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Let GS denote the Galois group of the maximal extension of Q unramified outside the
prime 2. Our aim is to prove the following theorem.

Theorem 1. Let r be a nonzero integer. Then we have

H1(GS,Q2(r)) ∼=

{

Q2 if r is odd

0 if r is even
(1)

and H2(GS,Q2(r)) = 0.

Soulé proved the statement of Theorem 1 for all odd primes p and r any positive integer
using Chern characters in higher algebraic K-theory [2, 3]. Jannsen [1] has remarked that
Theorem 1 holds in the stated case p = 2 (at least for the first cohomology groups), though
we have not seen a proof written out anywhere. The proof we give here uses only Galois
cohomology and number theory, which is made possible by the fact that 2 is a regular
prime.

Fix a positive integer n ≥ 3. Set F = Q(ζ2n), where ζ2n is a primitive 2nth root of
unity. Let HS denote the Galois group of the maximal extension of F unramified outside
the unique prime 1 − ζ2n above 2. Set N = Gal(F/Q). Then N ∼= ∆ ⊕ Γ where ∆ is the
group of order two generated by the image σ of complex conjugation and Γ is the cyclic
group of order 2n−2 generated by an element τ such that τ(ζ2n) = ζ−3

2n .

Lemma 2. Let U = US/U2n

S , where US denotes the group of units of F unramified outside

1 − ζ2n. Then there is an exact sequence

1 → µ2n → U → Z/2nZ[Γ] → 0

of N-modules, where ∆ acts trivially on Z/2nZ[Γ].

Proof. The group US is generated as an N -module by λn = 1− ζ2n. Note that σ(λn)/λn =
−ζ2n . Hence the submodule (σ−1)U of U is isomorphic to µ2n . The quotient U/(σ−1)U is
necessarily isomorphic to a quotient A of Z/2nZ[Γ], and we remark that log2n |Z/2nZ[Γ]| =
2n−2. Dirichlet’s Unit Theorem says that log2n |U | = 2n−2 + 1. Hence A ∼= Z/2nZ[Γ].
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Note that Lemma 2 says that

U ∼= Z/2nZ[N ]/((σ − 1)(τ + 3)). (2)

We will generally identify U with this module when considering elements of it. We remark
that H1(HS,Z/2nZ(r)) ∼= U(r − 1), as 2 is a regular prime. We will now compute the
invariants of this group under N .

Proposition 3. We have that

H0(N, U(r − 1)) ∼=

{

[Z/2nZ(r)]Γ ⊕ Z/2Z if r is even

Z/2n−1Z ⊕ Z/2Z if r is odd.

Proof. We remark first that

H0(N,Z/2nZ(r)) ∼=

{

[Z/2nZ(r)]Γ if r is even

Z/2Z if r is odd.
(3)

Next we remark that

H0(Γ,Z/2nZ[Γ](r − 1)) ∼= Z/2nZ(r − 1)

as ∆ modules (generated by Nr =
∑

(−3)i(r−1)τ i) and hence

H0(N,Z/2nZ[Γ](r − 1)) ∼=

{

Z/2Z if r is even

Z/2nZ if r is odd.
(4)

We now consider the exact sequence

0 → [Z/2nZ(r)]N → U(r − 1)N j
−→ [Z/2nZ[Γ](r − 1)]N

d
−→ H1(N,Z/2nZ(r)),

which we have from Lemma 2. We claim that j is either surjective or has cokernel of
order 2, which is obvious from (4) if r is even. We consider Z/2nZ[Γ] as a subgroup of
U via the isomorphism (2). When r is odd, we see that x ∈ [Z/2nZ[Γ](r − 1)]N implies
(σ + 1)x ∈ U(r − 1)N and hence

j((σ + 1)x) = 2x.

If x ∈ [Z/2nZ[Γ](r − 1)]N then dx(τ) = 0 by definition, and dx(σ) = ((−1)r−1σ − 1)x
inside U(r − 1). If r is odd then we must consider x = Nr, and we see easily that dx(σ) =
−2n−2(σ − 1) considered as an element of U(r − 1), or dx(σ) = −2n−2 considered as an
element of Z/2nZ(r − 1). Furthermore, we must view the cochains in the image of d
modulo coboundaries. So note that for a ∈ Z/2nZ(r) we have τ(a) − a = 0 if and only if
a ≡ 0 mod 2n−2. In this case σ(a) − a = −2a ≡ 0 mod 2n−1. Hence we see that when r is
odd, the image of d has order 2, and we therefore conclude the same about the cokernel
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of j. If r is even, then we must consider x = 2n−1Nr, and it is easy enough to see that
dx(σ) = 0, so the cokernel of j is trivial.

Let J denote the image of j. To finish the proof of the proposition, it remains to show
that the sequence

0 → [Z/2nZ(r)]N → U(r − 1)N → J → 0

splits. To see this, we lift any element x of J lifts to an element x ∈ Z/2nZ[Γ] ⊂ U(r − 1)
in the obvious way, and then a+x ∈ U(r−1)N for some a ∈ [Z/2nZ(r)]Γ. Noting equation
(3), this immediately yields the splitting when r is even. When r is odd, we must have
a ≡ 0 mod 2n−2 in order that a be fixed under Γ, in which case 2n−1(a + x) = 0 for n ≥ 3,
and hence we have the splitting.

We now prove Theorem 1.

Proof of Theorem 1. Recall that r denotes a nonzero integer. We have the following se-
quence of low degree terms in a Hochschild-Serre spectral sequence

0 → H1(N,Z/2nZ(r)) → H1(GS,Z/2nZ(r)) → H1(HS,Z/2nZ(r))N → H2(N,Z/2nZ(r)).

Furthermore, the orders of the first and last of these groups are bounded with respect to n
(note N varies with n). This follows by use of the spectral sequence

Hs(∆, H t(Γ,Z/2nZ(r))) ⇒ Hs+t(N,Z/2nZ(r)).

The orders of the groups H i(N,Z/2nZ(r)) are bounded by the product of the orders of a
finite number of terms in this sequence. All of these terms are cyclic of bounded order.

Let hi(n) = log2 |H
i(GS,Z/2nZ(r))| and let H i = H i(GS,Q2/Z2(r)) for 0 ≤ i ≤ 2. By

Proposition 3, we conclude that as n varies, H1(GS,Z/2nZ(r)) is the direct sum of a cyclic
group of increasingly large order with a group of bounded order when r is odd and is a
group of bounded order when r is even. From this, we have immediately that

lim
n→∞

h1(n)

n
=

{

1 if r is odd

0 if r is even.

We also remark that H1(GS,Z/2nZ(r)) surjects onto the 2n-torsion of H1 with kernel
isomorphic to the finite cyclic group H0(GS,Q2/Z2(r)) for large n [4, 5]. Hence the divisible
part of H1 is isomorphic to Q2/Z2 if r is odd and is trivial if r is nonzero even. But the
dimension of the divisible part of H1 is exactly the dimension of H1(GS,Q2(r)) as a Q2-
vector space [1], and therefore H1(GS,Q2(r)) is exactly as stated in the theorem.

Now consider the partial Euler-Poincaré characteristic

χ(n) = h0(n) − h1(n) + h2(n).

Via Tate-Poitou duality [6], we have also

χ(n) = log2(|Z/2nZ(r)|−1|Z/2nZ(r)|∆) =

{

1 − n if r is odd

0 if r is even.
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Now let

A = lim
n→∞

χ(n)

n
=

{

−1 if r is odd

0 if r is even.

As

lim
n→∞

h0(n)

n
= 0 and lim

n→∞

h1(n)

n
= −A,

we see that

lim
n→∞

h2(n)

n
= 0.

Since H2(GS,Z/2nZ(r)) surjects onto the 2n torsion of H2, we conclude that the divisible
part of H2 is zero. Hence H2(GS,Q2(r)) = 0.
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[2] C. Soulé, “K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale,”
Inventiones Mathematicae 55 (1979), 251–295.
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