological space X is the largest open subset
of X contained in A.

We also have a notion of boundary.

DEFINITION 1.4.10. The boundary ∂A of a subset A of X is the complement of the interior A◦

of A in the closure A.

EXAMPLE 1.4.11. In R, the closure of an open interval (a,b) with a,b ∈ R and a < b is the
closed interval [a,b], and the interior of [a,b] is (a,b). The boundary of (a,b), or [a,b], is {a}∪{b}.

EXAMPLE 1.4.12. In Rn, the closure of the open ball of radius ε about a point x is the closed
ball of radius ε about the point x, while the boundary is the sphere of radius ε centered at x.

EXAMPLE 1.4.13. If X has the trivial topology, then the closure of any nonempty subset A is
X , while the interior of A is empty unless A = X . So, any nonempty, proper subset A of X has
boundary X , whereas the boundary of X is empty.

EXAMPLE 1.4.14. Consider the three-point set X = {a,b,c} with topology

T = {∅,{a},{a,b},{a,c},X}.

The closed sets of T are ∅, {b}, {c}, {b,c}, and X . Thus, the closure of {a} is X , while {b} and
{c} are closed.

REMARK 1.4.15. The taking of subspaces can change interiors and closures. For instance, the
interior of the closed interval [a,b] with a < b in R is (a,b), but its interior in [a,b] is [a,b], since
[a,b] is open in [a,b].

1.5. Limit points

DEFINITION 1.5.1. A point x in a topological space X is called a limit point of a subset A of X
if every (open) neighborhood of x intersects A in a point other than x.

The following is a corollary of Proposition 1.4.4.

LEMMA 1.5.2. The closure of a subset A of a topological space X is the union of A and the set
of its limit points.

PROOF. By Proposition 1.4.4, if x ∈ A, then every open neighborhood of x intersects A. If
x /∈ A, these intersections cannot contain x, so x is a limit point. �

Since closed sets are their own closures, we have the following.

COROLLARY 1.5.3. Any closed subset A of a topological space contains all of its limit points.
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REMARK 1.5.4. In Proposition 1.4.4, we may replace the condition on every open neighbor-
hood with the same condition restricted to open neighborhoods in any base.

One might ask how the notion of a limit point compares to the notion of points to which
sequences converge. For this, we need the following definition.

DEFINITION 1.5.5. A sequence (xn)n≥1 of points of a topological space X converges to a point
x ∈ X if for every open neighborhood U of x, there exists N ≥ 1 such that xn ∈U for all n ≥ N.
The point x is said to be a limit of the sequence xn.

REMARK 1.5.6. By definition, a limit of a convergent sequence (xn)n≥1 that is not eventually
constant is a limit point of the set {xn | n ≥ 1}. However, the latter set may have more then one
limit point even if (xn)n≥1 converges.

EXAMPLE 1.5.7. If X has the trivial topology, then every sequence in X converges to every
point of X .

To avoid such pathologies as in the previous example, it is useful to put the following condition
on a space.

DEFINITION 1.5.8. A topological space X is called is Hausdorff is for every two distinct points
a,b ∈ X , there exist open neighborhoods U of a and V of b such that U ∩V =∅.

More briefly, X is Hausdorff if every two distinct points of X have disjoint neighborhoods. In
Hausdorff spaces, points are closed.

LEMMA 1.5.9. In a Hausdorff space X, every singleton set {x} for x ∈ X is closed.

PROOF. If x ∈ X and a ∈ X with x 6= a, then there exists an open neighborhood Ua of a not
containing x. As the union of all such open sets Ua is the complement of {x}, the set {x} is
closed. �

The property of being Hausdorff is stronger than that of points being closed, however.

EXAMPLE 1.5.10. In an infinite set X with the finite complement topology, points are closed
as the complement of open sets. However, any two nonempty open sets in X intersect in all but
finitely many elements of X , so X is not Hausdorff. Moreover, every non-repeating sequence
(xn)n≥1 in X converges to every point of X , as the reader should check using the fact that open sets
have finite complements.

Even better, in Hausdorff spaces, every convergent sequence has a unique limit.

PROPOSITION 1.5.11. Every convergent sequence in a Hausdorff space has a unique limit.

PROOF. If x ∈ X is a limit of a convergent sequence (xn)n≥1 in a Hausdorff space X , then for
any y∈X−{x}, we have have disjoint open neighborhoods U of x and V of y. For sufficiently large
n, the point xn are all in U , hence not in V , and therefore y is not a limit point of the sequence. �
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The following is immediate from the definitions.

LEMMA 1.5.12. Every subspace of a Hausdorff space is Hausdorff.

The following characterization of the Hausdorff property is often useful.

LEMMA 1.5.13. A topological space X is Hausdorff if and only if for every two distinct points
x,y ∈ X, there exists an open neighborhood U of x with y /∈U.

PROOF. Let x and y be distinct points of X . We have disjoint open neighborhoods U and V of x
and y, respectively, if and only if we have an open neighborhood U of x and a closed neighborhood
A containing U and not containing y. That is, we simply take A and V to be complements of each
other. But such an A exists if and only if we can take it to be the closure U , which is contained in
any such A, being the smallest closed set containing U . �

1.6. Metric spaces

Metric spaces, and the open balls inside of them, provide fundamental examples of topological
spaces. We review the definition here.

DEFINITION 1.6.1. A metric on a set X is a function d : X×X→R≥0 such that for all a,b,c∈
X , one has

i. d(a,b) = 0 if and only if a = b,

ii. d(a,b) = d(b,a), and

iii. d(a,c)≤ d(a,b)+d(b,c).

TERMINOLOGY 1.6.2. For a set X , the condition d(a,c) ≤ d(a,b)+ d(b,c) on d : X ×X →
R≥0 for all a,b,c ∈ X is called the triangle inequality.

DEFINITION 1.6.3. A pair (X ,d) consisting of a set X and a metric d on X is called a metric
space.

NOTATION 1.6.4. When the metric d on a metric space (X ,d) is understood, we often write X
for the metric space.

EXAMPLE 1.6.5. The set Rn is a metric space for the distance function d : Rn×Rn → R≥0

defined by the Euclidean metric

d(x,y) =

√
n

∑
i=1

(xi− yi)2

for x = (xi)
n
i=1 and y = (yi)

n
i=1. We remark that any three points x, y, and z form the vertices of

a triangle, and the distances between them are the lengths of the sides, so the triangle inequality
reduces to the usual triangle inequality of Euclidean geometry.
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DEFINITION 1.6.6. In a metric space (X ,d), the open ball of radius ε > 0 about a point (or
with center) x ∈ X is the set

B(x,ε) = {y ∈ X | d(x,y)< ε}.
The closed ball of radius ε is

B(x,ε) = {y ∈ X | d(x,y)≤ ε}.

PROPOSITION 1.6.7. The set of open balls in a metric space X forms a base of a topology on
X, and the set of open balls with center x is a base of open neighborhoods of x in this topology.

PROOF. Clearly, the union of open balls in a metric space is X , so by Theorem 1.3.5, it suffices
to show that for any two open balls U = B(x,ε) and V = B(y,δ ) in X and any point z ∈U ∩V ,
there exists an open ball containing z and contained in U ∩V . For this, choose any positive real
number

ρ < min{ε−d(x,z),δ −d(y,z)}.
Then B(z,ρ)⊆U ∩V by the triangle inequality. That is, if d(z,w)< ρ , then

d(w,x)≤ d(w,z)+d(z,x)< ρ +d(x,z)< ε,

and similarly d(w,y)≤ d(w,z)+d(z,y)< δ . Thus the set of open balls in X form a base.
If x ∈ X and U is any open neighborhood of x, then it contains some basic open neighborhood

B(y,ε) of x, i.e., with d(x,y)< ε . Then B(x,ε−d(x,y))⊆U as in the above argument, so the balls
centered at x form a base of open neighborhoods of x. �

DEFINITION 1.6.8. The metric topology on a set X induced by a metric d on X is the topology
on X generated by the set of open balls under d.

LEMMA 1.6.9. Let X be a metric space. Then every closed ball B(x,ε) is closed in the metric
topology.

PROOF. It suffices to show that the complement of B(x,ε) is open. If y /∈ B(x,ε), then δ =

d(x,y)−ε > 0, and B(y,δ ) and B(x,ε) are disjoint by the triangle inequality. That is, if z∈ B(y,δ ),
then d(x,z)+δ > d(x,z)+d(z,y)≥ d(x,y), so d(x,z)> ε . Thus, z /∈ B(x,ε). �

Two different metrics on a set X can have the same metric topology. Take the following
example.

EXAMPLE 1.6.10. Consider the Euclidean metric d on Rn and the box metric d′ on Rn defined
by

d′(x,y) = max{|xi− yi| | 1≤ i≤ n}
for x = (xi)

n
i=1,y = (yi)

n
i=1 ∈ Rn. The reader should check that d′(x,y) is in fact a metric.

We have bases B(x,ε) and B′(x,ε) of open balls about a point x with respect to these respective
metrics. For any y ∈ Rn, we have

max{|xi− yi|2 | 1≤ i≤ n} ≤
n

∑
i=1

(xi− yi)
2 ≤ nmax{|xi− yi|2 | 1≤ i≤ n},
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so
B(x,ε)⊆ B′(x,ε)⊆ B(x,

√
nε)

for all ε > 0. Thus, the two metric topologies coincide.

We will often consider a metric space as a topological space endowed with the metric topology.
We can then examine the topological properties of metric spaces.

PROPOSITION 1.6.11. Metric spaces are Hausdorff.

PROOF. Let X be a metric space, and suppose that x,y∈ X are distinct points. Let ε = 1
2d(x,y).

Then B(x,ε) and B(y,ε) are disjoint by the triangle inequality. �

DEFINITION 1.6.12. A topological space (X ,T ) is metrizable if there exists a metric d on X
such that the metric topology induced by d is the topology T on X .

The following is a direct corollary of Proposition 1.6.11.

COROLLARY 1.6.13. If X is a metrizable topological space, then X is Hausdorff.

Discrete spaces are metric spaces as well.

DEFINITION 1.6.14. Let X be a set. The discrete metric d on X is defined by

d(x,y) =

{
1 if x 6= y

0 if x = y.

We have the following.

LEMMA 1.6.15. The discrete metric on a set X is a metric, and the topology induced by this
metric is the discrete topology.

PROOF. That d is a metric is straightforward. Since B(x, 1
2) = {x} for all x ∈ X , singleton sets

are open in this topology, so X is discrete. �

The following example shows that even metric spaces can defy our intuition from Euclidean
geometry.

EXAMPLE 1.6.16. While in any metric space, the closure of the open ball B(x,ε) is contained
in the closed ball B(x,ε), the closure of B(x,ε) can in fact be smaller. For instance, if (X ,d) is a
metric space with the discrete metric d, then the set B(x,1) = {x} is both open and closed (as are
all subsets of X), while B(x,1) = X .

DEFINITION 1.6.17. A subset A of a metric space X is bounded if there exists N > 0 such that
d(x,y)≤ N for all x,y ∈ A.

This notion of boundedness is not a topological one.
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LEMMA 1.6.18. If (X ,d) is a metric space, then the function d′ : X×X → R≥0 given by

d′(x,y) = min{d(x,y),1}

is a metric on X, and the metric topologies on X from d and d′ are the same.

PROOF. Let x,y,z ∈ X . If d(x,y)≤ 1, then

d′(x,y) = d(x,y)≤min{d(x,z)+d(z,y),1+d(z,y),d(x,z)+1,1+1}= d′(x,z)+d′(z,y),

by the triangle inequality for the first of the terms in the set and the fact that d(x,y) ≤ 1 for the
others. If d(x,y)≥ 1, then

d′(x,y) = 1≤min{d(x,z)+d(z,y),1+d(z,y),d(x,z)+1,1+1}= d′(x,z)+d′(z,y)

by the triangle inequality for the first term in the set (in that 1≤ d(x,y)≤ d(x,z)+d(z,y)) and the
fact that the other terms are clearly at least one. Thus, d′ satisfies the triangle inequality, and it
clearly satisfies the other two conditions for being a metric.

The open balls of radius less than 1 form a base of any metric topology, as any open ball
contains one of these. Since these sets of open balls coincide for d and d′, these metrics induce the
same topology on X . �

EXAMPLE 1.6.19. Under the Euclidean metric, R is not bounded, but it is with respect to the
metric d′(x,y) = min{|x− y|,1} on R. Nevertheless, both of these metrics induces the Euclidean
topology.

Sequences in metric spaces behave as one might expect.

PROPOSITION 1.6.20. Let (X ,d) be a metric space. A sequence (xn)n≥1 in X converges to
a ∈ X if and only if limn→∞ d(a,xn) = 0.

PROOF. If U is an open neighborhood of a, then U contains some open ball B(a,ε). If
limn→∞ d(a,xn) = 0, then there exists N ≥ 1 such that d(a,xn) < ε for all n ≥ N, so xn ∈ U .
Conversely, if (xn)n≥1 converges to a, then for any ε , there exists N ≥ 1 such that xn ∈ B(a,ε) for
n≥ N, which is to say d(a,xn)< ε . Thus, the limit limn→∞ d(a,xn) is 0. �

PROPOSITION 1.6.21. Let X be a metrizable space, let A⊆ X, and let x ∈ X. Then x ∈ A if and
only if it is the limit of a convergent sequence of elements of A.

PROOF. We need only see that any x ∈ A is such a limit. Fix a metric d on X so that we may
consider open balls in X . If x ∈ A, then for any n≥ 1, there exists xn ∈ B(x, 1

n)∩A by definition of
A. Then the xn converge to x by Proposition 1.6.20. �





CHAPTER 2

Continuous functions

2.1. Continuous functions

In this section, X and Y will denote topological spaces.

DEFINITION 2.1.1. A function f : X → Y is said to be continuous if f−1(V ) is open for every
open subset V of Y .

DEFINITION 2.1.2. We say that f : X → Y between topological spaces is continuous at a
point x ∈ X (or continuous at x) if for every open neighborhood V of f (x), there exists an open
neighborhood U of x such that f (U)⊆V .

REMARK 2.1.3. As every open subset is a union of open neighborhoods of its points, a function
is continuous if and only if it is continuous at every point.

We can check continuity on basis elements of Y .

PROPOSITION 2.1.4. Let BX and BY be fixed bases of the topologies on X and Y , respectively.
Let f : X → Y be a function.

a. A function f : X → Y is continuous if and only if f−1(V ) is open in X for all V ∈BY .

b. A function f : X→Y is continuous at x∈ X if and only if for every basic open neighborhood
V ∈BY of f (x), there exists a basic open neighborhood U ∈BX of x with f (U)⊆V ,

PROOF. If f is continuous, then f−1(V ) is open for all V ∈ BY by definition. Conversely,
suppose f−1(V ) is open for all V ∈BY . As BY is a base, for any open subset W of Y , there exists
C ⊆BY such that W =

⋃
V∈C V . Then f−1(W ) =

⋃
V∈C f−1(V ), so f−1(W ) is open as a union of

open sets. Thus, we have proven part (a).
If f is continuous at x ∈ X and V is a basic open neighborhood of f (x), then f−1(V ) contains

an open neighborhood of x, and such an open neighborhood contains a basic open neighborhood
of x. Conversely, if for every V ∈ BY with f (x) ∈ V , the set f−1(V ) contains a (basic) open
neighborhood of x, then for any open neighborhood W of f (x), we have that W contains some
such V . Thus, f is continuous at x. �

Here is the fundamental example, which states that a map between metric spaces is continuous
with respect to their metric topologies if and only if it is continuous in the usual sense.

23
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PROPOSITION 2.1.5. Let X and Y be metric spaces, which we endow with their metric topolo-
gies. A function f : X → Y is continuous if and only if for every x ∈ X and ε ∈ R>0, there exists
δ ∈ R>0 such that f (B(x,δ ))⊆ B( f (x),ε).

PROOF. The sets BX and BY of open balls of positive radius in X and Y , respectively, are
bases for the metric topologies on X and Y . The result is therefore a direct consequence of the
equivalence of Proposition 2.1.4(b). �

We give a few more examples.

EXAMPLES 2.1.6.

a. If X is discrete, then any map f : X → Y is continuous.

b. If Y has the trivial topology, then any map f : X → Y is continuous.

c. If the set X has two topologies TX and T ′
X with T ′

X finer than TX and f is continuous for
TX , then f is continuous for T ′

X .

d. If Y has two topologies TY and T ′
Y with T ′

Y finer than TY and f is continuous for T ′
Y , then

it is continuous for TY .

e. As a special case of the two latter examples, the identity map idX : X→ X given by idX(x) =
x is continuous with potentially different topologies on the domain and codomain if and only if the
topology of the domain is finer than the topology on the codomain.

We can also express continuity in terms of closed sets and closures.

LEMMA 2.1.7. A function f : X → Y is continuous if and only if f−1(B) is closed for every
closed subset B of Y .

PROOF. We have f−1(B) = X − f−1(Bc), so f−1(B) is closed if and only if f−1(Bc) is open.
The result follows since Bc runs over the open sets of Y as B runs over the closed sets. �

PROPOSITION 2.1.8. A function f : X → Y is continuous if and only if for every A ⊆ X, we
have f (A)⊆ f (A).

PROOF. If f is continuous and A′ = f−1( f (A)), then A′ is closed and A⊆ f−1( f (A))⊆ A′, so
A⊆ A′. Thus

f (A)⊆ f (A′) = f ( f−1( f (A)))⊆ f (A).

Conversely, suppose that f (A) ⊆ f (A) for all A. Take B to be a closed subset of Y , and set
A = f−1(B). Then f (A)⊆ B, and if x ∈ A, then f (x)∈ f (A)⊆ B. In other words, A⊆ f−1(B) = A,
so f−1(B) is closed. Therefore, f is continuous. �

EXAMPLES 2.1.9.

a. Constant functions are continuous.



2.1. CONTINUOUS FUNCTIONS 25

b. The inclusion map ιA : A→ X of a subspace A of a space X is continuous. That is, if V is
open in X , then ι−1(V ) = A∩V is open in A in the subspace topology.

c. A composition of continuous maps is continuous.

d. If f : X → Y is a continuous function, then its restriction f |A to any subset A of X given by
f |A(a) = f (a) for all a ∈ A is continuous for the subspace topology on A, since f |A = f ◦ ιA. (We
say that f restricts to g = f |A on A, that f extends g to X , and that f is an extension of g from A to
X .)

e. If f : X → Y is a continuous function, then the map g : X → f (X) is continuous for g(x) =
f (x) for all x ∈ X , where f (X) is endowed with the subspace topology from Y . If V ⊆ f (X) is
open, then V =U ∩ f (X) for some open subset U of Y , so g−1(V ) = f−1(U) is open.

DEFINITION 2.1.10. An open cover of a subset A of a topological space X is a collection U

of open subsets of X that covers A.

LEMMA 2.1.11. A function f : X → Y is continuous if and only if there is an open cover U of
X such that f |U is continuous for all U ∈U .

PROOF. We have seen that each f |U is continuous if f is. On the other hand, suppose f |U is
continuous for all U ∈U . If V ⊂ Y is an open subset, then f−1(V )∩U = f |−1

U (V ) is open. Thus

f−1(V ) =
⋃

U∈U
( f−1(V )∩U)

is open, so f is continuous. �

LEMMA 2.1.12. If f : X → Y is a function, A and B are closed subspaces of X such that
A∪B = X, and f |A and f |B are continuous, then f is continuous.

PROOF. Let C ⊆Y be closed. Then f−1(C) = f |−1
A (C)∪ f |−1

B (C), and ( f |A)−1(C) is closed in
A and ( f |B)−1(C) is closed in B. Since A and B are closed in X , the latter two inverse images are
closed in X , so f−1(C) is closed as a union of two closed sets. �

DEFINITION 2.1.13. A function f : X → Y is a homeomorphism if it is a continuous bijection
and its inverse is continuous as well.

DEFINITION 2.1.14. Two spaces X and Y are homeomorphic if there exists a homeomorphism
f : X → Y .

We leave the following for the reader to verify.

LEMMA 2.1.15. The relation ' on any set of topological spaces given by X ' Y if X is home-
omorphic to Y is an equivalence relation.

EXAMPLES 2.1.16.
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a. The function f : R→ R given by f (x) = x3 is a homeomorphism, as it is continuous with
continuous inverse f−1(x) = x1/3.

b. The function f : (0,1)→ R>0 given by f (x) = x
1−x is a homeomorphism (where (0,1) has

the subspace topology from R).

DEFINITION 2.1.17. A function f : X → Y is an embedding if it is a homeomorphism onto its
image f (X) with the subspace topology from Y .

DEFINITION 2.1.18. A function f : X → Y is an open map, or open, if f (U) is open for every
open subset U of X . A function f : X → Y is a closed map, or closed, if f (U) is closed for every
closed subset U of X .

REMARK 2.1.19. If f : X → Y is a bijection, then f is open if and only if f is closed.

By definition, homeomorphisms are open maps; that is, they are the continuous, open bijec-
tions. However, in general, continuous bijections may not be open.

EXAMPLES 2.1.20.

a. Let f : S1→ R2 be the natural embedding, where

S1 = {(x,y) ∈ R2 | x2 + y2 = 1}.

Then S1 is open in itself, but f (S1) = S1 is not open in R2.

b. Let X be a set with two topologies T and T ′ with T ′ strictly finer than T . Then the
identity map f : X → X with the domain having the topology T ′ and the codomain having the
topology T is continuous, but its inverse f−1 is not, so f is not an open map. On the other hand,
f−1 is an open map.

We next consider the behavior of continuous functions and sequences.

PROPOSITION 2.1.21. Let f : X→Y be a function. If f is continuous, then for every sequence
(xn)n≥1 in X that converges to a point x ∈ X, the sequence ( f (xn))n≥1 converges to f (x). If X is
a metrizable space such that for every sequence (xn)n≥1 in X that converges to some x ∈ X, then
( f (xn))n≥1 converges to f (x), then f is continuous.

PROOF. Suppose that f is continuous. Let (xn)n≥1 be a sequence in X converging to x. Let
V be an open neighborhood of f (x) in Y . Then f−1(V ) is an open neighborhood of x ∈ X , so
contains all xn for n ≥ N for some N ≥ 1. Thus f (xn) ∈ V for all such n ≥ N, and therefore the
sequence of f (xn) converges to f (x).

Now let be X metrizable, and suppose that whenever (xn)n≥1 converges to x ∈ X , the sequence
( f (xn))n≥1 converges to f (x). Let A be a subset of X and x ∈ A. It suffices by Proposition 2.1.8
to show that f (x) ∈ f (A). For this, we need only exhibit a sequence (xn)n≥1 in A converging to
x. Then f (x) is the limit of the f (xn). But such a sequence exists by the metrizability of X and
Proposition 1.6.21. �
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DEFINITION 2.1.22. Let ( fn)n≥1 be a sequence of functions from a set X to a metric space Y
with metric dY . The sequence ( fn)n≥1 converges uniformly to f : X → Y if for every ε > 0 there
exists an integer N ≥ 1 such that dY ( f (x), fn(x))< ε for all n≥ N and x ∈ X .

REMARK 2.1.23. If Y is a metrizable topological space, then the notion of uniform conver-
gence of a sequence is independent of the choice of metric on dY yielding the topology.

PROPOSITION 2.1.24. Let X be a topological space and Y be a metrizable space. Let ( fn)n≥1

be a sequence of continuous functions fn : X→Y that converges uniformly to a function f : X→Y .
Then f is continuous.

PROOF. Let ε > 0 and a ∈ X . Choose N ≥ 1 such that dY ( fn(x), f (x)) < ε

3 for all n ≥ N and
x ∈ X . By the continuity of fN , we can find an open neighborhood U of a such that if x ∈U , then
dY ( fN(a), fN(x))< ε

3 . For such x ∈ X , we then have

dY ( f (a), f (x))≤ dY ( f (a), fN(a))+dY ( fN(a), fN(x))+dY ( fN(x), f (x))< ε.

�

2.2. Product spaces

PROPOSITION 2.2.1. Let I be an indexing set, and for each i ∈ I, let Xi be a topological space.
Then the set B of product sets ∏

n
i=1Ui with each Ui open in Xi and Ui = Xi for all but finitely many

i ∈ I forms a base of a topology on X = ∏i∈I Xi.

PROOF. Let U = ∏i∈I Ui and V = ∏i∈I Vi be two sets in B. Then(
∏
i∈I

Ui

)
∩

(
∏
i∈I

Vi

)
= ∏

i∈I
(Ui∩Vi),

each Ui∩Vi is open in Xi, and all but finitely many Ui∩Vi equal Xi. Thus U ∩V ∈B. Since X ∈B

as well, it follows that B is a base. �

DEFINITION 2.2.2. Let I be an indexing set, and for each i ∈ I, let Xi be a topological space.
The product topology on X is the topology generated by the base of sets ∏i∈I Ui with each Ui open
in Xi and all but finitely many Ui = Xi.

REMARK 2.2.3. The product topology on a finite product ∏
n
i=1 Xi of topological spaces X1, . . . ,Xn

with n≥ 1 has a base ∏
n
i=1Ui of open sets with Ui open in Xi for 1≤ i≤ n. I.e., the condition that

all but finitely many Ui be Xi is vacuous, since {1, . . . ,n} is a finite set.

DEFINITION 2.2.4. Let I be an indexing set, and for each i ∈ I, let Xi be a topological space.
The jth projection map π j : ∏i∈I Xi→ X j for j ∈ I is the function defined by π j((xi)i∈I) = x j for
(xi)i∈I ∈∏i∈I Xi.

The following proposition explains the seemingly strange choice of the product topology on
X .
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PROPOSITION 2.2.5. Let I be an indexing set, and for each i ∈ I, let Xi be a topological space.
The product topology on X = ∏i∈I Xi is the coarsest topology on X such that each projection map
π j : X → X j with j ∈ I is continuous.

PROOF. Let i1, . . . , in ∈ I be elements for some n ≥ 1, and for 1 ≤ k ≤ n, let Uik ⊂ Xik be an
open subset. Then

n⋂
k=1

π
−1
k (Uik) = ∏

i∈I
Vi

with Vi = Xi unless i∈ {i1, . . . , in} and Vi open in Xi if so. The collection of sets π
−1
j (U j) with j ∈ I

and U j ⊂ X j therefore forms a subbase for the product topology on X . In other words, the product
topology is the coarsest topology such that these sets are open in X , which is to say such that every
π j is continuous. �

PROPOSITION 2.2.6. Let X be a topological space, let Yi be topological spaces for each i in an
indexing set I, and endow Y = ∏i∈I Yi with the product topology. A function f = ( fi)i∈I : X →Y is
continuous if and only if each fi : X → Yi is continuous.

PROOF. If f is continuous, then each fi = πi ◦ f is continuous, where πi : Y → Yi is the pro-
jection map in the i-coordinate. Conversely, suppose that each fi is continuous. For J be a finite
subset of I, and for each j ∈ J, let Vj be an open subset of Y j. Let V = ∏i∈I Vi where we set Vi =Yi

for i ∈ I− J. Then
f−1(V ) =

⋂
i∈I

f−1
i (Vi) =

⋂
j∈J

f−1
j (Vj),

which is open as a finite intersection of open sets. Therefore f is continuous. �

PROPOSITION 2.2.7. Let I be an indexing set, and let Xi be a Hausdorff topological space for
each i ∈ I. Then X = ∏i∈I Xi is Hausdorff in the product topology.

PROOF. Let x = (xi)i∈I and y = (yi)i∈I be distinct elements of X , and let j ∈ I be such that
x j 6= y j. Let U j and Vj be disjoint open neighborhoods of x j and y j. Then U = π

−1
j (U j) and

V = π
−1
j (Vj) are open in X in the product topology, and U ∩V =∅. �

REMARK 2.2.8. From our definition of the product topology on a direct product X = ∏i∈I Xi

of topological spaces, it is not hard to see that if J is any finite subset of I and U is any open subset
of ∏ j∈J X j in the product topology, then W =U×∏i∈I−J Xi is open in X . However, not every open
subset need have this form.

For instance, consider RI = ∏i∈I R for any infinite set I. Consider its open subsets

Vj = {(xi)i∈I | x j ∈ (0,1)}

for j ∈ I. Then the union V =
⋃

j∈I Vj is open in X but is not a product of the stated form, since
it consists of all tuples with at least one coordinate in (0,1). To see this, consider an open set
W =U×RI−J of the above form, where U is an open set of RJ (in the coordinates corresponding
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to J, and RI−J is the product of R in all coordinates in I−J). If W ⊆V , then since no condition is
imposed on the ith coordinates of elements of W for i /∈ J, we must have W ⊆

⋃
j∈J Vj. Take any

i ∈ I− J, and note that the element of V which is 0 in all coordinates but the ith and 1
2 in the ith

coordinate is not in W . Thus W 6=V .

REMARK 2.2.9. Just to speak of an element of an arbitrary product A = ∏i∈I Ai for an un-
countable set I and nonempty sets Ai, we run into the issue of needing to make uncountably many
choices. If we cannot, we may not be able to say that that A contains a single element! That one
can in fact do this is equivalent to an axiom of set theory, called the axiom of choice. It states
that, given a collection of disjoint sets {Ai | i ∈ I} for some indexing set I, there exists a function
f : I→

∐
i∈I Ai to the disjoint union of the sets Ai such that f (i)∈ Ai for each i∈ I. In other words,

we can pick one element from each set Ai.

There is a more simply described topology on a product that agrees with the product topology
for finite products but is rather finer for infinite products. It might constitute a first guess at a
natural topology on the product.

DEFINITION 2.2.10. Let Xi be a topological space for each i in an indexing set I, and set
X = ∏i∈I Xi. The box topology on X is the topology generated by the base consisting of products
∏i∈I Ui of open sets Ui ⊆ Xi for each i ∈ I.

REMARK 2.2.11. Suppose that X is an infinite product of spaces that do not have the trivial
topology. Then the box topology on X is strictly finer than the product topology.

PROPOSITION 2.2.12. Let I be an indexing set. Let Xi be a topological space and let Ai be a
subset of Xi for each i ∈ I. The closure of A = ∏i∈I Ai in the box or product topology on ∏i∈I Xi is
∏i∈I Ai.

PROOF. If a = (ai)i∈I ∈∏i∈I Xi and U = ∏i∈I Ui is an open neighborhood of a in the product
(i.e., all but finitely many Ui = Xi) or box topologies, then U ∩A = ∏i∈I(Ui∩Ai) is nonempty if
and only if each Ui∩Ai is nonempty. So, if a ∈ Ai for all i ∈ I, then a lies in the closure of ∏i∈I Ai.
Conversely, if a lies in the latter closure for all possible choices of U , then a∈ Ai for each i∈ I. �

The following tells us when a product of maps is continuous.

PROPOSITION 2.2.13. For each i in an indexing set I, let fi : Xi → Yi be a function between
topological spaces. Set X = ∏i∈I Xi and Y = ∏i∈I Yi and f = ( fi)i∈I : X→Y . Then f is continuous
with respect to the product (resp., box) topology on X and Y if and only if each fi is continuous.

PROOF. Let J be a finite subset of I, and let Vj be open in Y j for each j ∈ J. Let V = ∏i∈I Vi

where Vi = Xi for i ∈ I−J. Then f−1(V ) = ∏i∈I f−1
i (Vi) is open if and only if f−1

j (Vj) is open for
every j ∈ J. Thus in the product topology, f is continuous if and only if each f j is continuous. In
the box topology, we may simply replace J by I in the above argument. �
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EXAMPLE 2.2.14. Consider RI = ∏i∈I R. The metric topology for the uniform metric given
by

d(x,y) = sup{min{|xi− yi|,1} | i ∈ I},
is called the uniform topology. The reason for the name is as follows: the space of functions
f : I→R from a set I to R is in bijection with RI via the map which takes a function f to ( f (i))i∈I .
A sequence of functions ( fn)n≥1 with fn : I → R converges uniformly to some f : I → R if and
only if the corresponding sequence in RI converges to ( f (i))i∈I in the uniform topology.

EXAMPLE 2.2.15. If I is finite, the product, uniform, and box topologies on RI are all simply
the Euclidean topology. If I is infinite, then the box topology is strictly finer than the uniform
topology, which is strictly finer than the product topology, as we next explain.

The product topology on RI has a basis of open neighborhoods of 0 consisting of a product Pε

of open intervals (−ε,ε) in finitely many coordinates and R in the others. The uniform topology
has a basis of open balls Bε = B(ε,0) of radius ε < 1. We have Bε ⊂ Pε , but Bε contains no Pδ . The
box topology has a basis of open neighborhoods consisting of products of open intervals centered
at 0 of lengths depending on the coordinates. Inside Bε , we have the product of open intervals
(− ε

2 ,
ε

2) in every coordinate, which is open in the box topology. On the other hand, a product of
open intervals centered at 0 the infinimum of the lengths of which is 0 contains no Bε .

PROPOSITION 2.2.16. Let J be an indexing set. If J is infinite, then RJ with the box topology is
not metrizable. The space RJ with the product topology is metrizable if and only if J is countable.

PROOF. For the first statement, it suffices to consider the case that J is countable, which we
can then take to be the set of positive integers. Consider the subset U = RJ

>0 of RJ in the box
topology. The 0 ∈U , as the reader can check. However, if (an)n≥1 is a sequence in U and an,m is
its mth coordinate, then the product ∏

∞
n=1(−an,n,an,n) is an open neighborhood of 0 that does not

contain any an. By Proposition 1.6.21, the space RJ with the box topology is not metrizable.
Now, take the product topology on RJ with J uncountable, and consider the set

A = {(x j) j∈J | x j = 1 for all but finitely many j ∈ J}.

Then 0 ∈ A, since any product of open intervals (−ε,ε) in finitely many coordinates and R in the
others clearly intersects A. On other other hand, if (an)n≥1 is a sequence in A, let I be the subset of
J consisting of those j ∈ J such that the j-coordinate of some an is not 1. This is a countable set,
so J 6= I. But then there exists j ∈ J such that the j-coordinate of an is 1 for all n≥ 1, which means
in particular the neighborhood of 0 that is R in all coordinates but the j-coordinate and (−1

2 ,
1
2) in

the j-coordinate does not contain any an.
For the product topology on RJ with J = Z≥1, the reader may check that we have a metric d

defined by
d(x,y) = sup{1

n min{|xn− yn|,1} | n≥ 1}.
�
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2.3. Quotient spaces

Recall that we say that a function f : X → Y is surjective (or a surjection) if f (X) = Y .

DEFINITION 2.3.1. A quotient map π : X → Y of topological spaces X and Y is a surjection
such that a subset V of Y is open if and only if π−1(V ) is open in X .

The following is easily verified.

LEMMA 2.3.2. A surjective map π : X → Y is a quotient map if and only if a subset B of Y is
closed if and only if π−1(B) is closed in X.

EXAMPLES 2.3.3. Let X be a topological space.

a. The identity map idX : X → X is a quotient map.

b. Any constant map from a nonempty X is a quotient map onto its singleton image.

c. Let X = ∏i∈I Xi be a product of topological spaces. Then the projection maps πi : X → Xi

are quotient maps, as the reader can check.

EXAMPLE 2.3.4. Let S1 denote the unit open circle in C. Consider the map f : R→ S1 given
by f (x) = e2πix. Then f is a quotient map.

The product map F : R2→ S1×S1 given by F(x,y) = ( f (x), f (y)) is a quotient map as well,
realizing a torus (which has the shape of the surface of a donut) as a quotient of the plane. In fact,
if we restrict this function to the square X = [0,1]2, the resulting map F : X → S1× S1 is also a
quotient map. It satisfies F(0,y) = F(1,y) and F(x,0) = F(x,1) for all x,y ∈ [0,1]. In particular,

F(0,0) = F(1,0) = F(0,1) = F(1,1) = (1,1).

One may think of the quotient map as identifying the left and right sides of the square with each
other and the top and bottom sides of the square with each other, which in the process identifies
the four corners with each other.

The following example illustrates that quotient maps need not be open maps.

EXAMPLE 2.3.5. Let X be the subspace of R2 consisting of points with y-coordinate 0 or 1.
A subset of X is open if and only if its intersection with each of the two lines in X is open in the
Euclidean topology.

Define f : X → R by

f (x,y) =

{
x if y = 0

|x| if y = 1.

Then f is a quotient map. Let U be the open subset of X consisting of those (x,y) with y = 1, or
with y = 0 and x = 0. Then f (U) = [0,∞), so f is not open.

Now consider the restriction f |U : U→R. It is a continuous surjection. However, f |−1
U ([0,∞))=

{(x,1) | x ∈ R}, but [0,∞) is not open, so f |U is not a quotient map.
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LEMMA 2.3.6. Let X be a topological space, and let π : X → Y be a surjective function onto
a set Y . There exists a unique topology on Y such that π is a quotient map.

PROOF. The set of subsets of Y such that π−1(V ) is open is easily seen to be a topology on
Y , since π−1 commutes with the taking of intersections and unions. Moreover, this is the only
topology such that π is a quotient map, since π being a quotient map means exactly that the V ⊆Y
such that π−1(V ) is open are the open sets. �

Given Lemma 2.3.6, we may make the following definition.

DEFINITION 2.3.7. Let X be a topological space and π : X → Y a surjective function to a set
Y . The quotient topology on Y is the unique topology on Y such that π is a quotient map.

DEFINITION 2.3.8. If π : X → Y is a quotient map between topological spaces, then Y is said
to be a quotient space of X .

EXAMPLE 2.3.9. Let Y = {a,b} be the two-point set. Consider the function f : R→ Y given
by f (x) = a if x < 0 and f (x) = b if x≥ 0. The quotient topology on Y is contains the sets ∅, {a}
and {a,b} but not {b}, as f−1(b) is not open. Then Y is not Hausdorff, though R is.

PROPOSITION 2.3.10. Let π : X → Y be a quotient map. Let B be a subset of Y and A =

π−1(B). Consider the map p : A→ π(A) given by p(a) = π(a) for a ∈ A.

a. If A is open or closed in X, then p is a quotient map.

b. If π is open or closed, then p is a quotient map.

PROOF. By definition, p is continuous and surjective. If V is a subset of π(A), then p−1(V ) =

π−1(V ) is open (resp., closed) in X if and only if V is open (resp., closed) in X . If A is open (resp.,
closed) in X , then p−1(V ) is open (resp., closed) in X if and only if p−1(V ) is open (resp., closed)
in A, and therefore, p is a quotient map. Thus, we have part a.

As for part b, suppose that π is open. If V ⊆ B is such that p−1(V ) is open in A, then π−1(V ) =

p−1(V ) =U ∩A for some open U in X , and

V = π(π−1(V )) = π(U ∩A) = π(U)∩B,

the last step as π−1(A) = B. Since π is open, π(U) is open in Y , and therefore π(U)∩B is open in
B under the subspace topology. That is, V is open in B, so p is a quotient map. The argument in the
case that π is closed proceeds in the same manner, replacing “open” by “closed” everywhere. �

The quotient map has a certain universality property, as expressed in the following theorem.

THEOREM 2.3.11. Let π : X→Y be a quotient map, and let f : X→ Z be any continuous map
such that f is constant on π−1({y}) for all y ∈ Y . Then there exists a unique function g : Y → Z
such that f = g◦π , and g is continuous.
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PROOF. The function g is determined by g(y) = f (x) where π(x) = y, which is well-defined by
the constancy of f on the nonempty set π−1({y}). Let W be open in Z, and note that π−1(g−1(W ))=

f−1(W ). The set f−1(W ) is open in X , so as π is a quotient map, g−1(W ) is open in Y . Thus, g is
continuous. �

EXAMPLE 2.3.12. Let X be a topological space, and let A be a subset. Let X/A=(X−A)q{∗}
as sets, and define π : X → X/A by

π(x) =

{
x if x ∈ X−A

∗ if a ∈ A.

We give Y the quotient topology. This is the space given by collapsing A to a point. It may not
be Hausdorff even if X is: for instance, if we take X = R and A = (0,∞), then 0 is in every open
neighborhood of ∗ in Y . However, Y will be Hausdorff if for every x /∈ A, there exist disjoint open
sets U containing x and V containing A.

EXAMPLE 2.3.13. Let X be a topological space. The cone C(X) on X is the quotient space of
(the cylinder) X× [0,1] in which we collapse X×{0} to a point. If X = S1, this is homeomorphic
to a cone in R3, e.g.,

D = {(rx,ry,r) | r ∈ [0,1],(x,y) ∈ S1},
where S1 is the unit circle in R2. Here, the homeomorphism D→ C(S1) takes (rx,ry,r) to the
image of ((x,y),r) ∈ X× [0,1] in C(S1).

2.4. Disjoint unions

To give maps to a direct product of sets is to give a collection of maps to the individual sets,
and if these sets are topological spaces, then with the product topology, we have seen in Proposi-
tion 2.2.13 that to give a continuous map to the product of topological spaces is to give a collection
of continuous maps to the individual spaces. However, to give a function from a product of sets
to a set is not the same as given a collection of maps from the individual set to the set. One might
ask if there’s another set that does this, and the answer is yes, the disjoint union. In fact, when the
individual sets are topological spaces, we can put a topology on the disjoint union so that we can
make the same connection with continuous maps.

DEFINITION 2.4.1. The disjoint union of a collection {Ai | i ∈ I} of sets is the set
∐

i∈I Ai that
contains the Ai as mutually disjoint subsets and is equal to the union

⋃
i∈I Ai.

REMARK 2.4.2. To give a function f :
∐

i∈I Ai→ B from a disjoint union of sets Ai to a set B
is exactly to give a collection of maps fi : Ai→ B. These satisfy fi(ai) = f (ai) for all i ∈ I, so f
determines the fi and conversely.

DEFINITION 2.4.3. Let {Xi | i ∈ I} be a collection of topological spaces. The disjoint union∐
i∈I Xi of the spaces Xi is the topological space with underlying set indicated disjoint union and

with the topology under which a subset U is open if and only if U ∩Xi is open for all i ∈ I.
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REMARK 2.4.4. Under this definition, we have continuous inclusion maps ιi : Xi ↪→
∐

i∈I Xi

given by ιi(ai) = ai for ai ∈ Xi.

PROPOSITION 2.4.5. Let fi : Xi→Y be a collection of functions from topological spaces Xi to
a topological space Y . The map f :

∐
i∈I Xi→ Y that restricts to fi on Xi for all i is continuous if

and only if every fi is continuous.

PROOF. Let V be an open subset of Y . Then f−1(V )∩Xi = f−1
i (V ), so f−1(V ) is open if and

only if f−1
i (V ) is open for all i. �

LEMMA 2.4.6. Let X =
∐

i∈I Xi be a disjoint union of topological spaces Xi. Then each Xi is
open and closed in X.

PROOF. We have Xi∩X j =∅ if i 6= j and Xi∩Xi =Xi, so Xi is open in X . As for its complement,
we have

X−Xi =
⋃

j∈I−{ j}
X j,

which is open as a union of open sets. �

EXAMPLE 2.4.7. Any union A of the two parallel lines in the plane R2 is homeomorphic to
RqR.

This example generalizes considerably.

LEMMA 2.4.8. Let {Ai | i ∈ I} be a collection of subspaces of a space X. Then the continuous
map

∐
i∈I Ai→ X with restriction to Ai the embedding of Ai as a subspace of X is a homeomor-

phism if the Ai are mutually disjoint with union X and every Ai is open (and therefore closed) in
X.

PROOF. The continuous map f in the statement is onto if and only if
⋃

i∈I Ai = X and is one-
to-one if and only if Ai∩A j = ∅ for all i 6= j. If f is open, then every Xi is open in X (and then
closed as well, since Ai is the complement of the union of the A j for j 6= i). Conversely, if every
Ai is both open and closed in X and U is open in

∐
i∈I Ai, then f (U) =

⋃
i∈I(U ∩Ai) is open as a

union of open sets. �

Lemma 2.4.8 justifies the following terminology.

TERMINOLOGY 2.4.9. If X is a topological space and {Ai | i ∈ I} is a collection of disjoint
open subsets with union X , then we say that X is the disjoint union of the subspaces Ai and write
X =qi∈IAi.

EXAMPLES 2.4.10.

a. The subspace X = {(x,y) ∈ R2 | y ∈ {0,1}} of R2 is the disjoint union of the lines y = 0
and y = 1 in the plane.

b. Any discrete spaces is the disjoint union of its singleton subsets.
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EXAMPLE 2.4.11. Let {Xi | i ∈ I} be a collection of topological spaces, and choose xi ∈ Xi for
each i ∈ I. We have a quotient of X =

∐
i∈I Xi given by collapsing the subset A = {xi | i ∈ I} to a

point. This will be a Hausdorff space if X is. This space is called a one-point union of the spaces
Xi. In the case, for instance, that X = S1qS1q·· ·qS1, we get a finite collection of circles joined
at a point.





CHAPTER 3

Connected and compact spaces

3.1. Connectedness and path connectedness

DEFINITION 3.1.1. A topological space X is connected if it is not a disjoint union of any two
nonempty open subspaces. Otherwise, X is said to be disconnected.

LEMMA 3.1.2. A topological space X is connected if its only subsets that are both open and
closed are ∅ and X.

PROOF. If A is a subset of X that is both open and closed, then so is Ac, and then X = AqAc.
Conversely, if X =UqV with U and V nonempty and open in X , then U and V are also closed. �

EXAMPLE 3.1.3. Topological spaces with one element are always connected, but discrete topo-
logical spaces with more than one element are disconnected.

EXAMPLE 3.1.4. The union (−∞,0)∩ (0,∞) of intervals in R is disconnected as a subspace of
R, as both (−∞,0) and (0,∞) are open and closed in the subspace topology. However, R itself is
connected.

REMARK 3.1.5. If X is the disjoint union of subspaces A and B, then A and B are their own
closures, so A and B contain no limit points of each other. In fact, if A and B are any two disjoint
subsets of X with union X such that A contains no limit points of B and vice-versa, then A and B
are open and closed in X .

LEMMA 3.1.6. If X = U qV for subspaces U and V , and A is a connected subset of X, then
either A⊆U or A⊆V .

PROOF. We have that A∩U and A∩V are open and closed in A, so A is the disjoint union of
these intersections. If A is connected, this forces one of the A∩U and A∩V to be empty, and then
the other is A. �

PROPOSITION 3.1.7. The closure of a connected subset of a topological space is connected.

PROOF. Let X be a topological space and A a connected subset. Suppose that A = U qV for
disjoint subspaces U and V in X . By Lemma 3.1.6, we have that A is contained in either U or V :
without loss of generality, we suppose A ⊆U . As U is closed, we have that A ⊆U as well, and
therefore V =∅. �

We also have the following statements.
37
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PROPOSITION 3.1.8. The image of a connected space under a continuous map is connected.

PROOF. Suppose X is connected and f : X → Y is continuous. If Y is the disjoint union of
(open) subspaces U and V , then X is the union of the disjoint open subsets f−1(U) and f−1(V ),
hence equal to their disjoint union as topological spaces. �

PROPOSITION 3.1.9. Let X =
⋃

i∈I Ai for a collection of connected subsets Ai of X for i ∈ I,
and suppose that

⋂
i∈I Ai is nonempty. Then X is connected.

PROOF. Let a ∈
⋂

i∈I Ai. If X =U qV for subspaces U and V , then without loss of generality
we may suppose a ∈U . Since Ai is connected and contains a, we must then have Ai ⊆U for all
i ∈ I, forcing V =∅. �

The following is an immediate corollary of Proposition 3.1.9.

COROLLARY 3.1.10. The union of all connected subsets of a topological space X that contain
a given point x ∈ X is connected.

PROPOSITION 3.1.11. The relation on a topological space X given by x ∼ y for x,y ∈ X if y
lies in the connected component of x is an equivalence relation on X.

PROOF. Clearly∼ is reflexive. For symmetry, it’s enough show that for x,y∈ X , the connected
components A of x and B of y are either equal or disjoint. Suppose that z ∈ A∩B. Then A∪B
is connected by Proposition 3.1.9, but in that A (resp., B) is the largest connected subset of X
containing x (resp., y), we must have A = A∩B = B. Finally, if x∼ y and y∼ z for x,y,z ∈ X , then
we’ve just seen that x and y have the same connected component, as do y and z, so x and z do as
well. �

By Corollary 3.1.10, we can always find a largest connected subset containing a given point.

DEFINITION 3.1.12. A connected component of a topological space X is a connected subset
of X that is not properly contained in any larger connected subset of X . The connected component
of a point x ∈ X is the unique connected component of X containing x.

LEMMA 3.1.13. A space X is the union of its distinct connected components, which are closed
and disjoint. If every connected component of X is open, then X is the disjoint union of them. In
particular, if X has only finitely many connected components, then it X is the disjoint union of its
connected components.

PROOF. We know that X is the union of its connected components, which are disjoint by
Proposition 3.1.11. It follows from Proposition 3.1.7 that connected components are closed, being
the largest connected subsets containing a given point. The second statement follows from the
definition of a disjoint union of topological spaces. If X has finitely many connected components,
then any union of all but one of them is closed, and then they are all open as complements of these
unions. �
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EXAMPLE 3.1.14. Consider the subspace A = {0}∪{1
n | n≥ 1} of R. Every {1

n} is both open
and closed in A, so is a connected component (in that it is connected). The set {0} is also then a
connected component, being that it is not contained in any larger connected subset. However, it is
closed but not open, so A is not the disjoint union of its connected components.

EXAMPLE 3.1.15. Consider Q as a subspace of R. It is disconnected as Q is the union of
its intersections with the intervals (−∞,π) and (π,∞), for instance (as π is irrational). In fact,
since there exists an irrational number between any two distinct rational numbers, the connected
components of Q are just its singleton subsets.

REMARK 3.1.16. The property of being in the same connected component gives an equiva-
lence relation on the points of a topological space, and the connected components are the equiva-
lence classes.

DEFINITION 3.1.17. A topological space is said to be totally disconnected if its connected
components are its singleton subsets.

EXAMPLE 3.1.18. Let A = {0,1} with the discrete topology, and consider X = ∏
∞
n=1 A with

the product topology. Given any two distinct points x = (xn)n≥1 and y = (yn)n≥1 in X , there exists
n≥ 1 such that xn 6= yn. Letting πn denote the nth projection map, we have that U = π−1

n (xn) and
V = π−1

n (yn) are disjoint basic open sets in X with union X , so X = U qV , and x and y lie in
distinct connected components. Thus, X is totally disconnected.

DEFINITION 3.1.19. A path γ from a point x to a point y in a topological space X is a con-
tinuous function γ : [0,1]→ X such that γ(0) = x and γ(1) = y. The points x and y are called the
endpoints of γ: in particular, x is its initial endpoint and y is its final endpoint.

DEFINITION 3.1.20. Let X be a topological space.

a. We say that two points x and y in a topological space X can be connected by a path if there
exists a path γ from x to y.

b. We say that a topological space X is path connected if every two points x and y can be
connected by a path.

c. The path component of a point x ∈ X is the set of all points y ∈ X such that x and y are
connected by a path.

REMARK 3.1.21. The relation of there exists a path from a point x to a point y on a topological
space X is an equivalence relation on a topological space X . Thus, X is a disjoint union of its path
components.

PROPOSITION 3.1.22. Every path connected space is connected.

PROOF. Let X be a path connected space. Suppose that X is a disjoint union of nonempty open
subspaces U and V , and let x ∈ X and y ∈ Y . Let γ be a path from x to y, and let A = γ([0,1]).
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Then A is the disjoint union of the nonempty sets A∩U and A∩V , so A is disconnected, but it is
the image of a connected space under a continuous function. �

EXAMPLE 3.1.23. Consider the subset A = {(x,sin(1
x )) | 0 < x ≤ 1} of R2. We have A =

A∪{(0,y) | −1 ≤ y ≤ 1}. Note that A is connected as a subspace of R2 since A is. On the other
hand, A is not path connected. Actually, this is easily reduced to proving that the topologist’s sine
curve B = A∪{(0,0)} ⊂ A is connected, but not path connected. Let us explain this.

Suppose that γ is a path from (0,0) to (1,sin(1)) on B. We may assume without loss of
generality that γ(t) 6= (0,0) for t > 0. By definition, limt→0+ γ(t) = (0,0). On the other hand, for
every ε > 0, there exists an x < ε such that sin(1

x ) = 1. By the continuity of γ , for every δ > 0,
there then exists t < δ such that the second coordinate of γ(t) equals 1. But this contradicts that
limt→0+ γ(t) = (0,0).

3.2. Compactness

DEFINITION 3.2.1. Let U be a cover of a subset A of a topological space X . A subcover of
U is a a subset of U that covers A.

DEFINITION 3.2.2. A topological space X is compact if every open cover of X has a finite
subcover.

EXAMPLES 3.2.3.

a. Any finite topological space is compact.

b. Any topological space with the trivial topology is compact.

c. The real line R is not compact, since the collection of open intervals of length 1 is an open
cover with no finite subcover.

d. The interval (0,1] is not compact, since the connection of intervals (ε,1] with ε > 0 has no
finite subcover.

PROPOSITION 3.2.4. Any closed interval in R is compact.

PROOF. As all closed intervals of finite length are homeomorphic, we can and will consider
the interval [0,1]. Let U be an open cover of [0,1], and let A be the subset of [0,1] consisting of
those x such that [0,x] has a finite subcover by elements in U . Let b be the supremum of of the
elements of A. If b < 1, then let U be an element U containing b. Since U contains an interval
(b− ε,b+ ε) for some ε > 0 with b+ ε ≤ 1, we can find a finite subcover V of [0,b− ε

2 ] inside
U . Ten V ∪{U} is a finite subcover of [0,b+ ε

2 ] in U . This means that b+ ε

2 ∈ A, contradicting
the fact that b is the supremum of all elements of A. Thus b = 1, and therefore U has a finite
subcover. �

Let’s establish a few basic statements regarding compact spaces.
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LEMMA 3.2.5. A subspace A of a topological space X is compact if and only if every open
cover of A in X has a finite subcover.

PROOF. Given an open cover V of A by open sets in A, we can find a set U of open sets in
X covering A such that V = {A∩U | U ∈ U }. Conversely, given a collection U of open sets
in X covering A, we may define a cover V of A by open sets in A by taking intersections with
A as in the latter formula. Any (finite) subset C of U covers A if and only if the (finite) subset
{A∩U | A ∈ C } of V covers A. �

PROPOSITION 3.2.6. Every closed subset of a compact space is compact.

PROOF. Let X be compact, and let A⊆ X be closed. Let U be an open cover of A in X . Then
U ∪{Ac} is an open cover of X , so it has a finite subcover V . If Ac ∈ V , then V −{Ac} is an
open cover of A in X , and otherwise, V is an open cover of A in X . �

LEMMA 3.2.7. Let A be a compact subset of a Hausdorff space, and let x ∈ Ac. Then there
exist disjoint open sets U and V with A⊆U and x ∈V .

PROOF. For each a ∈ A, choose open disjoint neighborhoods Ua of a and Va of x in X . The
collection {Ua | a∈ A} is an open cover of A, and it has a finite subcover, say by Ua1, . . . ,Uan . Then
U =

⋃n
i=1Uai and V =

⋂n
i=1Vai are the desired open subsets of X . �

PROPOSITION 3.2.8. Every compact subset of a Hausdorff space is closed.

PROOF. Let X be Hausdorff, and let A ⊆ X be compact. By Lemma 3.2.7, for each x ∈ Ac,
there exists an open neighborhood Vx of x in Ac. The union of the Vx is Ac, so Ac is open, and thus
A is closed. �

PROPOSITION 3.2.9. Let f : X→Y be a continuous map. If X is compact, then so is the image
of f .

PROOF. Let V be an open cover of f (X) in Y . Then U = { f−1(V ) |V ∈ V } is an open cover
of X . Since X is compact, it has a finite subcover { f−1(V1), . . . , f−1(Vn)} with each Vi ∈ V , and
then {V1, . . . ,Vn} is an open cover of f (X). �

We have seen that continuous bijections need not be homeomorphisms. However, continuous
bijections from compact spaces are.

THEOREM 3.2.10. Let f : X → Y be a continuous surjection. If X is compact and Y is Haus-
dorff, then f is closed and a quotient map.

PROOF. To see that f is a quotient map, we may show that B⊆Y is closed if f−1(B) is closed.
Since f is continuous and surjective, we may write B = f ( f−1(B)), so it suffices to show that f is
a closed map.

Let A be a closed set in X , which is necessarily compact. As f is continuous, its image f (A) is
compact as well. As Y is Hausdorff, we then have that f (A) is closed. �
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COROLLARY 3.2.11. Every continuous bijection from a compact space to a Hausdorff space
is a homeomorphism.

We next prove that a finite product of compact spaces is compact. First, we require the follow-
ing lemma.

LEMMA 3.2.12. Let X and Y be topological spaces, and suppose that X is compact. For any
y ∈ Y and open set W in X×Y containing X×{y}, there exists an open neighborhood V of y in Y
such that X×V ⊆W.

PROOF. For each x ∈ X , let Ux be an open neighborhood of x in X and Vx be an open neighbor-
hood of y in Y such that Ux×Vx ⊆W , which exist since (x,y) ∈W and W is open. The collection
{Ux | x∈X} covers X so has a finite subcover, say consisting of Ux1 , . . . ,Uxn . If we set V =

⋂n
i=1Vxi ,

then V is an open neighborhood of y in Y , and since each Uxi ×V is contained in W , so is their
union X×V . �

THEOREM 3.2.13. Let X1, . . . ,Xn be compact spaces for some n≥ 1. Then ∏
n
i=1 Xi is compact.

PROOF. It suffices by recursion to consider the case n = 2, so the product of compact spaces
X and Y . Let W be an open covering of X ×Y . For any y ∈ Y , the set X ×{y} is compact, being
homeomorphic to X via the projection map, and so there exist Z1, . . . ,Zm ∈W that together cover
X×{y}. Set Wy =

⋃m
i=1 Zi. We then have by Lemma 3.2.12 that there exists an open neighborhood

of Vy of y such that X ×Vy ⊆Wy. The collection {Vy | y ∈ Y} then covers Y , and it has a finite
subcover as Y is compact. But then X ×Y is covered by the finitely many Wy, and each of these is
in turn a union of finitely many sets in W . Thus, W has a finite subcover. �

PROPOSITION 3.2.14. A subspace of Rn is compact if and only if it is closed and bounded.

PROOF. Fix a subset A of Rn. We may consider the cover of A by all open balls in Rn of radius
1. If A is unbounded, then it cannot have a finite subcover, since the union of any finite number of
balls of radius 1 is bounded. Therefore, only bounded subsets can be compact.

Now suppose that A is bounded. It is then contained in a direct product of closed intervals,
which is compact as a finite product of compact sets. If A is also closed, then it is compact by
Proposition 3.2.6. On the other hand, if A is not closed, then it cannot be compact by Proposi-
tion 3.2.8. �

We give another criterion for a topological space to be compact.

DEFINITION 3.2.15. A collection A of subsets of X is said to have the finite intersection
property, or FIP, if for every n≥ 1 and A1, . . . ,An ∈A , we have that

⋂n
i=1 Ai is nonempty.

THEOREM 3.2.16. A topological space X is compact if and only if every collection A of closed
subsets of X having the finite intersection property satisfies

⋂
A∈A A is nonempty.
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PROOF. Let A be a collection of closed subsets of X with the finite intersection property.
Then U = {Ac | A ∈A } is a collection of open subsets of X with the property that no finite subset
of U covers X . If X is compact, this forces U not to cover X , which is exactly to say that the
intersection of elements of A is nonempty.

Conversely, if X is not compact, there exists an open cover U of X which has no finite sub-
cover, which is to say that the collection A = {Uc |U ∈U } of closed sets has the finite intersection
property but has empty intersection. �

Let us give an example of the use of this theorem.

THEOREM 3.2.17. Let X be a nonempty compact Hausdorff space with no singleton open sets.
Then X is uncountable.

PROOF. If X is finite Hausdorff, then it is discrete, so has singleton open sets. So, suppose
by way of contradiction that X is countably infinite. Label its points xi for i ≥ 1. Let X = U0,
which is an open neighborhood of x1. By Lemma 1.5.13, we may recursively let Ui be an open
neighborhood of xi+1 contained in Ui−1 with xi /∈Ui for each i≥ 1.

The intersection of any finite subcollection of {Ui | i≥ 1} is some Un for n≥ 1 since these Ui

are nested. Since xn+1 ∈Un, this collection satisfies the FIP. In particular, the collection {Ui | i≥ 1}
of closed sets does as well. Now, X being compact, we then have that

⋂
∞
i=1Ui is nonempty. At the

same time, since xi /∈Ui, this intersection does not contain any of the points of X = {xi | i ≥ 1},
providing the desired contradiction. �

We can use this to give a proof of the uncountability of the real numbers.

COROLLARY 3.2.18. The set of real numbers is uncountable.

PROOF. By Theorem 3.2.17, the interval [0,1] is uncountable, and therefore so is R. �

3.3. Sequential and limit point compactness

We next introduce related notions to compactness.

DEFINITION 3.3.1. A space X is said to be limit point compact if every infinite subset of X has
a limit point.

PROPOSITION 3.3.2. Compact spaces are limit point compact.

PROOF. Let X be a compact space, and let A be a subset without a limit point. Then A is
necessarily closed. Moreover, for each a∈ A, there exists an open set Ua containing a and no other
point of A. Then X has an open cover by {Ua | a ∈ A}∪ {Ac}. Since X has a finite subcover,
A is contained in a finite union of sets Ua1, . . . ,Uan , which implies that A = {a1, . . . ,an}, so A is
finite. �

DEFINITION 3.3.3. A space X is said to be sequentially compact if every sequence in X has a
convergent subsequence.
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The following is fairly immediate from the definitions.

PROPOSITION 3.3.4. Sequentially compact spaces are limit point compact.

PROOF. Let A be an infinite set in X , and let (an)n≥1 be a sequence of distinct elements in A.
It has a convergent subsequence, say with limit a. Then every neighborhood of a contains some
point of the subsequence not equal to a. Thus, a is a limit point of A. �

To be limit point compact is a weaker notion than being either compact or sequentially com-
pact.

EXAMPLE 3.3.5. Let Y = {a,b} the the two-point space with the trivial topology, and consider
X = Z×Y , where Z has the discrete topology. Then any open neighborhood of a point (n,a) in
X contains (n,b) and conversely, so every nonempty set in X has a limit point. In particular, X is
limit point compact. However, X is not compact, and it is covered by the disjoint open sets {n}×Y
with n ∈ Z. It is also not sequentially compact, as the sequence of points (n,a) has no convergent
subsequence.

In general, neither compactness nor sequential compactness implies the other. However, for
metric spaces, all three of these notions of compactness are equivalent, as we shall show.

DEFINITION 3.3.6. Let A be a bounded subset of a metric space X . The diameter of A is the
supremum of the distances between points in A.

DEFINITION 3.3.7. Let U be an open cover of a space X . Its Lebesgue number is the supre-
mum of all ε > 0 such that every subset A of X of diameter less than ε is contained in an element
of U , if such an ε exists, and otherwise, we say U has infinite Lebesgue number.

LEMMA 3.3.8. Let X be a sequentially compact metric space. Then every open cover of X has
finite Lebesgue number.

PROOF. Suppose that some open cover U of X has infinite Lebesgue number. For each n≥ 1,
there exists a subset An of X of diameter less than 1

n not contained in any element of U . For each
such An, choose xn ∈ An. The sequence (xn)n≥1 has a convergent subsequence (xnk)k≥1, say with
limit x. Let U ∈U be an open neighborhood of x, and let B(x,δ ) be an open ball inside of it. Let
k be sufficiently large such that 1

nk
< δ

2 and d(x,xnk)<
δ

2 . By the triangle inequality, we then have
Ank ⊆ B(x,δ )⊆U , providing the desired contradiction. �

DEFINITION 3.3.9. We say that a metric space X is totally bounded if for every ε > 0, there
exists a finite cover of X by open balls of radius ε .

LEMMA 3.3.10. Every sequentially compact metric space is totally bounded.

PROOF. Let X be a metric space, and suppose that ε > 0 is such that X cannot be covered by
finitely many balls of radius ε . Choose x1 ∈ X and then recursively choose xn in the complement of
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i=1 B(xi,ε). The sequence (xn)n≥1 satisfies d(xm,xn)≥ ε for all m > n, and consequently it can-

not have a convergent subsequence (since every convergent subsequence is necessarily Cauchy).
Thus, X not sequentially compact. �

THEOREM 3.3.11. Let X be a metrizable space. Then the following are equivalent:

i. X is compact,

ii. X is limit point compact,

iii. X is sequentially compact.

PROOF. Let X be a limit point compact space. Let (xn)n≥1 be a sequence in X . If the set
A = {xn | n≥ 1} of values of the sequence is finite, then (xn)n≥1 has a constant, hence convergent,
subsequence. Otherwise, A is infinite, so has a limit point x ∈ X . Inductively, we have that every
ball among the B(x, 1

k ) for k≥ 1 contains some xnk with nk ≥ nk−1 if k≥ 2. The sequence (xnk)k≥1

then converges to x. Thus, X is sequentially compact.
Now suppose that X is sequentially compact, and let U be an open cover of X . Let ε > 0 be

such that every subset of diameter less than ε is contained in an element of U . Choose a finite
open cover of X by open balls of radius ε

3 , and note that they have diameter at most 2ε

3 , hence
are each contained in some element of U . Then U has a finite subcover by these elements, and
therefore X is compact. �

3.4. Tychonoff’s theorem

We briefly recall a few notions from set theory. In particular, recall that a relation on a set X
is a subset of X ×X , and if R is such a relation, we often write aRb to denote (a,b) ∈ R. We have
already used the notion of an equivalence relation earlier in the notes without comment. Another
useful sort of relation is known as a partial ordering.

DEFINITION 3.4.1. A partial ordering on a set X is a relation ≤ on X that satisfies the follow-
ing properties.

i. (reflexivity) For all x ∈ X , we have x≤ x.

ii. (antisymmetry) If x,y ∈ X satisfy x≤ y and y≤ x, then x = y.

iii. (transitivity) If x,y,z ∈ X satisfy x≤ y and y≤ z, then x≤ z.

A set X together with a partial ordering ≤ is referred to as a partially ordered set.

DEFINITION 3.4.2. A total ordering on a set X is a partial ordering≤ such that for all x,y∈ X ,
one has either x≤ y or y≤ x. In this case, X together with ≤ is called a totally ordered set.

EXAMPLES 3.4.3.

a. The relation ≤ on R is a total ordering, as is ≥.

b. The relation < on R is not a partial ordering, as it is not reflexive.
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c. The relation ⊆ on the set of subsets PX of any set X , which is known as the power set of
X , is a partial ordering. It is not a total ordering if X contains more than one element.

d. The relation = is a partial ordering on any set.

Given a partial ordering ≤ on a set X , we can speak of minimal and maximal elements of X .

DEFINITION 3.4.4. Let X be a set with a partial ordering ≤.

a. A minimal element in X (under ≤) is an element x ∈ X such that if z ∈ X and z ≤ x, then
z = x.

b. A maximal element y ∈ X is an element such that if z ∈ X and y≤ z, then z = y.

Minimal and maximal elements need not exist, and when they exist, they need not be unique.
Here are some examples.

EXAMPLES 3.4.5.

a. The set R has no minimal or maximal elements under ≤.

b. The interval [0,1) in R has the minimal element 0 but no maximal element under ≤.

c. The power set PX of X has the minimal element ∅ and maximal element X under ⊆.

d. Under = on X , every element is both minimal and maximal.

e. Consider the set S ⊂PX of nonempty subsets of a set X , with the partial ordering ⊆. The
minimal elements of S are exactly the singleton sets in X .

One can ask for a condition under which maximal (or minimal) elements exist. To phrase such
a condition, we need two more notions.

DEFINITION 3.4.6. Let X be a set with a partial ordering ≤. A chain in X is a subset of X that
is totally ordered under ≤.

DEFINITION 3.4.7. Let X be a set with a partial ordering ≤. Let A be a subset of X . An upper
bound on A under ≤ is an element x ∈ X such that a≤ x for all a ∈ A.

EXAMPLES 3.4.8.

a. The subset [0,1) of R has an upper bound 1 ∈ R under ≤. In fact, any element x ≥ 1 is an
upper bound for [0,1). The subset [0,1] has the same upper bounds.

b. The subset Q of R has no upper bound under ≤.

We now come to Zorn’s lemma, which is equivalent to the axiom of choice. We omit the proof
of this fact.

THEOREM 3.4.9 (Zorn’s lemma). Let X be a nonempty set with a partial ordering ≤, and
suppose that every chain in X has an upper bound. Then X contains a maximal element.
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We use Zorn’s lemma to prove the following.

THEOREM 3.4.10 (Alexander subbase theorem). A space X is compact if and only if there
exists a subbase S for its topology such that every open cover of X by elements of S has a finite
subcover.

PROOF. Suppose that X is not compact, and let S be a subbase of X . We need to show that
S contains an open cover U that does not have a finite subcover.

Let Q be the set of all open covers of X that have no finite subcover, and note that Q 6= ∅ by
the noncompactness of X . Let C be a chain in Q, and let W =

⋃
V ∈C V be the union of all covers

in C . Any finite collection of elements of W , being each contained in some element of C , are all
contained in the largest such element V under inclusion. Being that V has no finite subcover, such
a finite collection cannot cover X , so W has no finite subcover, which is to say that W ∈ Q. Thus,
every chain in Q has an upper bound, and so by Zorn’s lemma, Q has a maximal element M .

Now consider the subset U = S ∩M of S . Being a subset of M , no finite subset of U

covers M . We claim that U covers X , which will finish the proof. Let x ∈ X , let U ∈M with
x ∈ U . Let V1, . . . ,Vn ∈ S be such that x ∈ V1 ∩ ·· · ∩Vn ⊆ U , which exist as S is a subbase.
If Vi /∈M for all 1 ≤ i ≤ n, we can find by the maximality of M finite subsets Ni of M such
that the collections Ni∩{Vi} cover X . Then N =

⋃n
i=1 Ni and V1∩ . . .∩Vn together cover X , so

N ∪{U} ⊂M covers X as well, contradicting the fact that M has no finite subcover. Thus, there
exists i such that Vi ∈U , and Vi contains x by definition. Thus U is a cover of X . �

THEOREM 3.4.11 (Tychonoff’s theorem). Any product of compact spaces is compact under
the product topology.

PROOF. Let {Xi | i ∈ I} be a collection of compact spaces, and let X = ∏i∈I Xi. For each i ∈ I,
let Ti be the topology on Xi, and let

S =
⋃
i∈I

{π−1
i (Ui) |Ui ∈Ti},

where πi : X → Xi is the ith projection map. Then S is a subbase for the topology on X . We
claim that every open cover of X by elements in S has a finite subcover, which by the Alexander
subbase theorem will finish the proof.

Let U ⊆S be an open cover of X . Then

U =
⋃
i∈I

{π−1
i (Ui) |Ui ∈Ui}

for some collections Ui of open sets in Xi for each i ∈ I. If no Ui covers Xi, then for each i ∈ I,
we may by the axiom of choice find xi ∈ Xi such that xi /∈

⋃
Ui∈Ui

Ui. Set x = (xi)i∈I . Then x /∈U
for any U ∈ U , for any such U has the form U = π

−1
i (Ui) for some Ui ∈ Ui for some i ∈ I, and

xi = πi(x) /∈Ui. Thus there exists i ∈ I such that Ui covers Xi. It has a finite subcover V , and the
finite set {π−1

i (V ) |V ∈ V } then covers X . �
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3.5. Local connectedness and compactness

Local properties of a space are those which happen within a small enough neighborhood of a
point. Here are the definitions of local connectedness and local compactness.

DEFINITION 3.5.1. A topological space X is called locally connected at x ∈ X if every neigh-
borhood of x contains a connected open neighborhood of x. A topological space is called locally
connected if it is locally connected at each of its points.

PROPOSITION 3.5.2. A topological space X is locally connected if and only if every connected
component of every open set in X is open in X.

PROOF. Suppose X is locally connected. Let U be open in X , and let A be a connected com-
ponent of U . If x ∈ A, then there is a connected open neighborhood V of x that is contained in U ,
and V is contained in A by its connectedness. Since x was arbitrary, A is open.

Conversely, suppose that all connected components of open sets in X are open in X . Let x ∈ X ,
and let V be an open neighborhood of x. Let A be the connected component of x in V . Note that A
is open by assumption, so it is a neighborhood of x. Thus, X is locally connected. �

EXAMPLE 3.5.3. Let X = ∏
∞
n=1{0,1} with the product topology, as in Example 3.1.18. Its

basic open sets have the form ∏
N
n=1Ui×∏

∞
m=N+1{0,1}, which are in particular infinite. As its

connected components of X are singletons, X is not locally connected.

We mention in passing that we have a similar notion of local path connectedness.

DEFINITION 3.5.4. A topological space X is called locally path connected at x ∈ X if every
neighborhood of x contains a path connected open neighborhood of x. A topological space is called
locally path connected if it is locally path connected at each of its points.

Of course, locally path connected spaces are locally connected, but the converse does not hold
in general.

DEFINITION 3.5.5. A topological space X is said to be locally compact at x ∈ X if x has a
compact neighborhood. A topological space is locally compact if it is locally compact at all of its
points.

Compact spaces are of course locally compact, as are many other spaces.

EXAMPLE 3.5.6. The space Rn is locally compact, since every closed ball of positive radius
about a point is compact. However, ∏

∞
n=1R is not locally compact, since its basic open sets all

have closure that is a product of finitely many closed intervals with infinitely many copies of R,
and these are not compact as R is not.

DEFINITION 3.5.7. A compactification of a topological space X is a pair (Y, ι) consisting of a
compact topological space Y and an embedding ι of X in Y .
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REMARK 3.5.8. We may view X as a subspace of a compactification Y via identifying it with its
homeomorphic image. Two compactifications Y and Z of a space X are then said to be equivalent
if there exists a homeomorphism f : Y → Z that restricts to the identity map on X . This gives an
equivalence relation on the compactifications of X .

Topological spaces can be compactified by adding in a single point.

THEOREM 3.5.9. Let X be a topological space. The set Y containing X and one additional
element called ∞ has a topology consisting of the open sets in X and the complements Y −A of
closed, compact subsets A of X. Moreover, Y is a compact space under this topology, and any
other compactification Z of X with Z−X a singleton set is equivalent to Y .

PROOF. Note that arbitrary intersections of closed, compact subsets A of X are closed, and
then compact, and the union of an open subset U of X and the complement Y −A of a closed,
compact subset A of X is the complement in Y of a smaller closed, and then compact, subset of
X . It follows that the collection T of open sets defined in the theorem is closed under arbitrary
unions. Similarly, finite unions of closed, compact subsets of X are closed and compact, and the
intersection of U and Y −A as above is an open subset of X . Hence, T is closed under arbitrary
intersections, so T is a topology.

Given an open cover V of Y , we may choose an element in it of the form Y −A with A closed,
compact in X , as such a set is needed to cover ∞. Then V −{Y −A} is an open cover of A, which
has a finite subcover as A is compact, so V has a finite subcover as well. Thus, Y is compact.

Finally, for any other space Y ′ as in the theorem, with ∞′ its additional point, is in canonical
bijection with Y via the map f : Y → Y ′ such that f (x) = x for x ∈ X and f (∞) = ∞′. If V is open
in Y and ∞′ /∈ Y ′, then f (V ) = V is open in X , hence in Y ′. If V is an open neighborhood of ∞ in
Y , then its complement A is closed, hence compact in Y , and of course also contained in X . Then
f (V ) = Y ′− f (A) is the complement of a compact, closed subset of X , so is open in Y ′ as well.
Thus, f is continuous, and then f−1 is continuous too, as we did not distinguish Y and Y ′. �

DEFINITION 3.5.10. For a space X , the compact space of Theorem 3.5.9 is called the one-point
compactification of X .

PROPOSITION 3.5.11. A topological space X is locally compact and Hausdorff if and only if
its one-point compactification is Hausdorff.

PROOF. Let Y be the one-point compactification of X . Suppose that X is locally compact and
Hausdorff. To show that Y is Hausdorff, it suffices to consider some x ∈ X and ∞. Since X is
locally compact, we can find a compact neighborhood A of x, which then contains some open
neighborhood U . Then U is disjoint from the open neighborhood Y −A of ∞.

If X is not Hausdorff, then there exist points u,v ∈ X not contained in disjoint open sets in
X . No two complements of compact sets in X are disjoint, since they contain the added point ∞.
Moreover, if u /∈ A and v ∈ V for a compact subset A of X and an open set V in X , then the open
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complement X −A contains u and is not disjoint from V , so Y −A is not disjoint from v either.
Thus, u and v are not contained in disjoint open subsets of Y , and Y is not Hausdorff.

If X is not locally compact, then it is not locally compact at ∞. Given an open neighborhood
Y −A of ∞, where A is closed in X and compact, and an open neighborhood U of x in X , we cannot
have U ⊆ A, since if this were the case, then U ⊆ A would be a compact neighborhood of x. Thus,
Y is again not Hausdorff. �

REMARK 3.5.12. The one-point compactification of a locally compact Hausdorff space X has
the property of being a quotient space of each Hausdorff compactification of X via the unique
surjection that is the identity on X .

EXAMPLE 3.5.13. The one-point compactification of Rn is homeomorphic to Sn. To see this,
view Sn as the unit sphere centered at ∞ = (0, . . . ,0,1) ∈Rn+1. This is realized via the embedding
Rn→ Sn sending x = (x1, . . . ,xn) to the unique point in Sn−{∞} on the line between (x1, . . . ,xn,0)
and ∞.

Our definition of local compactness differs from our definition of local connectedness, as we
only ask for a compact neighborhood, not one contained in an arbitrarily small neighborhood. For
Hausdorff spaces, these notions are the same.

PROPOSITION 3.5.14. A Hausdorff space X is locally compact if and only if every open neigh-
borhood U of a point x ∈ X contains a compact neighborhood A with A⊆U.

PROOF. As the other direction is immediate, we may suppose that X is locally compact. Let
U be open in X , and let x ∈U . Let Y be the one-point compactification of X , which is compact
Hausdorff since X is locally compact Hausdorff. Let A =Y −U , which is closed in Y , hence com-
pact. By Lemma 3.2.7, we may find an open neighborhood V of x and an open set W containing A
that are disjoint. The closure of V in Y is compact and disjoint from A, so is contained in U . �

COROLLARY 3.5.15. Any open or closed subspace of a locally compact Hausdorff space is
locally compact.

PROOF. Let X be locally compact Hausdorff. If A is closed in X and a ∈ A, then there is a
compact neighborhood C of a in X , and C∩A is then a compact neighborhood of a in A. If U is
open in X and x ∈U , then by Proposition 3.5.14, we can find a compact neighborhood B of x in
U . �

COROLLARY 3.5.16. A Hausdorff space X is locally compact if and only if it is homeomorphic
to an open subspace of a compact Hausdorff space.

PROOF. If X is locally compact but not compact, take its one-point compactification, in which
X is open. If X is open in a compact Hausdorff space, then it is locally compact by Corollary 3.5.15.

�
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DEFINITION 3.5.17. A map f : X → Y of topological spaces is said to be a local homeomor-
phism if it is continuous, open, and for each x ∈ X , there exists an open neighborhood U of x such
that the restriction of f to U is a homeomorphism onto its image.

EXAMPLE 3.5.18. The inclusion map of an open set in a topological space is a local homeo-
morphism.

EXAMPLE 3.5.19. The map f : R→ S1 given by f (x) = (cosx,sinx) is a local homeomor-
phism, as is its restriction to any open interval. Note that there is, however, no local homeomor-
phism g : S1→ R.





CHAPTER 4

Countability and separation axioms

4.1. Countability axioms

DEFINITION 4.1.1. A topological space X is said to be first-countable if every point of X has
a countable basis of open neighborhoods.

EXAMPLE 4.1.2. If X is a metrizable space, then X is first-countable. For instance, if d is a
metric on X , then x ∈ X has the countable basis {B(x, 1

n) | n≥ 1} of open neighborhoods.

PROPOSITION 4.1.3. Let A be a subset of a first-countable topological space X. Then A is the
set of limits of convergent sequences in A.

PROOF. If there exists a sequence (an)n≥1 in A with limit x ∈ X , then every neighborhood of x
contains all an for n sufficiently large, so x ∈ A by definition. Conversely, if x ∈ A and {Un | n≥ 1}
is a basis of open neighborhoods of x, then we may pick an ∈ A∩Un for each n ≥ 1, and the
sequence (an)n≥1 has limit x. �

PROPOSITION 4.1.4. Let X be a first-countable space. Let x ∈ X. If f : X → Y is a func-
tion such that for every convergent sequence (xn)n≥1 in X with limit x, the sequence ( f (xn))n≥1

converges to f (x), then f is continuous at x.

PROOF. Let V be an open set in Y , let x ∈ f−1(V ), and let {Un | n ≥ 1} be a countable basis
of open neighborhoods of x. If f−1(V ) does not contain an open neighborhood of x, then it cannot
contain any Un. Assume this, and for each n ≥ 1, choose xn ∈Un such that xn /∈ f−1(V ). Then
the sequence (xn)n≥1 converges to x, and by assumption, ( f (xn))n≥1 converges to f (x). Therefore,
there exists N ≥ 1 such that f (xn) ∈V for all n≥ N, so xn ∈ f−1(V ) for such n, contradicting our
assumption. �

DEFINITION 4.1.5. A topological space X is second-countable if X has a countable base for
its topology.

EXAMPLE 4.1.6. The space Rn is second-countable, since it has the base {B(x, 1
k ) | x∈Q

n, k≥
1}.

EXAMPLE 4.1.7. The space X = ∏
∞
i=1R is second-countable in the product topology but not

in the uniform topology. In the product topology, we can take the countable base consisting of
products

N

∏
i=1

(ai,bi)×
∞

∏
i=N+1

R

53
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with ai,bi ∈Q and ai < bi for 1≤ i≤ N for some N ≥ 0.
In the uniform topology, we have the uncountable discrete subspace

A = {(an)n≥1 | an ∈ {0,1}}.

every two points being distance 1 apart in the uniform metric. For any base of X , the open balls
of radius 1

2 about the points of A would each contain an element of the base, which is therefore
uncountable. In particular, metrizable spaces are not necessarily second-countable.

DEFINITION 4.1.8. A topological space X is Lindelöf if every open cover of X has a countable
subcover.

PROPOSITION 4.1.9. Second-countable spaces are Lindelöf.

PROOF. Let U be an open cover of X , and let B = {Bn | n≥ 1} be a countable base of X . Let
S be the set of positive integers n such that Bn is contained in an element of U . For each n ∈ S, let
Un ∈U with Bn ⊆Un. We claim that {Un | n ∈ S} covers X .

If x ∈ X , then x ∈U for some U ∈ U . Since Bn is a base for the topology on X , there exists
n≥ 1 such that x ∈ Bn ⊆U . By definition of S, we then have n ∈ S, and so x ∈Un. Thus, we have
proven the claim. �

Recall that a subset A of a topological space is X is dense if A = X .

DEFINITION 4.1.10. A topological space X is separable if it has a countable dense subset.

PROPOSITION 4.1.11. Second-countable spaces are separable.

PROOF. Let B = {Un | n≥ 1} be a countable base of X . For each n≥ 1, choose xn ∈Un, and
set A = {xn | n ≥ 1}. Then for any x ∈ X and open neighborhood V of x, there exists n ≥ 1 such
that x ∈Un ⊆V , so in particular xn ∈V . Thus, x ∈ A, so A is dense in X . �

For metric spaces, the converses to Propositions 4.1.9 and 4.1.11 hold.

THEOREM 4.1.12. For a metric space X, the following are equivalent:

i. X is second-countable,

ii. X is Lindelöf, and

iii. X is separable.

PROOF. By Propositions 4.1.9 and 4.1.11, it suffices to show that Lindeöf spaces are second-
countable and separable spaces are second-countable. Let X be a metric space.

Suppose first that X is Lindelöf. For positive integers n≥ 1, let Bn be a countable subcover of
the open cover of X by balls of radius 1

n . Let B =
⋃

∞
n=1 Bn, which is also countable. We claim

that B is a base for the metric topology on X . Let x ∈ X and ε > 0, and consider the open ball
B(x,ε). Choose n with 2

n < ε , and let y ∈ X be such that x ∈ B(y, 1
n) ∈Bn. Then B(y, 1

n)⊆ B(x,ε)
by the triangle inequality, hence the claim.
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Next, suppose that X is separable, and let S ⊆ X be a countable dense subset. We claim that
the countable collection

B = {B(y, 1
n) | y ∈ S,n≥ 1}

of open balls is a base for the metric topology on X . Let x ∈ X and ε > 0. As S is dense, B(x, ε

3)

contains a point y ∈ S, and if we take n≥ 1 such that ε

3 ≤
1
n ≤

2ε

3 , then x ∈ B(y, 1
n)⊆ B(x,ε) by the

triangle inequality, hence the claim. �

4.2. Separation axioms

In this section, we consider both weaker and stronger conditions in terms of the separation of
points in a topological space than our much-used Hausdorff condition. We begin by defining the
word “separated” in the sense of topology.

DEFINITION 4.2.1. We say that two subsets A and B of a topological space are separated if
A∩B =∅ and A∩B =∅.

DEFINITION 4.2.2. A separation of X is a set of two disjoint open subspaces of X with union
X .

REMARK 4.2.3. A space X has a separation if and only if it is disconnected, in which case it is
the topological disjoint union of the two spaces A and B in the separation. Moreover, these A and
B are clearly separated. Similarly, if X is the union of two separated subsets, then they are both
closed, hence open, and therefore constitute a separation of X .

Here then are several weaker conditions that being Hausdorff.

DEFINITION 4.2.4.

a. A space X is said to be T0 if every two distinct points of X have distinct sets of open
neighborhoods.

b. A space X is said to be T1 if points of X are closed.

c. A space X is said to be T2 if it is Hausdorff.

EXAMPLE 4.2.5. Spaces that are T0 but not T1 are ubiquitous in modern algebraic geometry.
For instance, what is known as the spectrum SpecZ of the ring of integers of Z is a space consisting
of one point (0) and another point (p) for each prime number p. It has a base consisting of (0) and
the complements of finite sets {(p1), . . . ,(pn)} with each pi prime. The closure of {(0)} is SpecZ.
Unfortunately, the explanation for why algebraic geometers consider this space lies beyond the
scope of this course.

DEFINITION 4.2.6. A space in which every two points with distinct sets of open neighborhoods
are separated is called symmetric.

LEMMA 4.2.7. A space is T1 if and only if it is symmetric and T0, i.e., every pair of distinct
points is separated.
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PROOF. Suppose X is T1. If x,y ∈ X are distinct, then X −{y} and X −{x} are distinct open
neighborhoods of x and y, respectively, so X is T0. Moreover, {x}= {x} for all x ∈ X , so for y 6= x,
the sets {x} and {y} are separated. That is, X is symmetric.

Conversely, if X is T0 and x ∈ X , then for any y ∈ X , there exists an open neighborhood U con-
taining x and not y. If X is also symmetric, then since x and y have distinct sets of neighborhoods,
{x} and {y} are separated. In particular, y /∈ {x}, which is to say that {x} is closed. �

DEFINITION 4.2.8.

a. A topological space X is regular if for every point x ∈ X and closed subset A of X with
x /∈ A, there exist disjoint open sets U and V with x ∈U and A⊆V .

b. A topological space X is normal if for every two closed, disjoint subsets A and B of X , there
exist disjoint open subsets U and V of X such that A⊆U and B⊆V .

Since in a topological space, points need not be closed (i.e., the space need not be T1), it is not
clear that either regular or normal should implies Hausdorff. In general, they do not, and normal
does not imply regular. So, we make the following definitions.

DEFINITION 4.2.9.

a. A space X is said to be T3 if it is regular and T0.

b. A space X is said to be T4 if it is normal and T1.

The following tells us that a T3-space is Hausdorff and a T4-space is regular.

LEMMA 4.2.10. If a space is Ti for some 1≤ i≤ 4, then it is Ti−1.

PROOF. By Lemma 4.2.7, a T1-space is T0, and by Lemma 1.5.9, a T2-space is T1.
Suppose X is T3. Take x,y ∈ X with x 6= y. By the T0-axiom, there is without loss of generality

an open neighborhood W of x than does not contain y. Then W c and x are disjoint, hence by the
regularity condition, are contained in disjoint open sets U and V , respectively. Then x ∈U and
y ∈V , so X is Hausdorff.

Similarly, suppose that X is T4. Let x ∈ X , and let A⊂ X be closed with x /∈ A. Since X is T1,
the set {x} is closed. Therefore, by normality there exist open disjoint sets U containing {x} and
V containing A, as desired. �

The reader can check the following, which is most interesting for and stops at T3-spaces.

LEMMA 4.2.11. For 0≤ i≤ 3, every subspace of a Ti-space is Ti.

EXAMPLE 4.2.12. The space X = R with the topology consisting of sets of the form U −C,
where U is open in R in the Euclidean topology and C is a countable subset of U , is Hausdorff
but not regular. It is Hausdorff since its topology is finer than the Euclidean topology on R. It
is not regular, as the set Q is closed in its topology, and the open sets containing Q in R are the
complements U in R of countable sets of irrational numbers. An open neighborhood V of an
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irrational number contains all but countably many points in an open interval around it, and so does
U , but such an interval is uncountable, so U ∩V cannot be empty.

LEMMA 4.2.13. A space X is regular (resp., normal) if and only if every open set of X con-
taining a point x (resp., closed set A) contains the closure of an open set containing x (resp., A).

PROOF. Let X be regular (resp., normal). Let A be a singleton (resp., closed) subset of X ,
and let W be an open subset containing A. Then B = W c is disjoint from A, so by regularity
(resp., normality) of X , there exist disjoint open sets U containing A and V containing B. Then
A⊆U ⊆V c ⊆W . Since V c is closed, W contains U , so U is the desired open set.

Conversely, suppose that for any singleton (resp., closed) subset A of X , every open set of X
containing A contains the closure of an open set containing A. Let B be a closed set disjoint from
A, and let U be an open subset of Bc containing A and such that U ⊆ Bc. Take V = Uc so that
B⊆V , and note that U and V are disjoint. Thus, X is regular (resp., normal). �

We have seen that a direct product of Hausdorff spaces is Hausdorff. The analogous statement
holds for regular Hausdorff spaces (i.e., T3-spaces).

PROPOSITION 4.2.14. A product of T3-spaces is T3 in the product topology.

PROOF. Let X = ∏i∈I Xi, where {Xi | i ∈ I} is a collection of T3-topological spaces. Then X
is Hausdorff, and in particular, its points are closed. Let x = (xi)i∈I ∈ X , and let U be an open
neighborhood of x. Then U contains a basic open neighborhood ∏i∈I Ui, where each Ui is open in
Xi and all but finitely many Ui equal Xi. For every i, we may choose an open neighborhood Vi of
xi with Vi ⊆Ui by Lemma 4.2.13. If Ui = Xi, we take Vi = Xi as well. Then ∏i∈I Vi contains x and
has closure ∏i∈I Vi ⊆∏i∈I Ui, as desired. �

The following example shows that even a finite direct product of T4-spaces need not be T4.

EXAMPLE 4.2.15. Consider X = R with the lower-limit topology generated by the base of
open sets [a,b) with a < b. Note that these sets are closed as well, since (−∞,a)∪ [b,∞) has
complement [a,b). Then X is normal Hausdorff. To see normality, take disjoint closed sets A and
B in X . For each a∈A, we pick xa > a with [a,xa) in the complement of B and let U be the union of
these half-open intervals. Similarly, for each b ∈ B, we pick yb > b with [b,yb) in the complement
of A and let V be the union of these intervals. Take a ∈ A and b ∈ B, and suppose without loss of
generality that a < b. Then xa < b since b /∈ [a,xa), so the intersection [a,xa)∩ [b,yb) is empty,
and therefore U and V are disjoint.

On the other hand, the product X2 = X×X is regular Hausdoff by Proposition 4.2.14, but it is
not normal. The subspace D = {(x,−x) | x ∈ R} of X ×X has the discrete topology and is closed
in X2, and if we take the subset A = {(x,−x) | x ∈Q}, then A and D−A are closed subsets of X2

that are not contained in disjoint open neighborhoods of X2. We omit the nontrivial proofs of these
facts.

THEOREM 4.2.16. Regular, second-countable spaces are normal.
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PROOF. Let X be regular and second-countable. Let B be a countable base for the topology on
X . Let A and B be disjoint closed subsets of X . By regularity, for each x ∈ X we can find an open
neighborhood U of x with U disjoint from B, and contained in U we can find some neighborhood
in B of x. Together, these basis elements give a countable covering U = {Un | n ≥ 1} of A with
Un ∩B = ∅ for each n ≥ 1. Similarly, we can find a countable covering V = {Vn | n ≥ 1} of B
with Vn∩A =∅. For each n≥ 1, consider the open sets

U ′n =Un∩
n⋂

i=1

Vi
c and V ′n =Vn∩

n⋂
i=1

Ui
c
.

If a∈ A, then a∈Un for some n≥ 1, and a /∈Vi for all i, so a∈U ′n. The open sets U =
⋃

n≥1U ′n and
V =

⋃
n≥1V ′n contain A and B, respectively, and they are disjoint, since if u ∈U ′n for some n ≥ 1,

then u /∈Vi for i≤ n by definition of U ′n and u /∈V ′i for i > n by definition of V ′n. �

THEOREM 4.2.17. Metrizable spaces are normal.

PROOF. Let A and B be disjoint, closed subsets of a metrizable space X , and let d be a metric
on X . For each a∈ A, there exists εa > 0 with B(a,εa)∩B =∅, and similarly, for each b∈ B, there
exists δb > 0 with B(b,δb)∩A =∅. Set

U =
⋃
a∈A

B
(

a,
εa

2

)
and V =

⋃
b∈B

B
(

b,
δb

2

)
.

Then U and V are open containing A and B, respectively. If x ∈U ∩V , then there exist a ∈ A and
b ∈ B such that d(a,x) < εa

2 and d(x,b) < δb
2 . By the triangle inequality, we then have d(a,b) <

εa
2 + δb

2 ≤max(εa,δb). If d(a,b)< εa, then b ∈ B(a,εa), a contradiction, and if d(a,b)< δb, then
a ∈ B(b,δb), contradiction. Thus U and V are disjoint. �

THEOREM 4.2.18. Compact Hausdorff spaces are normal.

PROOF. Let X be a compact Hausdorff space, and let A and B be disjoint closed subsets of X ,
which are necessarily compact. Lemma 3.2.7 implies that compact Hausdorff spaces are regular.
That is, for each b ∈ B, we may choose disjoint open sets Ub containing A and Vb containing b.
Then the sets Vb cover B, hence have a finite subcover, say by Vb1, . . . ,Vbn ∈ B. Then U =

⋂n
i=1Ubi

and V =
⋃n

i=1Vbi are disjoint open sets containing A and B, respectively. �

Using the one-point compactification, we may use Theorem 4.2.13 to give a quick proof of the
analogous result for locally compact Hausdorff spaces.

COROLLARY 4.2.19. Locally compact Hausdorff spaces are regular.

PROOF. Let X be locally compact and Hausdorff. Let Y be its one-point compactification,
which is compact Hausdorff and therefore normal. As Y is T4, it is also T3, and X is T3 as a
subspace of Y . �
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4.3. Urysohn’s lemma

THEOREM 4.3.1 (Urysohn’s lemma). A topological space X is normal if and only if for every
pair of disjoint nonempty closed sets A and B of X, there exists a continuous function f : X→ [0,1]
such that f (A) = {0} and f (B) = {1}.

PROOF. Let X be a normal space. Set U1 = Bc, and by normality of X , pick an open set
U0 containing A with U0 ⊆ U1. We will construct open sets Uq for q ∈ Q∩ (0,1) such that if
q,r ∈Q∩ [0,1] with q < r, then Uq ⊆Ur.

Fix any bijection φ : Z≥0→ Q∩ [0,1] with φ(0) = 0 and φ(1) = 1. For each n ≥ 2, let qn be
the largest value of φ(m) with m < n that is less than φ(n), and let rn be the smallest value of φ(m)

with m < n that is greater than φ(n). Suppose by induction that we have constructed Uφ(m) for all
m < n. By Lemma 4.2.13, we may choose an open set Uφ(n) containing Uqn and such that Uφ(n) is
contained in Urn . For negative r ∈Q, set Ur =∅, and for r ∈Q greater than 1, set Ur = X . In this
way, we have constructed open sets Uq for all rational numbers q such that Uq ⊆Ur if q < r are
rational numbers.

We now define f by setting

f (x) = inf{q ∈Q | x ∈Uq}

for x∈X . If x∈A, then x∈U0, so f (x)= 0. If x∈B, then x /∈U1 but x∈Ur for all rationals r > 1, so
f (x) = 1. If x∈Uq, then x∈Ur for all rationals r > q, so f (x)≤ q. Given a nonempty open interval
(a,b) in R and x in its inverse image, we then have q,r ∈ Q with a < q < f (x) < r < b. Since
f (x)< r, we have x ∈Ur, and since f (x)> q, we have x /∈Uq. That is, we have x ∈Ur−Uq, which
is an open neighborhood with image under f contained in [q,r]⊂ (a,b). Thus, f is continuous.

As for the converse, note that if A and B are disjoint closed sets in X and f : X→ [0,1] is a con-
tinuous function with f (A) = {0} and f (B) = {1}, then U = f−1([0,1/2)) and V = f−1((1/2,1])
are disjoint open sets containing A and B, respectively. �

DEFINITION 4.3.2. A space X is completely regular if for every closed set A in X and x ∈ Ac,
there exists a continuous function f : X → [0,1] with f (A) = {0} and f (x) = 1. A space X is said
to be Tychonoff, or T3 1

2
, if it is completely regular and T1.

REMARK 4.3.3. A normal Hausdorff space is Tychonoff, and a completely regular space is
regular.

We leave it to the reader to check that the following hold, the condition on subspaces between
the motivation for the word “completely”.

PROPOSITION 4.3.4. Subspaces and products of completely regular spaces are completely
regular.

Regularity, together with second-countability, implies complete regularity (since it implies
normality). In fact, we have the following.
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LEMMA 4.3.5. Let X be a regular, second-countable space. Then there exists a countable
collection { fn | n ≥ 1} of continuous functions fn : X → [0,1] such that for each pair (A,x) of a
closed subset A of X and x ∈ Ac, there exists n such that fn(A) = {0} and fn(x) = 1.

PROOF. Since X is second-countable and regular, it is normal. Let {Un | n≥ 1} be a countable
base of open sets in X . If Um ⊆Un, then by Urysohn’s lemma, there exists a continuous function
fm,n : X → [0,1] with fm,n(Um) = {1} and f (X−Un) = {0}.

The set Ac contains some neighborhood Un of x, which contains the closure of some neighbor-
hood Um of x by the regularity of X . Then fm,n(x) = 1 and fm,n(A) = {0}. Since the collection of
functions fm,n is countable, we have the lemma. �

THEOREM 4.3.6 (Urysohn metrization theorem). Second-countable regular Hausdorff spaces
are metrizable and are exactly the spaces that are homeomorphic to subspaces of the product space
[0,1]J , where J is countably infinite.

PROOF. We may take J = {n | n ≥ 1}. Recall that RJ is metrizable by Proposition 2.2.16, so
to show metrizability, it suffices to embed our second-countable regular space X in [0,1]J . If we
can do this for a given X , then [0,1]J is regular Hausdorff and second-countable, and then so is X .

Let ( fn)n≥1 be a sequence of functions fn : X → [0,1] as in Lemma 4.3.5 and use them to
define a function f = ( fn)n≥1 : X → [0,1]J , which is continuous as each fn is continuous. Since X
is Hausdorff, for any x,y ∈ X with x 6= y, the set {x}c is an open neighborhood of y, so we can for
each x 6= y in X find an n≥ 1 such that fn(x) = 0 and fn(y) = 1. Thus, f is injective.

It remains to show that f is an open map to its image. Let U be an open set in X , let a =

(an)n≥1 ∈ f (U), and let x ∈U with f (x) = a. Choose an m≥ 1 such that fm(x) = 1 and fm(y) = 0
for all y 6∈U . Let V be the open set π−1

m ((0,1])∩ f (X) in the image of f , where πm is the mth
projection map from πm : [0,1]J → [0,1]. Then πm(a) = fm(x) = 1, so a ∈V . For b ∈V , we have
b = f (y) for some y with πm(b) = fm(y) > 0, so y ∈U and therefore b ∈ f (U). That is, we have
a ∈ f (U)⊆V . Thus, f (U) is open. �

Another application of Urysohn’s lemma is found in the following theorem.

THEOREM 4.3.7 (Tietze extension theorem). Let A be a closed subspace of a normal topolog-
ical space X. Any continuous map of A into an interval in R can be extended to a continuous map
of X into the same interval in R.

PROOF. It is sufficient to prove this result for maps into [−1,1], [−1,1) and (−1,1), since all
intervals in R are homeomorphic to one of these. We next show how the result reduces to maps to
[−1,1]. Given any g : X → [−1,1], let B = g−1(1) and C = g−1(−1). By Urysohn’s lemma, there
exist continuous functions φ : X→ [0,1] and φ ′ : X→ [0,1] with φ(B)⊆{0}, φ(C) = φ ′(C)⊆{0},
and φ(A) = φ ′(A)⊆{1}. If g(A)⊆ [−1,1), then set g′= φg, and note that g′|A = g|A. Moreover, it
satisfies g′(x) = 0 if x ∈C and g′(x)< 1 if x /∈C, so g′(X)⊆ [−1,1). Similarly, if g(A)⊆ (−1,1),
then set g′ = φ ′g. Then g′|A = g|A, and g′(X)⊆ (−1,1).
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We next prove a weaker result. Suppose that F : A→ [−1,1] is continuous. Let

B = F−1([−1,−1
3 ]) and C = F−1([1

3 ,1]).

By Urysohn’s lemma, there exists a continuous function

G : X → [−1
3 ,

1
3 ]

with G(B) = {−1
3} and G(C) = {1

3}. Then

|G(a)−F(a)| ≤ 2
3

for all a ∈ A. That is, for a ∈ B∪C, we have |G(a)−F(a)| ≤ 1− 1
3 = 2

3 , and for x /∈ B∪C, we
have |G(a)−F(a)| ≤ 1

3 − (−1
3) =

2
3 .

Now let f : A→ [−1,1] be continuous. Suppose by induction that for some n ≥ 0 we have
found continuous functions

gi : X →

[
−1

3

(
2
3

)n−1

,
1
3

(
2
3

)n−1
]

for 1≤ i≤ n with ∣∣∣∣∣ f (a)− n

∑
i=1

gi(a)

∣∣∣∣∣≤
(

2
3

)n

for all a ∈ A. Then the argument of the previous paragraph applied to F = (3
2)

n( f −∑
n
i=1 gi) yields

the next function gn+1 = (2
3)

nG in the induction. Since ∑
∞
n=1

1
3(

2
3)

n−1 = 1, the infinite series

g =
∞

∑
i=1

gi : X → [−1,1]

is well-defined, and by definition, it restricts to f on A. Moreover, g is continuous as the partial
sums ∑

n
i=1 gi converge uniformly to g on X : that is, |∑∞

i=n+1 gn(x)| ≤ (2
3)

n for all x ∈ X . �

DEFINITION 4.3.8. The support of a continuous function f from a topological space X to R is
the closure

supp f = {x ∈ X | f (x) 6= 0}.

DEFINITION 4.3.9. Let U = {Ui | 1 ≤ i ≤ n} be an open cover of X for some n ≥ 1. A
finite collection {φi : X → [0,1] | 1 ≤ i ≤ n} of continuous functions is a partition of unity on X
subordinate to, or dominated by, U if suppφi ⊆Ui for each i and ∑

n
i=1 φi(x) = 1 for all x ∈ X .

LEMMA 4.3.10. Let U = {Ui | 1≤ i≤ n} be a finite open cover of a normal space X for some
n≥ 1. Then there exists an open cover V = {Vi | 1≤ i≤ n} of X with Vi ⊆Ui for all 1≤ i≤ n.

PROOF. It suffices to show the existence of V1 open with V1⊂U1 and such that {U2, . . . ,Un,V1}
covers X , since then we can repeat with this new cover, replacing U2 and so forth. Let A =

X −
⋃n

i=2Ui. By normality of X , there exists an open set V1 containing A with A ⊂V1 ⊂V1 ⊂U1.
Then the collection {V1,U2, . . . ,Un} covers X . �
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PROPOSITION 4.3.11. Let U = {Ui | 1 ≤ i ≤ n} be a finite open cover of a normal space X.
Then there exists a partition of unity on X subordinate U .

PROOF. By Lemma 4.3.10, we can find an open cover V = {Vi | 1 ≤ i ≤ n} with Vi ⊆Ui for
1≤ i≤ n and an open cover W = {Wi | 1≤ i≤ n} with Wi ⊆Vi for each 1≤ i≤ n. By Urysohn’s
lemma, there exist functions ψi : X → [0,1] such that ψi(Wi) ⊆ {1} and ψi(V c

i ) ⊆ {0}. Since
ψ
−1
i (R−{0}) ⊆ Vi, we have suppψi ⊆ Vi ⊆Ui. For each x ∈ X , we have x ∈Wi for some i, and

therefore ∑ j ψ j(x)≥ ψi(x) = 1 > 0. We may then define

φi(x) =
ψi(x)

∑
n
j=1 ψ j(x)

for x ∈ X . Then the φi form the desired partition of unity. �

DEFINITION 4.3.12. A second-countable Hausdorff space M is said to be a manifold if there
exists n≥ 0 such that every point of M has an open neighborhood homeomorphic to Rn. We then
say that M is n-dimensional, or an n-manifold.

REMARK 4.3.13. To say that a point in M has an open neighborhood homeomorphic to Rn is
to say that it has an open neighborhood homeomorphic to an open subset of Rn (in particular, as
open balls in Rn are homeomorphic to Rn). Equivalently, there is a local homeomorphism Rn→M
with image containing the point.

EXAMPLE 4.3.14. Open sets in Rn and the sphere Sn are n-manifolds. The torus is an example
of a 2-manifold, or surface.

We have the following application of Urysohn’s lemma and partitions of unity to manifolds.

THEOREM 4.3.15. Any compact manifold can be embedded in RN for some N ≥ 1.

PROOF. Since X is a manifold, it has an open cover U by open sets that may be embedded in
Rn for some fixed n. Since X is compact, there exist U1, . . . ,Um ∈ U that together cover X . Let
fi : Ui → Rn be an open embedding. By Theorem 4.2.18, the space X is normal, so there exists
a partition of unity {φi | 1 ≤ i ≤ m} subordinate to {Ui | 1 ≤ i ≤ m}. For each i, set Ai = suppφi

and define gi : X → Rn by gi(x) = φi(x) fi(x) for x ∈Ui and gi(x) = 0 for x ∈ Ac
i . Note that gi is

well-defined as φi(x) = 0 for x ∈ Ac.
We set

F = ((φ1,g1), . . . ,(φm,gm)) : X → (R1+n)m

which is continuous as a product of continuous functions. We claim that F is an embedding, which
will finish the proof with N = m(1+ n). Since X is compact, it is enough to show it is injective.
If x,y ∈ X and F(x) = F(y), then φi(x) = φi(y) and gi(x) = gi(y) for all 1 ≤ i ≤ n. Let i be such
that φi(x)> 0 so that x,y ∈Ui. Then gi(x) = φi(x) fi(x) and gi(y) = φi(x) fi(y), so fi(x) = fi(y). As
fi : Ui→ Rn is injective, we have x = y. �



CHAPTER 5

Homotopy theory

5.1. Path homotopies

Recall that a path on a topological space X is a continuous function γ : [0,1]→ X .

DEFINITION 5.1.1. Let X be a space and a,b ∈ X . Let γ and γ ′ be paths in X from a to b. A
path homotopy from γ to γ ′ is a continuous function F : [0,1]2→ X from γ to γ ′ such that

F(s,0) = γ(s) and F(s,1) = γ
′(s)

for all s ∈ [0,1] and

F(0, t) = a and F(1, t) = b

for all t ∈ [0,1].

EXAMPLE 5.1.2. Consider the two paths γ,γ ′ from (1,0) to (−1,0) in C given by γ(s) = eπis

and γ ′(s) = e−πis. We have a path homotopy between them given by F(s, t) = cos(πs)+ i(1−
2t)sin(πs). However, no such path homotopy exists in C−{0}, the idea being that for any path
homotopy F , there must exist a t such that the path γt(s) = F(s, t) for s ∈ [0,1] passes through 0.
This may be intuitively clear, but it takes some work to show.

DEFINITION 5.1.3. We say that two paths γ,γ ′ in X from a point a to a point b are path
homotopic if there exists a path homotopy from γ to γ ′.

NOTATION 5.1.4. We write γ ∼ γ ′ if two paths with the same endpoints are path homotopic.

PROPOSITION 5.1.5. The relation of path homotopy on the set Π(X ,a,b) of paths with fixed
endpoints a,b ∈ X forms an equivalence relation.

PROOF. If γ ∈ Π(X ,a,b), then the map F : [0,1]2 → X given by F(s, t) = γ(s) for all s, t ∈
[0,1] is a path homotopy from γ to itself, so ∼ is reflective. If γ ′ ∈ Π(X ,a,b) with γ ∼ γ ′ and
F : [0,1]2→ X is a path homotopy from γ to γ ′, then G(s, t) = F(s,1− t) is a path homotopy from
γ ′ to γ , so γ ′ ∼ γ . Thus, ∼ is symmetric. Finally, if γ ′′ ∈ Π(X ,a,b) as well and we have both
γ ∼ γ ′ and γ ′ ∼ γ ′′, with F a path homotopy from γ to γ ′ and G a path homotopy from γ ′ to γ ′′,
then H : [0,1]2→ X defined by

H(s, t) =

{
F(s,2t) t ∈ [0, 1

2 ],

G(s,2t−1) t ∈ [1
2 ,1]

63
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is a path homotopy from γ to γ ′, so ∼ is transitive. To see this, one should note that F(s,1) =
γ ′(s) = G(s,0) for all s ∈ [0,1]. �

NOTATION 5.1.6. Let π1(X ,a,b) denote the set of path homotopy classes of paths on X from
a to b. We write [γ] for the path homotopy class of a path γ .

DEFINITION 5.1.7. If γ ∈Π(X ,a,b) and µ ∈Π(X ,b,c), we define the composition of γ and µ

to be the path γ ?µ ∈Π(X ,a,c) given by

(γ ?µ)(s) =

{
γ(2s) s ∈ [0, 1

2 ],

µ(2s−1) s ∈ [1
2 ,1].

If one replaces γ,µ with path homotopic paths, the result of composition is path homotopic to
γ ∗µ .

PROPOSITION 5.1.8. Let γ,γ ′ ∈Π(X ,a,b) and µ,µ ′ ∈Π(X ,b,c) with γ ∼ γ ′ and µ ∼ µ ′. Then
γ ?µ ∼ γ ′ ?µ ′.

PROOF. Let F be a path homotopy from γ to γ ′ and G be a path homotopy from µ to µ ′. Define
H : [0,1]2→ X by

H(s, t) =

{
F(2s, t) s ∈ [0, 1

2 ],

G(2s−1, t) s ∈ [1
2 ,1]

for s, t ∈ [0,1]. Then H is a path homotopy from γ ? µ to γ ′ ? µ ′. For this, one should note that
F(1, t) = b = G(0, t) for all t ∈ [0,1]. �

REMARK 5.1.9. By Proposition 5.1.8, composition of paths induces product maps

π1(X ,a,b)×π1(X ,b,c) ·−→ π1(X ,a,c),

and we have [γ] · [µ] = [γ ?µ] under these products.

5.2. The fundamental group

Let us briefly explore the properties of the products that we have constructed on paths and their
path homotopy classes.

NOTATION 5.2.1.

a. For a ∈ X , let ea ∈Π(X ,a,a) denote the constant path ea(s) = a for s ∈ [0,1].

b. For a,b ∈ X and γ ∈ Π(X ,a,b), let γ̃ ∈ Π(X ,b,a) denote the reversed path γ̃(s) = γ(1− s)
for s ∈ [0,1].

REMARK 5.2.2. If γ ∈Π(X ,a,b) and µ ∈Π(X ,b,c), then γ̃ ?µ = µ̃ ? γ̃ .

We check some useful path homotopy relations among compositions of paths.

LEMMA 5.2.3. Let γ ∈Π(X ,a,b) with a,b ∈ X.
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a. If γ ′ ∈Π(X ,a,b) with γ ∼ γ ′, then γ̃ ∼ γ̃ ′.

b. We have ea ? γ ∼ γ ∼ γ ? eb,

c. We have γ ? γ̃ ∼ ea and γ̃ ? γ ∼ eb.

d. If µ ∈Π(X ,b,c) and ν ∈Π(X ,c,d) for some c,d ∈ X, then (γ ?µ)?ν ∼ γ ? (µ ?ν).

PROOF.

a. If F is a homotopy from γ to γ ′, then we define G : [0,1]2→ X by

G(s, t) = F(1− s, t),

and this is a homotopy from γ̃ to γ̃ ′.

b. Define Fa : [0,1]2→ X by

Fa(s, t) =

{
a s ∈ [0, 1−t

2 ],

γ(2s−1+t
1+t ) s ∈ [1−t

2 ,1].

Note that for s = 1−t
2 , the second case yields γ(0) = a, so we have continuity. We then check that

Fa(s,0) = a = ea(2s) for s ∈ [0, 1
2 ] while Fa(s,0) = γ(2s−1) for s ∈ [1

2 ,1], so Fa(s,0) = (ea ? γ)(s)
for all s∈ [0,1]. We also have Fa(s,1) = γ(s) for all s∈ [0,1] and Fa(0, t) = a and Fa(1, t) = γ(1) =
b for all t ∈ [0,1]. Thus Fa is a path homotopy from ea ? γ to γ .

If we replace γ by γ̃ , we get eb ? γ̃ ∼ γ̃ , and then

γ ? eb = ẽb ? γ̃ ∼ ˜̃γ = γ.

c. Define H : [0,1]2→ X by

H(s, t) =

{
γ(2s(1− t)) s ∈ [0, 1

2 ],

γ((2−2s)(1− t)) s ∈ [1
2 ,1].

The H is a path homotopy from γ ? γ̃ to ea. We have γ̃ ? γ ∼ eb by replacing γ by γ̃ .

d. Define I : [0,1]2→ X by

I(s, t) =


γ(4(1+ t)−1s) s ∈ [0, 1

4(1+ t)],

µ(4s−1− t) s ∈ [1
4(1+ t), 1

4(2+ t)],

ν((2− t)−1(4s−2− t)) s ∈ [1
4(2+ t),1].

We leave it to the reader to check that I is a path homotopy from (γ ?µ)?ν to γ ? (µ ?ν).

�

DEFINITION 5.2.4. A loop in a topological space X based at a point a ∈ X is a path in X from
a to a. The point a is called the basepoint of the loop.

NOTATION 5.2.5. For a ∈ X , we set Π(X ,a) = Π(X ,a,a) and π1(X ,a) = π1(X ,a,a).
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If we restrict our product maps on set of path homotopies to loops based at a point x0 ∈ X , we
obtain an operation on the classes of paths

π1(X ,x0)×π1(X ,x0)
?−→ π1(X ,x0).

This operation makes π1(X ,x0) into what is known as a group.

DEFINITION 5.2.6. A group G is a set together with an operation G×G ·−→ G such that

i. (a ·b) · c = a · (b · c) for all a,b,c ∈ G,

ii. there exists an identity element e ∈ G such that e ·a = a = a · e for all a ∈ G, and

iii. for every a ∈ G, there exists an inverse element a−1 ∈ G such that a ·a−1 = e.

Here are just a few interesting groups.

EXAMPLES 5.2.7.

a. The integers Z with the operation + forms a group. In this group, e = 0 and the inverse of
a is −a.

b. The nonzero real numbers R−{0} together with the operation · forms a group. In it, e = 1
and the inverse of a is a−1.

c. Given a set X , the set SX of bijections f : X→ X forms a group with respect to the operation
of composition. In it, the identity element is idX and the inverse of a bijection f is its inverse
function f−1.

PROPOSITION 5.2.8. For any x0 ∈ X, the set π1(X ,x0) is a group under the operation induced
by composition of paths.

PROOF. The operation in question is given on the classes of loops γ,µ ∈Π(X ,x0) by [γ] · [µ] =
[γ ?µ]. That this makes G into a group follows from the various parts of Lemma 5.2.3: that is, the
operation is associative by part d, the identity element is [ea] by part b, and the inverse of [γ] is [γ̃]
by part c. �

DEFINITION 5.2.9. The fundamental group of a space X relative to a basepoint x0 ∈ X is the
group π1(X ,x0) together with the operation induced by composition of paths.

One might ask how the fundamental group depends upon the choice of basepoint. For this,
we need a notion of equivalence among groups. Such an equivalence should be a bijection that
respects the operation on its domain and codomain. A function between groups that respects these
operations is called a homomorphism.

DEFINITION 5.2.10. A function f : G→ G′ of groups is a homomorphism from the group G
to the group G′ if f (a ·b) = f (a) · f (b) for all a,b ∈ G.

Note that in the latter definition, the operation on the left is the operation on G and the operation
on the ring is the operation on G′.
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EXAMPLES 5.2.11.

a. For any group G, the constant map taking value the identity of a group is a homomorphism
called a trivial homomorphism.

b. For n ∈ Z, the map n : Z→ Z given by multiplication by n is a homomorphism. It is trivial
if n = 0.

DEFINITION 5.2.12. A homomorphism from G to G′ is an isomorphism if it is a bijection.

LEMMA 5.2.13. If f : G→ G′ is an isomorphism of groups, then so is the inverse function
f−1 : G′→ G.

PROOF. Since f is a bijection, its inverse f−1 is as well. We must show that f−1 is a homo-
morphism. Let a′,b′ ∈ G′, and note that there exist unique a,b ∈ G with f (a) = a′ and f (b) = b′.
We then have

f−1(a′ ·b′) = f−1( f (a) · f (b)) = f−1( f (a ·b)) = a ·b.

�

EXAMPLE 5.2.14. The function exp: R→ R>0 given by exp(x) = ex is an isomorphism from
the real numbers with the operation of addition to the positive real numbers with the operation of
multiplication. That is, it is clearly bijective, and we have ea+b = eaeb for a,b ∈ R. Its inverse is
the logarithm function log: R>0→ R.

DEFINITION 5.2.15. We say that two groups G and G′ are isomorphic if there exists an iso-
morphism f : G→ G′, in which case we write G∼= G′.

There is no such thing as the set of all groups, as it is too large. However, the following still
makes sense.

PROPOSITION 5.2.16. The relation ∼= is an equivalence relation on any set of groups.

PROOF. Let G, H and K be groups. Then G∼= G via the identity map. If G∼= H, then H ∼= G
by Lemma 5.2.13. If G∼= H and H ∼= K, then we have isomorphisms f : G→ H and f ′ : H→ K.
Then f ′ ◦ f is still a bijection, and f ′( f (a ·b)) = f ′( f (a) · f (b)) = f ′( f (a)) · f ′( f (b)) for a,b ∈G,
so f ′ ◦ f is a homomorphism as well, and therefore G∼= K. �

So, we can now answer our question regarding fundamental groups relative to different base-
points.

PROPOSITION 5.2.17. The fundamental groups π1(X ,x0) and π1(X ,x1) of a space X relative
to basepoints x0 and x1 are isomorphic if there exists a path λ in X from x0 to x1. Explicitly, the
isomorphism ψλ : π1(X ,x0)→ π1(X ,x1) determined by λ is

ψλ ([γ]) = [λ̃ ] · [γ] · [λ ].
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PROOF. Let λ : [0,1]→ X be a path with λ (0) = x0 and λ (1) = x1. Define a map

Π(X ,x0)→Π(X ,x1), γ 7→ (λ̃ ? γ)?λ

for γ ∈ Π(X ,x0). If γ ∼ γ ′, then (λ̃ ? γ) ?λ ∼ (λ̃ ? γ ′) ?λ , so this map induces the function ψλ .
This is a bijection since it has an inverse induced by µ 7→ (λ ? µ)? λ̃ . It is then an isomorphism,
since

ψλ ([γγ
′]) = [λ̃ ][γγ

′][λ ] = [λ̃ ][γ][γ ′][λ ] = [λ̃ ][γ][λ ][λ̃ ][γ ′][λ ] = ψλ ([γ])ψλ ([γ
′]).

�

TERMINOLOGY 5.2.18. We call ψλ as in Lemma 5.2.17 conjugation by the path λ .

REMARK 5.2.19. When X is path connected, we often refer to the fundamental group of X to
mean the fundamental group relative to some basepoint, since all choices are isomorphic.

REMARK 5.2.20. The isomorphism we constructed in the proof of Proposition 5.2.17 depends
on the choice of a path from one basepoint to another. It is not in general unique, nor is it even
necessarily the identity if the two points are the same.

DEFINITION 5.2.21. A space X is simply connected if it is path connected and π1(X ,x0) is the
trivial group for some (equivalently, all) x0 ∈ X .

LEMMA 5.2.22. If X is a simply connected space and a,b ∈ X, then any two paths in X from a
to b are path homotopic.

PROOF. Let γ,γ ′ ∈Π(X ,a,b). Then γ−1?γ ′ ∈Π(X ,a). Since X is simply connected, γ−1?γ ′∼
ea, so γ ? (γ−1 ? γ ′)∼ ea ? γ , from which it follows that γ ′ ∼ γ . �

Continuous maps between topological spaces give rise to maps between homotopy groups.

LEMMA 5.2.23. Let f : X → Y be continuous, and let x0 ∈ X.

a. The path homotopy class of f ◦ γ in Π(Y, f (x0)) depends only on the path homotopy class
of γ ∈Π(X ,x0).

b. If µ ∈Π(X ,x0), then f ◦ (γ ?µ) = ( f ◦ γ)? ( f ◦µ).

PROOF. If γ ∼ γ ′ for some γ ′ ∈Π(X ,x0), and F : [0,1]2→ X is a path homotopy from γ to γ ′,
then f ◦F is a homotopy from f ◦γ to f ◦γ ′. Part b is immediate from the definition of composition
of paths. �

By Lemma 5.2.23, the following definition makes sense.

DEFINITION 5.2.24. For a continuous function f : X → Y and x0 ∈ X , the map

f∗ : π1(X ,x0)→ π1(Y, f (x0))

given by f∗([γ]) = [ f ◦ γ] is the homomorphism induced by f on fundamental groups based at x0

and f (x0).
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The following property is immediate from the definitions.

LEMMA 5.2.25. If f : X → Y and g : Y → Z are continuous functions of topological spaces,
then (g◦ f )∗ = g∗ ◦ f∗ for any x0 ∈ X. Moreover, (idX)∗ is the identity homomorphism on π1(X ,x0)

for any x0 ∈ X.

In particular, if f is a homeomorphism, then f∗ is an isomorphism.

COROLLARY 5.2.26. Let f : X →Y be a homeomorphism of topological spaces. Then for any
x0 ∈ X, the homomorphism f∗ : π1(X ,x0)→ π1(Y, f (x0)) is an isomorphism with inverse ( f−1)∗.

PROOF. Since f−1 ◦ f = idX , we have ( f−1)∗ ◦ f∗ = idπ1(X ,x0) by Lemma 5.2.25, and similarly
for the other composition. �

DEFINITION 5.2.27. A retraction of X onto a subspace A is continuous function r : X → A
such that r(a) = a for all a ∈ A.

EXAMPLES 5.2.28.

a. Let X be a topological space, and for x0 ∈ X . Then the unique map r : X → {x0} is a
retraction of X onto x0.

b. Consider the closed disk D = B(0,1) in R2. Then the map r : R2→ D given by the identity
on D and

r(x,y) =

(
x√

x2 + y2
,

y√
x2 + y2

)
for (x,y) /∈ D is a retraction.

LEMMA 5.2.29. If r : X → A is a retraction of a space X onto a subspace A, then for any
a0 ∈ A, the map r∗ : π1(X ,a0)→ π1(A,a0) is surjective, and for the inclusion map ι : A→ X, the
map ι∗ : π1(A,a0)→ π(X ,a0) is injective with r∗ ◦ ι∗ = idπ1(A,a0).

PROOF. Let γ be a loop in A based at a0. Then γ is also a loop in X based at a0, and r ◦ γ = γ ,
so r∗ is surjective. Since r ◦ ι = idA, we have the last equality of the statement, which forces ι∗ to
be injective. �

5.3. Covering spaces

DEFINITION 5.3.1. Let f : C→ X be a continuous map of topological spaces, and let U be an
open set in X contained in f (C). We say that U is evenly covered by f if f−1(U) is a disjoint union
of open subspaces of C, each of which is mapped homeomorphically onto U by f .

REMARK 5.3.2. If U is an open subset of X evenly covered by f : C→ X and x ∈U , then

f−1(U) =
∐

c∈ f−1(x)

Vc,

where Vc is an open neighborhood of c in C such that f |Vc : Vc→U is a homeomorphism.
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DEFINITION 5.3.3. We say that a continuous surjective function p : C→ X between topologi-
cal spaces is a covering map if for each x ∈ X , there exists an open neighborhood U of x ∈ X such
that U is evenly covered by p. The space C, together with its covering map, is then said to be a
covering space of X .

EXAMPLE 5.3.4. View S1 as the unit circle in C. The function p : R→ S1 given by p(x)= e2πix

is a covering map. Inside any open neighborhood of 1 ∈ S1, we have an open set U = p(−ε,ε) for
a sufficiently small ε < 1

2 . The set p−1(U) is the disjoint union of the open sets (n− ε,n+ ε) for
n ∈ Z. This U is a disjoint union of open neighborhoods of the points n forming the inverse image
p−1(1).

EXAMPLE 5.3.5. The function f : S1→ S1 defined by f (z) = zn is a covering map. Since the
polynomial xn−a for a ∈ S1 has exactly n roots in C, all of which have complex absolute value 1,
every point has n points in its inverse image. (If a = e2πiθ for some θ ∈ R, then these roots have
the form e2πi(θ+ j)/n, where 0≤ j ≤ n−1.) The inverse image of any proper open arc centered at
a is the disjoint union of open arcs centered at these points of f−1(a), where the latter arcs are of
arc length 1

n times that of the original arc.

The following is easily verified.

LEMMA 5.3.6. Covering maps are surjective local homeomorphisms. In particular, they are
open maps.

REMARK 5.3.7. The converse to Lemma 5.3.6 not hold. For instance, consider the restriction
f of the map p : R→ S1 of Example 5.3.4 to R>0. It is a surjective local homeomorphism. Let
U = p(−ε,ε) be an arbitrarily small neighborhood of 1 as in said example. Then p−1(U)∩
(−ε,ε) = (0,ε), and it does not map homeomorphically onto U : in fact, its image does not even
contain 1T . Thus, p is not a covering map.

LEMMA 5.3.8. Let p : C→ X be a covering map, and let B = p−1(Y ) be the inverse image in
C of an open subspace Y of X. Then p|B : B→ Y is a covering map.

PROOF. By definition, the restriction p|B is a continuous surjective map. Let x ∈ Y , and let
U be an open neighborhood of x in Y (hence in X) contained in p(B). By Remark 5.3.2, the
open set p−1(U) is a disjoint union of open sets Vc in C for each c ∈ p−1(x) with p|Vc : Vc→U a
homeomorphism. For b ∈ p−1(x) ⊆ B, since p(Vb) = U ⊆ Y , we have Vb ⊆ B. That is, p|B takes
Vb homeomorphically onto its image U . �

LEMMA 5.3.9. Let p : C → X and p′ : C′ → X ′ be covering maps. Then the product map
P : C×C′→ X×X ′ with P(c,c′) = (p(c), p(c′)) is a covering map as well.

PROOF. For (x,x′) ∈ X ×X ′, let U and U ′ be open neighborhoods of x and x′ in X and X ′

respectively such that p−1(U) and (p′)−1(U ′) are disjoint unions of open neighborhoods of the
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points in the inverse images of x and x′, respectively, such that the images of these open neighbor-
hoods map homeomorphically under p and p′ to U and U ′, again respectively. Then P−1(U×U ′)
is a disjoint union of all products of these sets, one for each point in P−1(x,x′), and again, they
each map homeomorphically to U×U ′ under P by construction. �

EXAMPLE 5.3.10. Consider the product map R2 → (S1)2 of of the map p of Example 5.3.4
with itself. By Lemma 5.3.9, it is a covering map. That is, the plane is a covering space of the
torus.

We next discuss the notion of lifting of paths to covering spaces.

DEFINITION 5.3.11. Let f : X →Y be a continuous function, and let p : C→Y be a surjective
continuous function. A (continuous) lifting of f to C is a continuous function f̃ : X →C such that
p◦ f̃ = f . We say that f̃ lifts f if f̃ is a lifting of f .

PROPOSITION 5.3.12. Let p : C→ X be a covering map, let c0 ∈ C, and set x0 = p(c0). If
γ : [0,1]→ X is a path in X with initial point x0, then there exists a unique lifting γ̃ : [0,1]→C of
γ to a path in C with initial point c0.

PROOF. Since p is a covering map, there exists an open cover U of X by sets that are evenly
covered by p. Then V = {γ−1(U) |U ∈ U } is an open cover of [0,1]. By Lemma 3.3.8, there
exists N ≥ 1 such that the intervals Ai = [ i

N : i+1
N ] with 0 ≤ i ≤ N−1 are each contained in some

element of V , which has the form γ−1(Ui) for some Ui ∈U .
We define γ̃ with γ̃(0) = c0 on each Ai recursively. Suppose we have defined γ̃ on [0, i

N ] for
some i≥ 0. Let ci = γ̃( i

N ). Since p evenly covers Ui, we have an open neighborhood Vi of ci which
maps homeomorphically to Ui under p. Let fi = (p|Vi)

−1 : Ui→Vi be the inverse homeomorphism,
and define γ̃(s) = fi ◦ γ(s) for s ∈ Ai. The map γ̃ on [0, i+1

N ] is then continuous by Lemma 2.1.12.
Note that this is the only continuous extension of γ̃(s) from [0, i

N ] to [0, i+1
N ]. That is, γ̃( i

N )∈Vi and
f−1(Ui) is the disjoint union of Vi and its complement in the inverse image, so in that γ̃|Ai must
have connected image, its entire image must lie in Vi. But then the map p|Vi : Vi→Ui is bijective,
so fi ◦ γ|Ai is the only continuous lift of γ|Ai to C in Vi. Thus, we have defined our unique path
γ̃ : [0,1]→C lifting γ with γ̃(0) = c0. �

Similarly, we have the following, which we leave unproven. The proof is similar to that Propo-
sition 5.3.12, replacing the even subdivision of [0,1] into intervals with the subdivision of [0,1]2

into N2 squares with vertices ( i
N ,

j
N ) with 0≤ i, j ≤ N, for some N.

LEMMA 5.3.13. Let p : C→ X be a covering map with p(c0) = x0 for some c0 ∈C and x0 ∈
X. If F : [0,1]2 → X is a continuous map with F(0,0) = c0, then there exists a unique lifting
F̃ : [0,1]2→C with F̃(0,0) = c0.

We use this to prove the following.
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PROPOSITION 5.3.14. Let p : C→ X be a covering, let γ,γ ′ : [0,1]→ X be path homotopic
paths. Set x0 = γ(0) = γ ′(0), and let c0 ∈ p−1(x0). Let γ̃ and γ̃ ′ be the unique lifts of γ and γ ′,
respectively, to paths in C with initial point c0. Then γ̃ and γ̃ ′ satisfy γ̃(1) = γ̃ ′(1) and are path
homotopic.

PROOF. Let F be a path homotopy between γ and γ ′, and use Lemma 5.3.13 to uniquely lift
it to F̃ : [0,1]2 → C with F̃(0,0) = c0. We repeatedly use the uniqueness of Proposition 5.3.12.
Then F̃(s,0) is a path lifting γ with initial point c0, so must be γ̃ . Similarly, F̃(0, t) is a path lifting
the constant path ex0 with initial point c0, so must be the constant path ec0 . Then F̃(0,1) = c0, and
F̃(s,1) is a path lifting γ ′ with initial point c0, so must be γ̃ ′. Finally, F̃(1, t) is a path lifting the
constant path eγ(1) with F̃(1, t) = γ̃(1), so must also be constant. Thus, γ̃ and γ̃ ′ have the same
final point, and F̃ is a path homotopy from γ̃ to γ̃ ′. �

We are now ready to prove a theorem connecting covering spaces and the fundamental group.

THEOREM 5.3.15. Let p : C→ X be a covering, let x0 ∈ X and c0 ∈C with p(c0) = x0. The
function φc0 : π1(X ,x0)→ p−1(x0) taking [γ] for γ ∈ Π(X ,x0) to the endpoint of the unique lift of
γ to C with initial point c0 is well-defined. If C is path connected, then φc0 is surjective, and if C is
simply connected, then φc0 is bijective.

PROOF. That φc0 is well-defined is an immediate consequence of Proposition 5.3.14. If C
is path connected and c1 ∈ p−1(x0), then choose a path λ ∈ Π(C,c0,c1). Then λ is a lift of
γ = p◦λ ∈Π(X ,x0), and φc0([γ]) = c1.

Suppose that C is simply connected, and let γ,µ ∈ Π(X ,x0) with φc0([γ]) = φc0([µ]). Let c1

denote the latter point. Let γ̃ and µ̃ be the unique lifts to C of γ and µ , respectively, with initial
point c0. Then have final point c1 by assumption. Since C is simply connected, there then exists
a homotopy F̃ from γ̃ to µ̃ , and then p ◦ F̃ is a homotopy from γ to µ . In other words, we have
[γ] = [µ], so φc0 is injective. �

We can now compute the fundamental group of S1 relative to any basepoint.

THEOREM 5.3.16. The fundamental group of S1 is isomorphic to the integers Z with the oper-
ation of addition.

PROOF. The map p : R→ S1 given by p(x) = e2πix is a covering. Since R is simply connected
and the inverse image of 1 is Z ⊂ R, Theorem 5.3.15 tells us that the map φ0 : π1(S1,1)→ Z is a
bijection.

We need only show that φ0 is a homomorphism. So, let γ,µ ∈ Π(S1,1), and set n = φ0([γ])

and m = φ0([µ]). Let γ̃ be a lift of γ with initial point 0; its final point is then n. Let µ̃ be the
unique lift of µ with initial point 0, and note that the function µ̃ ′ = n+ µ̃ is a lift of µ with initial
point n and final point n+ µ̃(1) = n+m. Then γ̃ ? µ̃ lifts γ ? µ and has final point n+m, so
φ0([γ][µ]) = n+m = φ0([γ])+φ0([µ]). �

This has some fascinating applications. We give a few.
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EXAMPLE 5.3.17. There is no retract from the closed unit disk (i.e., ball) D about the origin
in R2 to S1. That is, D is simply connected, and S1 has nontrivial fundamental group. Any retract
would induce a nonexistent surjection from the fundamental group of D based at a point of S1,
which is trivial, to the nontrivial fundamental group of S1 based at that point.

DEFINITION 5.3.18. A fixed point of a function f : S→ S from a set S to itself is x ∈ S such
that f (x) = x.

The following is the Brouwer fixed point theorem for the unit disk in R2.

THEOREM 5.3.19 (Brouwer fixed-point theorem). Let D be the closed unit disk in R2. If
f : D→ D is continuous, then h has a fixed point.

PROOF. Suppose f : D→D has no fixed point. Define g : D→ S1 by letting g(x) for x ∈D be
the unique point of S1 on the ray from f (x) to x in R2. Then g is a retract from D onto S1, as the
reader will verify. But this contradicts Example 5.3.17. �

5.4. Homotopies

We now consider a more general notion of homotopy than path homotopy, which is less re-
strictive (and therefore somewhat simpler to define) even in the case of paths.

DEFINITION 5.4.1. Let X and Y be topological spaces, and let f , f ′ : X → Y be continuous
functions. A homotopy from f to f ′ is a continuous function F : X× [0,1]→Y such that F(x,0) =
f (x) and F(x,1) = f ′(x) for all x ∈ X .

DEFINITION 5.4.2. We say that two continuous functions f , f ′ : X →Y are homotopic if there
exists a homotopy from f to f ′.

LEMMA 5.4.3. The property of being homotopic is an equivalence relation on the set C(X ,Y )
of continuous functions from a topological space X to a topological space Y .

PROOF. Let ∼ denote the relation on C(X ,Y ) given by f ∼ f ′ if there exists a homotopy
from f to f ′. Given f ∈ C(X ,Y ), the function F : X × [0,1]→ Y given by F(x, t) = f (x) is a
homotopy from f to itself, so f ∼ f . If F : X × [0,1]→ Y is a homotopy from f to f ′, then
F̃ : X × [0,1]→ Y defined by F̃(x, t) = F(x,1− t) is a homotopy from f ′ to f , so ∼ is symmetric.
If f ∼ f ′ and f ′ ∼ f ′′ and F is a homotopy from f to f ′ and G is a homotopy from f ′ to f ′′, then
H : X× [0,1]→ Y defined by

H(x, t) =

{
F(x,2t) if t ∈ [0, 1

2 ]

G(x,2t−1) if t ∈ [1
2 ,1]

is a homotopy from f to f ′′. �

EXAMPLES 5.4.4.
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a. Any two continuous functions f , f ′ : X → Rn are homotopic. That is, F : X × [0,1]→ Rn

given by F(x, t) = t f (x)+(1− t) f ′(x) provides a homotopy.

b. Let X = {x} and Y be a discrete space. Then no two distinct functions f , f ′ : X →Y are ho-
motopic. That is, any continuous function F : X× [0,1]→Y has connected image, and is therefore
constant.

c. Let γ and γ ′ be the paths in C given by γ(s) = eπis and γ ′(s) = e−πis, as in Example 5.1.2.
Since γ̃ ′ ◦ γ is a simple loop in the complex unit circle S1, we see from Theorem 5.3.16 that γ and
γ ′ are not path homotopic. On the other hand, they are homotopic via F : S1× [0,1]→ S1 given by
F(e2πiθ , t) = γ(θ)1−2t . Thus, homotopic paths need not be path homotopic.

LEMMA 5.4.5. Let X and Y be topological spaces, and let x0 ∈ X. Let F : X × [0,1]→ Y be a
homotopy from a continuous f : X → Y to a continuous function f ′ : X → Y such that F(x0, t) is a
constant function of t ∈ [0,1]. Set y0 = F(x0, t). Then the homomorphisms

f∗, f ′∗ : π1(X ,x0)→ π1(Y,y0)

are equal.

PROOF. Let γ ∈Π(X ,x0). We claim that

H = F ◦ (γ, id[0,1]) : [0,1]2→ Y

is a path homotopy from f ◦ γ to f ′ ◦ γ . That is, H(s,0) = F(γ(s),0) = f (γ(s)) and H(s,1) =
F(γ(s),1) = f ′(γ(s)), while H(0, t) = F(x0, t) = y0 and H(1, t) = F(x0, t) = y0. We then have

f∗([γ]) = [ f ◦ γ] = [ f ′ ◦ γ] = f ′∗([γ]).

�

In fact, we may improve Lemma 5.4.5 as follows.

PROPOSITION 5.4.6. Let X and Y be topological spaces, and let x0 ∈ X. Let F : X× [0,1]→Y
be a homotopy from a continuous f : X→Y to a continuous function f ′ : X→Y . Then λ : [0,1]→
Y defined by λ (t) = F(x0, t) for t ∈ [0,1] is a path from y0 = f (x0) to y′0 = f ′(x0) in Y , and we
have

f ′∗ = ψλ ◦ f∗ : π1(X ,x0)→ π1(X ,y′0),

where ψλ is conjugation by λ as in Lemma 5.2.17.

PROOF. Let γ ∈ Π(X ,x0). We wish to show that [ f ′ ◦ γ] = [λ̃ ][ f ◦ γ][λ ], or equivalently, that
there is a homotopy

λ ? ( f ′ ◦ γ)∼ ( f ◦ γ)?λ
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of paths from y0 to y′0. Note that f (γ(s)) = F(γ(s),0) and f ′(γ(s)) = F(γ(s),1) are loops in Y
based at y0 and y′0, respectively. We define G : [0,1]2→ Y by

G(s, t) =


λ (2s) if s ∈ [0, 1−t

2 ],

F(γ(2s−1+ t),1− t) if s ∈ [1−t
2 ,1− t

2 ],

λ (2s−1) if s ∈ [1− t
2 ,1].

Then G is continuous as the values

λ (1− t) = F(γ(0),1− t) and F(γ(1),1− t) = λ (1− t)

of G(s, t) agree at s = 1−t
2 and s = 1− t

2 , respectively. At s ∈ {0,1}, we have

G(0, t) = λ (0) = y0 and G(1, t) = λ (1) = y1.

And at t ∈ {0,1}, we have G(s,0) = λ (2s) and G(s,1) = F(γ(2s),0) = f (γ(2s)) if s ∈ [0, 1
2 ], and

G(s,0) = F(γ(2s− 1),1) = f ′(γ(2s− 1)) and G(s,1) = λ (2s− 1) if s ∈ [1
2 ,1]. Thus, G is the

desired path homotopy. �

COROLLARY 5.4.7. If f and f ′ are homotopic continuous maps X→Y , then for any basepoint
in X, the map f∗ is injective (resp., surjective) if and only if f ′∗ is.

DEFINITION 5.4.8. A continuous map f : X → Y of topological spaces is nullhomotopic if f
is homotopic to a constant map from X to Y .

COROLLARY 5.4.9. If f : X → Y is nullhomotopic, then the homomorphism f∗ is trivial.

PROOF. Suppose that f is homotopic to the constant function cy with value y ∈ Y . Fix x0 ∈ X ,
set y0 = f (x0), and consider f∗ : π1(X ,x0)→ π1(Y,y0). By Proposition 5.4.6, we have f∗ = ψλ ◦
(cy)∗ where λ is a path in y from y0, and note that ψλ ◦ (cy)∗ = (cy0)

∗, which is trivial. �

We also have the following rather profound consequence.

THEOREM 5.4.10 (Fundamental theorem of algebra). Every nonconstant polynomial with
complex coefficients has a root in C.

PROOF. Suppose that p is a polynomial of degree n with leading coefficient 1 (by scaling,
without loss of generality). Then p(z)− zn is a polynomial of degree less than n, which means that
there exists r > 0 such that rn > |p(z)− zn| for all z ∈ C with |z| ≥ r: i.e., we can choose any r
greater than the sum of the absolute values of the coefficients of p(z).

We claim that the map f : S1→ S1 given by

f (z) =
p(rz)
|p(rz)|

,
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which is well-defined as p has no roots, is homotopic to g : S1→ S1 given by g(z) = zn. Consider
H : S1× [0,1]→ S1 given by

H(z, t) =
(1− t)(p(rz)− (rz)n)+(rz)n

|(1− t)(p(rz)− (rz)n)+(rz)n|
.

It satisfies H(z,0) = f (z) and H(z,1) = g(z) for all z ∈ S1. Also, for z ∈ S1 and t ∈ [0,1], we have

|(1− t)(p(rz)− (rz)n)| ≤ |p(rz)− (rz)n|< rn = |(rz)n|,

and therefore the denominator in H is always nonzero. That is, the function H is a well-defined
homotopy from f to g.

If p has no roots in C, then f extends to a map f̃ : C→ S1 on the simply connected space C by
the same formula, so if ι : S1→C is the inclusion, then f∗ = f̃∗ ◦ ι∗ : π1(S1,1)→ π1(S1,1) factors
through the trivial group π(C,1), so is trivial. On the other hand, g∗ induces multiplication by n
on π1(S1,1)∼= Z. By Corollary 5.4.7, this forces n = 0. That is, p is constant. �

DEFINITION 5.4.11. A deformation retraction from a topological space X to a subspace A is
a homotopy R : X × [0,1]→ X from the identity map on X to a retraction from X to A such that
R(a, t) = a for all a ∈ A and t ∈ [0,1]. If a deformation retraction from X to A exists, we say that
A is a deformation retract of X .

EXAMPLE 5.4.12. The unit circle S1 in C is a deformation retract of C−{0} via the function
R : (C−{0})× [0,1]→ C−{0} given by

R(reiθ , t) = ((1− t)r+ t)eiθ

for r > 0 and θ ∈ [0,2π).

PROPOSITION 5.4.13. Let A be a deformation retract of X, and let a0 ∈ A. Then the inclusion
map ι : A→ X gives rise to an isomorphism

ι∗ : π1(A,a0)→ π1(X ,a0).

PROOF. Let R : X × [0,1]→ X be a deformation retraction from X to A. It satisfies the condi-
tions of Lemma 5.4.5 for the basepoint a0 ∈ A, and therefore r : X → A defined by r(x) = R(x,1)
is a retraction satisfying

ι∗ ◦ r∗ = (ι ◦ r)∗ = (idX)∗ = idπ1(X ,a0) .

Since r ◦ ι = idA, we also have

r∗ ◦ ι∗ = (r ◦ ι)∗ = (idA)∗ = idπ1(A,a0) .

Thus, ι∗ is an isomorphism with inverse r∗. �

As a special case, we have the notion of a contractible space.

DEFINITION 5.4.14. A space X is contractible, or contractible to a point x ∈ X if the subspace
{x} is a deformation retract of X .
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REMARK 5.4.15. If X is contractible to a point in X , then it is contractible to every point in X .

The following is immediate from Proposition 5.4.13.

COROLLARY 5.4.16. If X is contractible, then its fundamental group is trivial.

In Corollary 5.2.26, we may obtain an isomorphism on fundamental groups under a weaker
condition on our continuous map. For this, we make the following definition.

DEFINITION 5.4.17. A continuous map f : X → Y of topological spaces is a homotopy equiv-
alence if there exists a continuous function g : Y → X such that g◦ f is homotopic to idX and f ◦g
is homotopic to idY . We say that g is a homotopy inverse to f .

EXAMPLES 5.4.18.

a. If f : X→Y is a homeomorphism, then it is a homotopy equivalence with homotopy inverse
its inverse f−1.

b. If A is deformation retract of X , then the inclusion map ι : A→ X is a homotopy equivalence
with homotopy inverse a retraction r : X → A.

c. The inclusion map of the open unit disk B about the origin in R2 into R2 is a homotopy
equivalence. Note that any continuous map from R2 to itself that fixes B also fixes B̄, so there does
not exist a retraction from R2 to B.

PROPOSITION 5.4.19. Let f : X → Y be a homotopy equivalence, let x0 ∈ X and y0 = f (x0).
Then

f∗ : π1(X ,x0)→ π1(Y,y0)

is an isomorphism for any x0 ∈ X.

PROOF. Let g : Y → X be a homotopy inverse to f . For a homotopy F from idX to g ◦ f ,
set x1 = g( f (x0)). Let λ (t) = F(x0, t) for t ∈ [0,1], which is a path from x0 to x1 in X . By
Propsition 5.4.6, we have

g∗ ◦ f∗ = ψλ ◦ idπ1(X ,x0) = ψλ ,

but ψλ : π1(X ,x0)→ π1(X ,x1) is an isomorphism with inverse ψ
λ̃

, so g∗ ◦ f∗ is an isomorphism.
Switching the roles of f and g, we see that f∗◦g∗ is also an isomorphism, so f∗ and g∗ are mutually
inverse. �
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