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Let Gg denote the Galois group of the maximal extension of Q unramified outside the
prime 2. Our aim is to prove the following theorem.

Theorem 1. Let r be a nonzero integer. Then we have

Q. if ris odd

0 if r is even

H'(Gs, Qa(r)) = {

and H*(Gg,Qx(r)) = 0.

Soulé proved the statement of Theorem 1 for all odd primes p and r any positive integer
using Chern characters in higher algebraic K-theory [2, 3]. Jannsen [1] has remarked that
Theorem 1 holds in the stated case p = 2 (at least for the first cohomology groups), though
we have not seen a proof written out anywhere. The proof we give here uses only Galois
cohomology and number theory, which is made possible by the fact that 2 is a regular
prime.

Fix a positive integer n > 3. Set F' = Q((an), where (on is a primitive 2"th root of
unity. Let Hg denote the Galois group of the maximal extension of F' unramified outside
the unique prime 1 — (o» above 2. Set N = Gal(F/Q). Then N = A @& I' where A is the
group of order two generated by the image o of complex conjugation and I' is the cyclic
group of order 2"~% generated by an element 7 such that 7({on) = (5.

Lemma 2. Let U = Ug/UZ", where Ug denotes the group of units of F unramified outside
1 — (on. Then there is an exact sequence

1 — pon = U — Z/2"Z[T'] = 0
of N-modules, where A acts trivially on Z/2"Z[T'].

Proof. The group Uy is generated as an N-module by A\, = 1 — (3». Note that o(\,)/\, =
—(an. Hence the submodule (0 —1)U of U is isomorphic to pon. The quotient U/(o—1)U is
necessarily isomorphic to a quotient A of Z/2"Z[I'], and we remark that log,. |Z/2"Z[']| =
2"=2_ Dirichlet’s Unit Theorem says that logy. |U| = 2772 + 1. Hence A 2 Z/2"Z[T']. O



Note that Lemma 2 says that
U=Z/2"ZIN]|/((c —1)(T + 3)). (2)

We will generally identify U with this module when considering elements of it. We remark
that H'(Hg,Z/2"Z(r)) = U(r — 1), as 2 is a regular prime. We will now compute the
invariants of this group under N.

Proposition 3. We have that

HY(N,U(r — 1))

I

(Z/2"Z(r)]" ® Z/2Z if r is even
Z)2" 72§ Z/)2Z if 7 is odd.

Proof. We remark first that

(Z/2"Z(r)]" if 7 is even

HO(N,Z/2"Z(r)) =
(N, 2/2°2(r)) {Z/2Z if r is odd.

Next we remark that
HY(T,Z/2"Z[T)(r — 1)) 2 Z/2"Z(r — 1)
as A modules (generated by N, = > (—3)*"~U7%) and hence

Z/27  if r is even

H(N,Z/2"Z[T)(r - 1)) = {Z/Q"Z if 1 is odd.

We now consider the exact sequence
0= [Z/2Z(r) = U(r — 1)V L (2/2"2[0)(r — )Y S H'(N, 2/2"Z(r)),

which we have from Lemma 2. We claim that j is either surjective or has cokernel of
order 2, which is obvious from (4) if r is even. We consider Z/2"Z[I'] as a subgroup of
U via the isomorphism (2). When r is odd, we see that z € [Z/2"Z[T](r — 1)]"¥ implies
(0 + 1)z € U(r — 1) and hence

j((o+1)z) = 2z.

If v € [Z/2"Z[[](r — 1)]" then dx(7) = 0 by definition, and dz(c) = ((—=1)""to — 1)z
inside U(r — 1). If r is odd then we must consider z = N,, and we see easily that dz(o) =
—2""2(g — 1) considered as an element of U(r — 1), or dx(s) = —2""2 considered as an
element of Z/2"Z(r — 1). Furthermore, we must view the cochains in the image of d
modulo coboundaries. So note that for a € Z/2"Z(r) we have 7(a) —a = 0 if and only if
a = 0 mod 2”2, In this case o(a) —a = —2a = 0 mod 2"~!. Hence we see that when 7 is
odd, the image of d has order 2, and we therefore conclude the same about the cokernel



of j. If r is even, then we must consider z = 2"7'N,, and it is easy enough to see that
dz(c) = 0, so the cokernel of j is trivial.
Let J denote the image of j. To finish the proof of the proposition, it remains to show

that the sequence
0— [Z/2"Z(")N - U(r—1)N - J =0

splits. To see this, we lift any element x of J lifts to an element z € Z/2"Z[['| C U(r — 1)
in the obvious way, and then a+z € U(r —1)" for some a € [Z/2"Z(r)]". Noting equation
(3), this immediately yields the splitting when r is even. When r is odd, we must have
a = 0 mod 2" % in order that a be fixed under I, in which case 2""!(a + z) = 0 for n > 3,
and hence we have the splitting. O

We now prove Theorem 1.

Proof of Theorem 1. Recall that r denotes a nonzero integer. We have the following se-
quence of low degree terms in a Hochschild-Serre spectral sequence

0— HYN,Z/2"Z(r)) — H (Gs,Z/2"Z(r)) — H*(Hg,Z/2"Z(r)) — H*(N,Z/2"Z(r)).

Furthermore, the orders of the first and last of these groups are bounded with respect to n
(note N varies with n). This follows by use of the spectral sequence

H*(A, HY (T, Z/2"Z(r))) = H*T'(N,Z/2"Z(r)).

The orders of the groups H'(N,Z/2"Z(r)) are bounded by the product of the orders of a
finite number of terms in this sequence. All of these terms are cyclic of bounded order.

Let hi(n) =log, |H (Gs,Z/2"Z(r))| and let H' = H (G, Qa/Zs(r)) for 0 < i < 2. By
Proposition 3, we conclude that as n varies, H'(Gg, Z/2"Z(r)) is the direct sum of a cyclic
group of increasingly large order with a group of bounded order when r is odd and is a
group of bounded order when r is even. From this, we have immediately that

lim hq(n) _ {1 if r is odd

n—oo M 0 if r is even.

We also remark that H'(Gg,Z/2"Z(r)) surjects onto the 2"-torsion of H' with kernel
isomorphic to the finite cyclic group H(Gg, Qa/Zs(r)) for large n [4, 5]. Hence the divisible
part of H' is isomorphic to Qa/Z, if r is odd and is trivial if 7 is nonzero even. But the
dimension of the divisible part of H' is exactly the dimension of H'(Gg, Qa2(r)) as a Q-
vector space [1], and therefore H'(Gs, Qa(r)) is exactly as stated in the theorem.

Now consider the partial Euler-Poincaré characteristic

x(n) = ho(n) — hy(n) + ha(n).

Via Tate-Poitou duality [6], we have also

X(n) =log,y(|Z/2"Z(r)|71Z/2"Z(r)|*) =

0 if r 1s even.

{1—n if 7 is odd



Now let

A= lim x(n) :{—1 if r is odd

n—oo 1 0 if r is even.

h
m (1) =0 and lim
n—0o00 n n—oo n

we see that h
lim ha(n) _ 0.
n—o0 n

Since H*(Gg,Z/2"Z(r)) surjects onto the 2" torsion of H?, we conclude that the divisible
part of H? is zero. Hence H?*(Gg, Qz(r)) = 0. O
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