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Abstract
R. Sharifi formulated remarkable conjectures which relate arithmetic of cyclo-

tomic fields to modular curves. We give partial solutions to his conjectures.
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0 Introduction

0.1. In their proof of Iwasawa main conjecture, Mazur and Wiles [32] used deep relations
between modular curves and the arithmetic of cyclotomic fields, extending the earlier

work [46] of Ribet.

In the paper [51] etc., Sharifi formulated remarkable conjectures which tell that stronger

relations exist between these two subjects.
We give partial solutions to his conjectures.

0.2. Let p > 5 be a prime number.

The conjectures in Sharifi [51] relate modular curves X;(Np”) to the cyclotomic fields
Q(Cnpr) (N is prime to p and r > 0; it is assumed that p does not divide the order ¢(NV) of
(Z/NZ)*) and our main results stated in section 7.2 consider this relation. For simplicity,

in this Introduction, we assume N = 1.

*partially supported by NSF
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0.3. Ideal class groups of cyclotomic fields.

For r > 1, let (,r be a primitive p"-th root of unity, and let C1(Q((,r)){p} be the
p-power part of the ideal class group Cl(Q((,r)) of the cyclotomic field Q((,r).

Let

X = @ CI(Q(CPT)){]’}

r

where the inverse limit is taken with respect to the norm maps of ideal class groups. Then
X is a finitely generated Z,-module. Let

K =U,>1Q(¢r)

The action of Gal(K/Q) on X makes X a A-module, where A is the completed group
algebra Z,[[Gal(K/Q)]] = lim Z,[Gal(Q((yr)/Q)]. We have decompositions

X=XT®oX", ASATxA,
according to the action of the complex conjugation, and X is a A*-module.

0.4. Modular curves.

Let r > 1, and consider the compactified modular curve X;(p") of level p". Let H, be
the ordinary part of H'(X,(p")(C),Z,) = HL(X1(p") ® Q,Z,) with respect to the dual
Hecke operator T%(p).

Let b, be the subring of Endy (H,) generated over Z, by the dual Hecke operators
T*(n) : H. — H, (n > 1). The Eisenstein ideal I, C b, is the ideal of b, generated by
1—T*(p) and 1 — T*(¢) + £{¢)~! for prime numbers ¢ # p, where (¢) € b, is the diamond
operator.

Let

H=1lmH,, b§=lmbp, I=1liml CBh.
i i i
Then H/IH and b/I are finitely generated as Z,-modules. By the action of the complex
conjugation, we have a decomposition H = H* @& H~ as an h-module.

0.5. Homomorphisms @ and Y.
As is explained below, we have homomorphisms

w:H J/IH- - X", Y:X — H /IH”

which relate modular curves and cyclotomic fields, and which are the subjects of Conjec-
ture 0.11 below.

These homomorphisms are compatible with the A™-module structure of X~ and the b-
module structure on H~ /I H~ with respect to the following ring homomorphism A~ — b:
Note that we have an isomorphism

Gal(K/Q)=Z;, 0. c(c€Zy), 0.(()=Cpy

Let A — b be the homomorphism which sends o. € Gal(K/Q) to ¢{(c) € h, where (c) € h*
is the diamond operator. Then this ring homomorphism factors through the quotient A~
of A.
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0.6. A conjecture of McCallum and Sharifi on the arithmetic of cyclotomic fields.
Before we introduce the definition of the homomorphism w, we review a conjecture of
McCallum and Sharifi. They studied the elements

{1 =G 1= Gy € CUQ(Gr)) /P CUQ(Gr)) ™ (u,v € Z/p"Z —{0})

where
{2 /p, G X Z[1/p, G ] — CHQ(Gr)) /P CUQ(Gr)) ™

is a pairing defined by using the cup product of Galois cohomology (see [34], [51]). Note
that 1 — (. € Z[pr, 1/p]*. Basing on their study, McCallum and Sharifi have

Conjecture 0.7. {1-C}, 1= } foru,v € (Z/p"Z)* generate CUQ(Cyr))™ /" CUQ((pr)) ™

0.8. This conjecture gives a new understanding of the important group C1(Q((,r))~/p"CL{Q((pr)) -
But if we consider only the world of cyclotomic fields, we may not find a strong philoso-

phy which supports this conjecture. However, Sharifi formulated deep conjectures on the
relation between the world of cyclotomic fields and the world of modular curves, for which

the above conjecture 0.7 is a corollary. Furthermore, by using the relation with modular

curves, he proved the above conjecture 0.7 in the case p < 1000 ([49]).

0.9. Definition of w.

The theory of modular symbols gives special elements [u : v],. (u,v € Z/p"Z — {0}) of
H, which generate H, as a Z,-module (see 2.4.1, 4.4.1).

In [51] 5.7, Sharifi proved that there is a homomorphism H~ — CL(Q((,r))” /p"CHQ(r)) ™
which sends the minus part [u : v]; of [u : v], to {1-}, 1= } for any u, v € Z/p"Z—{0}.

Sharifi conjectured ([51] 5.8) that this map factors through the quotient H,~ /I, H,~ of

H_~. In this paper, we prove this conjecture, and prove that these homomorphisms for

r > 1 induce a homomorphism @ : H~/IH~ — lim ClQ(¢r))~ /p"CHQ(¢r))™ = X

0.10. Definition of Y.

We use the action of Gal(Q/Q) on H.

Let K = U,Q((,r) as before, and let L be the largest unramified pro-p abelian extension
of K. Then class field theory gives an isomorphism

X = Gal(L/K).

The action of Gal(Q/K) on H/IH factors through the abelian quotient group X =
Gal(L/K). The action of X on the part H~/ITH~ of H/IH is trivial, and for o € X and
x € H/IH, we have o(z) —x € H- /IH".

Asis shown in [51], HT /T H™ is free of rank 1 as an h//-module. Furthermore, we have
a canonical basis e of HT /TH™ as an h/I-module (see 6.3.18). We have a homomorphism

YT:X — H /IH ;0w o0(e) —e.
Conjecture 0.11 (Sharifi [51], Conjecture 5.2 and Remark at the end of section 5).

woY =1, Tow=1.



In fact, as is explained in 7.1.14, this conjecture is slightly stronger than the original
one in [51].

0.12. Relation with the conjecture of McCallum and Sharifi.

The conjecture 0.11 implies the conjecture 0.7 of McCallum and Sharifi. In fact,
since the projection X~ — Cl(Q((,r))~/p"CLQ((,r))~ is surjective, the surjectivity of
w: H"/IH™ — X~ implies that H= — CL(Q((,r))” /p"ClQ((,r))~ is surjective. Since
H_ is generated by [u : v],, we have that Cl(Q((y))~/p"CLQ({y))™ is generated by

{1 =G 1 = ¢y with u,v € Z/p"Z — {0}. Tt is easy to see that these elements are
generated by those for which u,v € (Z/p"Z)*.

0.13. Relation with Iwasawa theory.

The above conjecture 0.11 of Sharifi gives a deeper understanding of X~ than the
Iwasawa main conjecture.

Recall that Iwasawa main conjecture proved by Mazur-Wiles states X~ ~ A~ /(§)
where ¢ is the p-adic Riemann zeta function, (£) is the ideal of A~ generated by &,
and ~ means that these A-modules have the same invariants called characteristic ideals.
(To simplify the description of this Introduction, here we eliminate the pole of the p-adic
Riemann zeta function and denote by & a slight modification of the actual p-adic Riemann
zeta function. See 4.1.2 for the precise formulation.)

In the course of their proof of [wasawa main conjecture, Mazur and Wiles showed that
X~ is isomorphic to B/IB for some faithful h-submodule B of H~ via something like the
map Y, that the homomorphism A~ — b in 0.5 induces an isomorphism A~ /(§) = b/1,
and X~ =2 B/IB ~bh/I =A™ /(§). They did not consider a map like cw. Sharifi considers
the two maps w and Y which give a deep understanding of X .

We have a canonical isomorphism H~/TH~ = S, /ISy as h-modules, where S, is the
space of ordinary A-adic cusp forms (see section 1.5) and the h-module structure of Sy
here is that T*(n) € b acts on Sy as the usual operator T'(n) on Sy. It is known that Sy
is the dualizing module of the ring § in the sense of commutative ring theory ([19] section
7). Hence the consequence X~ = S, /1Sy of Conjecture 0.11 has interesting consequences
that the structure of the A-module X~ is determined by the ring h and that it is described
by the space of ordinary A-adic cusp forms.

Our results are the following (see section 7.2).

Theorem 0.14. Let £’ € A~ be the derivative of the p-adic Riemann zeta function & (see
7.2.2). Then as a map H™ /IH™ ®z, Q, — H™ /IH™ ®z, Q,, we have

ETow=¢.
Theorem 0.15. Assume that either one of the following (i) and (ii) is satisfied.

(i) The p-adic Riemann zeta function & has no multiple zero.

(ii) The class of (1 —T*(p)){0,00} € H™ generates H™ /IH™ ®z, Q, as an b ®z, Q,-
module.
Here {0,000} denotes the path from the cusp 0 to the cusp co.

Then we have:
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(1) wo Y =1. Tow =1 modulo the p-primary torsion of H=/IH™.
(2) X~ = (H~/IH™)/(tor) where (tor) is the p-primary torsion part of H=/I1H~.
(8) The conjecture 0.7 is true.

Theorem 0.16. Assume that H~ /IH™ ®z, Q, is generated by one element as a module
over b ®@z, Q,. Then the conjecture 0.7 is true.

Remark 0.17. (1) In all known examples, £ has no multiple zero (see the sentences after
3.1 of Greenberg [15]).

(2) The assumption (ii) in Theorem 0.15 is closely related to the work [49] of Sharifi.
In that work, he proved the conjecture 0.7 under an assumption which is slightly stronger
than (ii). Our proof of Theorem 0.15 assuming (ii) follows his method in [49].

(3) We can prove the above theorems for each component of A~ corresponding to an
odd power of the Teichmiiller character. See section 7.2.

(4) Sharifi formulated his conjectures also for Q((y,~) and X;(Np") (r > 1) with fixed
N such that p does not divide ¢(N). In this paper, we study this generalized situation.
See section 7.2 for our results.

0.18. We introduce another conjecture of Sharifi in [51]. Let

C = ( Z {1_@?7"71_ng}' [a])T21

a€(Z/p"L)*

€ X [[Z}]] := lim CQ(¢r)) ™ /P CUQGr )™ Rz, Zy[(Z/p"Z)7].

r

On the other hand, let

L=( Y T0)Mid [ € HIZY) = lim H, @, 5,[(Z/p'Z)

a€(Z/p"Z)*

be the p-adic L function in two variables of Mazur-Kitagawa for modular forms ([30], [24];
See section 4.4 of this paper for a review).

Conjecture 0.19. The homomorphism
T XT([Z)]] = (H~/TH7)[[Z,]]
sends C to the minus part L~ mod I of £ mod I.
From the above Theorem 0.15, we can deduce

Theorem 0.20. Under the assumption of Theorem 0.15, the classes of T(C) and L~ in
((H=/IH™)/(ton)[[Z)]] coincide.

0.21. For an earlier work on conjectures of Sharifi, see Busuioc [4]. We heard that G.

Stevens has some results on conjectures of Sharifi, especially on Conjecture 5.8 in Sharifi
[51].



0.22. We give rough sketches of our proofs of the theorems 0.14 — 0.16.
We use a commutative diagram
nyen (2 — T — _
Kl =5 X — H~/IH
! NS
SA — SA/]SA = Hf/IHf.

J7 RN

Here:

"KY denotes a certain p-adic completion of the inverse system of Ky of X;(p").

The homomorphism (1) “sends” (more precisely, the map (1) is the inverse limit
of the maps in finite levels which send) [u : v| € H_/IH_ to the Beilinson element
{90.u/ps Go.0/pr } 0" K5, where go s (o, B) € (5-Z/Z)* —{(0,0)}) is the function on X (p")
called a Siegel unit. See section 3.3 for details. In the introduction of his paper [51], Sharifi
expected that Beilinson elements would be useful for the study of his conjectures. In this
paper, we try to realize his expectation.

The homomorphism (2) is the evaluation at the oo-cusp of the modular curve. It
“sends” {go,u/prs Jo,u/pr } t0 {1 — (i, 1 — (- b See section 5.2 for details. The composition
of (1) and (2) is the map w. Hence the composition of the upper rows is YT o w.

Sy is the space of ordinary A-adic cusp forms. The left vertical arrow is a kind of p-
adic logarithm (see section 4.3 for details). The right vertical arrow is the multiplication
by &'.

The commutativity of the square is proved by the study of Galois cohomology in
section 9 (the derivative & appears in the study in section 9.3). On the other hand, one
can prove that the composition H~ — "KJ — Sy — Sy/ISy = H-/IH™ is £ times
the natural projection (see section 8.1). From these, we have Theorem 0.14 (see section
10.1 for details). In fact, in the actual construction of the map (1), some denominator
appears (the map (1) is not defined integrally), and this is the reason why we need ®z, Q,
in Theorem 0.14.

Next, Theorem 0.15 under the assumption (i) is deduced from Theorem 0.14 as follows.
By the assumption (i), &' is invertible in A~ /(§) ®z, Q, = b/I ®z, Q,, and hence we have
Tow=1on H /IH™ ®z, Q,. From this and by some arguments (see 7.1.3), we obtain
woY = 1on X~. This shows the surjectivity of @ and hence we can deduce the conjecture
0.7 by the argument in 0.12.

Theorem 0.16 is also deduced from Theorem 0.14. See section 10.2.

Our proof of Theorem 0.15 under the assumption (ii) is a sort of modification of the
method of Sharifi in [49].

0.23. This paper contains some general results which we hope to be useful not only for
the applications to the conjectures of Sharifi. For example, in sections 3.2 and 3.3, we
study Beilinson elements for Hida family as in Ochiai [37]. In section 4.4, we compare
the L-functions of Mazur-Kitagawa in two variables with the p-adic L-functions in two
variables obtained by using Beilinson elements, also as in Ochiai [37]. Our results seem
not to be covered by those in [37] in the points that we use Beilinson elements associated
to more general modular symbols [u : v], and that we use a new pairing ((, )) defined in
section 1.9 to compare these two kinds of p-adic L-functions in two variables.
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0.24. The plan of this paper is as follows.

After preparations in sections 1-4, we give the definition of the map w (resp. T)
in section 5 (resp. section 6). (From section 6, as is explained in section 6.1, we fix a
character 6 and study the f-component.)

In section 7, we introduce conjectures of Sharifi and state our results on his conjectures.

In sections 8-10, we prove our results on his conjectures.

In section 11, we describe some relation to Iwasawa theory of modular forms.

0.25. We thank Romyar Sharifi for stimulating discussions and very helpful comments.
We thank John Coates for his consistent encouragement, and Masato Kurihara for a lot
of precious advice.

0.26. Notation and convention

Let Q be an algebraic closure of Q. For each prime number ¢, let Q,; be an algebraic
closure of Q,. We fix an embedding Q@ — C and an embedding Q — Q; for each prime
number /.

For n > 1, let ¢, = >/ € Q c C.

We fix a prime number p > 5. Our assumption p > 5 comes from the fact that in
many places in this paper, we use results of H. Hida and M. Ohta in which they assume
p > 5. (Results in §3.1 hold also for p = 2,3 and results in §4.2 hold also for p = 3.)

In this paper in the places where we present an isomorphism M = M(r) for a Z,-
module M and r € Z without telling which isomorphism we take, they are given by the
base ((pn)n of Zy(1).

1 Preliminaries on modular curves and modular forms

In this section 1, we review modular curves and modular forms. We also supply a new
deifnition ((, )) (section 1.6), an improvement (1.7.12), and a new result (section 1.8) as
well. A reason why this section 1 is long is that the formulations in the works which we
refer to in this paper differ in delicate ways depending on the authors, and so we have to
present our formulation carefully.

1.1 Modular curves

For generality of modular curves, see for example [23].

1.1.1. For integers m, M > 1 such that m + M > 5 we have the modular curve X (m, M)
with cusps, which is a proper curve over Z, and the modular curve Y (m, M) without
cusps, which is an open subscheme of X (m, M). They are characterized as follows. Over
Z[1/mM], Y (m, M)®Z[1/mM] is the moduli space of triples (F, e1, e5) with E an elliptic
curve and ey, e5 sections of E such that me; = Mes = 0 and such that Z/mZ x Z/MZ —
E; (a,b) — ae; + bey is injective. The scheme X (m, M) (resp. Y (m, M)) is the integral
closure of the projective j-line P} (resp. the affine j-line Spec(Z[j])) in Y(m, M) ®
Z[1/mM]. (Cf. [6], [23].)



1.1.2. If m|m’ and M|M’, we have the canonical morphisms X (m', M') — X(m, M)
and Y (m/, M) — Y (m, M). Over Z[1/m'M’], it corresponds to the morphism of moduli
functors (E, e1,eq) — (E, €], ey) where €] = (m'/m)ey, e, = (M'/M)es.

1.1.3. For M >3, let X(M) = X(M, M), Y(M) =Y (M, M). For M > 4, let X;(M) =
X(1L, M), Yi(M) =Y(1,M).

1.1.4. The group GL(2,Z/MZ) acts on X (M) and on Y (M) in the way that (CCL 2
Y(M)®Z[1/M] — Y (M) ® Z[1/M] sends the class of (E, e1, es) to the class of (E, €}, e})

where
()= 0 )
e, c d) \ey/)"
The modular curve X (m, M) (resp. Y(m,M)) (m > 1,M > 1,m+ M > 5) is the
quotient of X (L) (resp. Y (L)), where m|L, M|L, by action of the subgroup G (m, M) of
GL(2,Z/LZ) defined by

Gyp(m, M) = {(Z Z) € GL(2,Z/L7)

| a=1mod m,b=0modm,c=0mod M,d=1mod M}.

If m|L, M|L, we will identify X;(M) ® Z[1/L, (] (resp. Y1(M) ® Z[1/L,(,,]) with
the quotient of X (L) ® Z[1/L] (resp. Y (L) ® Z[1/L]) by the action of

{(i Z) € GL(2,Z/LZ) | ¢=0mod M,d = 1 mod M, ad — bc = 1 mod m}.

It is a quotient of X (m, M) ® Z[1/L] (resp. Y (m, M) ® Z[1/L]) if m|M.

1.1.5. Let H be the upper half plane.
We have the canonical map

H — Y (m, M)(C)

which sends 7 € H to the class of (E, e1, e2) where E is the elliptic curve C/(Z7 +Z) over
C and ey = 7/m,es = 1/M(mod Z7 + Z).
The action of SL(2,Z) on H commutes with the action of GL(2,Z/MZ) on Y (M).

1.1.6. In the paper [22] to which we refer often in this paper, the notation X (m, M)
(resp. Y (m, M)) was used for X (m, M) ® Q (resp. Y(m, M) ®@ Q).

1.1.7. Cusp forms and modular forms of weight 2. The space Sa(m, M)gq of cusp forms
of weight 2 on X (m, M)g = X(m, M) ® Q is the space I'(X(m, M)g, '), where Q! is
the sheaf of differential forms on X (m, M)q. The space My(m, M)q of modular forms
of weight 2 on X (m, M)q is the space T'(X (m, M)g, Q' (log{cusps})) of differential forms
which may have logarithmic poles along the cusps.

Let SQ(M)Q = 52(17 M)Q, MQ(M)Q = M2(17 M)Q
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1.2 Hecke operators

1.2.1. Consider the modular curves X (m, M) and Y (m, M). We review Hecke operators
T(n) and dual Hecke operators T*(n) (n > 1, (n,m) = 1), and diamond operators,
which act on the cohomology groups H*(X (m, M)(C),Z), H (Y (m, M)(C),Z), the space
of cusp forms Sy(m, M)g, the space of modular forms My(m, M )q, and the K-groups
K;(X(m,M)®Z[1/L]) and K;(Y(m,M)® Z[1/L]) (L > 1), etc.

In this paper, dual Hecke operators are used more than Hecke operators.

1.2.2. Diamond operator (a) (a € (Z/LZ)* where m|L and M|L). It is an automorphism
of Y(m, M) (or of X(m,M)) induced by the automorphism <1/a 0) of Y(L) (or of

0 a
X(L)).
If m|M, in the identification of Yi (M) ® Q((,,) with a quotient of Y (m, M) (1.1.4),
the automorphism of (a) ® 1 of Y;(M) ® Q((,,) is compatible with (a) of Y (m, M).

1.23. Let m > 1,M > 1, m+ M > 5, and let £ be a prime number. Then the Hecke
operator T'(¢) and the dual Hecke operator T%*(¢) are defined as follows.
Let Y(m({), M) (resp. Y (m,M(¢))) be the quotient of Y (L) where m¢|L and M|L

(resp. m|L and M/|L) by the subgroup of G(m, M) consisting of all elements (Z 2)
such that b = 0 mod m{ (resp. ¢ =0 mod MY). Let
Ve Y (m,M(0)) — Y (m, M)

be the unique morphism which is compatible with the map H — H ; 7 — {7. Let
7w Y(m, M) — Y(m,M) be the canonical projection. We will use later the fol-
lowing moduli interpretations of Y (m, M (¢)) ® Z[1/mM¢{| and ¢, 7 : Y (m,M({)) @
Z[1/mMl — Y(m,M) ® Z[1/mM{]. Over Z[1/mM¢], Y (m,M({)) ® Z[1/mM¢{] rep-
resents the isomorphism classes of quadruples (E, e, ey, C') where (E, ey, e2) is as in the
moduli description of Y (m, M) ® Z[1/mM/{], C is a subgroup scheme of E which is
étale locally isomorphic to Z/M{Z and étale locally generated by some €, such that
ey = leby, m represents (E,ej, ey, C) — (E, e, ez), and 1, represents (E,eq,e9,C) +—
(E/(MC),e; mod MC, e, mod MC).
Then
() = Weur,  T*(0) = m);

1.2.4. For an integer n = (¢ with ¢ a prime number which does not divide m and with
e >0, T(n) and T*(n) are defined as follows. If ¢ divide M,

Ty =T(), Tr(°)=T*()".
If ¢ does not divide M, they are defined inductively by T'(1) = T*(1) = 1 and
T =TT + TU)E) - €, T*(T?) =TT () + T*() ()~ - £.

For an integer n = [], Ef(i) where ¢; are distinct prime numbers which do not divide
m’

T(n)=[[7E"), 70 =]7").
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We have
T(n)T(n2) = T(n2)T(n1),  T7(na)T"(n2) = T"(n2)T"(na),
T(n)(a) = (a)T(n), T"(n){a) = (a)T"(n)
(n1,m9,n > 1, (a, M) =1). We have
T(n)=T"(n)(n) if (n,mM)=1.
1.2.5. T'(n) and T*(n) are the transposes of each other in the Poincaré duality H'(X (m, M)(C), Z)x

HY(X (m, M)(C),Z) — Z and in the Poincaré duality H*(Y (m, M)(C), Z)x H:(Y (m, M)(C),Z) —
7. Here H! is the cohomology with compact supports.

From here, we consider the case m = 1.

1.2.6. Let h(M)z (resp. H(M)z) be the subring of Endz(H' (X1 (M)(C),Z)) (resp.
Endz(H! (Y1 (M)(C),Z)) generated over Z by T*(n) (n > 1) and (n) ((n, M) = 1).

They are commutative rings. They act also on Sa(M)q (resp. Ma(M)g).

We have a canonical ring homomorphism $(M)z — h(M)z by restricting T*(n) and
(n) on HY(Y1(M)(C),Z) to H*(X,(M)(C),Z).
1.2.7. The p-adic (dual) Hecke algebra h(M)z, = h(M)z ®z Z, (resp. $H(M)z, =
H(M)z ®z Z,) is generated by T*(n) (n > 1) over Z,. This is because for a prime
number ¢ which does not divide M, we have (¢)~1 = (=1(T*(¢?) — T*(¢)?).
1.2.8. For a scheme C over Q, we will denote by Hg'(C) the étale cohomology HE'(C' @
Q. Zy).
1.2.9. As a module over h(M)q, H'(X,(M)(C),Q) is a free module of rank 2. The
action of Gal(Q/Q) on H{ (X1 (M)) ®z, Q, = H(X1(M)(C),Q) ®g Q, over h(M)g, has
the following properties (1) and (2).

(1) For a prime number ¢ which does not divide Mp, the action is unramified at ,
and we have

det(1— Fr;'u) =1 —T(Ou+ {l)u* =1 — (O)T*(O)u + {0)u?.
Here F'r, is the arithmetic Frobenius of /.

(2) The determinant of o € Gal(Q/Q) is k(o) (o). Here  : Gal(Q/Q) — ZX is the
cyclotomic character, and (o) denotes (a) for the a € (Z/MZ)* such that o((y) = CY-

This is well known.

1.2.10. Assume p|M. In this paper, the ordinary component HZ (X;(M))d (resp.
HL (Y1 (M) d) of HL(X(M)) (resp. HL(Y1(M))) is defined to be the part on which
the action of T*(p) (not T'(p)) is bijective. For x € HJ(Y1(M)) (resp. Hg (Y1(M))),
the ordinary component ™% € HJ(X(M))°d (resp. HL(Y1(M))°™d) of x is given as
7o' = lim,, o T*(p)"z.

We denote by Ij(M)%id (resp. f)(M)%rpd) the image of h(M)z, (resp. H(M)z,) in the

endomorphism ring of H} (X1(M))°d (vesp. H (Y1 (M))°rd).

1.2.11. The ordinary part for T'(p) is defined also. In this paper, we mainly consider the
ordinary part for T*(p).
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1.3 Cusps of X;(M)

We recall descriptions of cusps of X (M) and the relations of Hecke operators at cusps.

1.3.1. Let Py be the set of all pairs (a,b) € Z/MZ x Z/MZ such that a,b generate
Z]MZ as an ideal.

1.3.2. Over C, we have

{cusp of X, (M)(C)} =Ty(M)\PH(Q) & Iy(M)\(SL(2.2)/{%1})/ (é %)
@ py/ ~

where / ~ is the quotient by the following equivalence relation ~: (a,b) ~ (a/,b) if and
only if @’ = ea and b’ = eb mod a with € € {+1}. Here the identification (1) sends the
class of g = (CCL Z) € SL(2,7Z) to the class of a/c = goo € P}(Q), and the identification
b
d

In particular, (0,1) € Py corresponds to the cusp oo € PY(Q) and (1,0) € Py
corresponds to 0 € P1(Q). The cusps of X;(M)(C) corresponding to (0,b) € Py with
b € (Z/MZ)* are called co-cusps. But “the” oo-cusp means the cusp oo € P*(Q). The
cusps of X;(M)(C) corresponding to (a,b) € Py with a € (Z/MZ)* (which depend only
on a) are called O-cusps.

(2) sends the class of (Z ) € SL(2,Z) to the class of (¢,d) € Py.

1.3.3. All cusps of X (M) are rational over Q((ys). More precisely, if (a,b) € Py and
if R denotes the positive divisor of M such that (a) = (R) as an ideal of Z/MZ, then
the residue field of the cusp of X;(M) determined by (a,b) is Q((g) "R if M = R or if
M = 2R, and is Q(Cr) otherwise.

In particular, the residue fields of co-cusps (resp. 0-cusps) of X (M) are Q(¢p) NR

(resp. Q).

1.3.4. An algebraic description of cusps is as follows. Let M > 4.

Let Z[1/M, Car][[¢*]][¢~"] be the formal power series ring in one variable ¢'/M. (¢g'/™
is the variable and ¢ is understood as the M-th power of ¢'/*.)

For (a,b) € Py, let

co(a,b) : Spec(Z[1/M, Gullla"™ g ™)) — Yi(M) ® Z[1/M]

be the morphism corresponding to the M-torsion point ¢** (%, mod ¢% of the g¢-Tate
elliptic curve E, over Z[1/M, Cy)[[¢*/*]][¢!]. This morphism ooy (a, b) gives the cusp of
X1(M) ® Q(Cpr) corresponding to (a,b) € Py (1.3.2).

For ¢ € (Z/MZ)*, we have (c) o copr(a,b) = cop(ac, be).

1.3.5. Let S = Spec(Z[Ca][[¢"™]][1/q]). Let £ be a prime number. We review the relation
between cusps and dual Hecke operators 77(¢) which we will use in section 5.
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(1) Assume ¢ fM. Then we have the following commutative diagram in which the left
square is cartesian.
S  — Sy - SIS
! ! !
Vi(M) — Y(1,M(0) % Yi(M)

Here S” = Spec(Z[Ca][[¢/M4]][1/q]). The left vertical arrow is cop(a,b). The right vertical
arrow is (oop(a’,b), 0op(a, b)) where o', b € Z/MZ, a = fa’; b = ¢b'. The left upper
horizontal arrow is the canonical one, and the right horizontal arrow is (i, a), where v,
corresponds to the homomorphism Z[Ca[[¢"M]][1/q] — Z[Ca[[d"™]][1/q] ; ¢"/™ +— ¢*/M
of degree £ and « corresponds to the isomorphism Z[Ca][[¢*M]][1/q] — Z[Car)[[a™4])[1 /4]
which sends ¢'/* to ¢*/M*. The middle vertical arrow is (for the moduli interpretation of
Y(1,M({)) in 1.2.3)
((Eq7 qa/MCjb\/h O)? (Eq7 qa/MCﬁm C,))7

where the (-torsion part of C' (resp. C") is generated by (; (resp. ¢'/*).
Let R > 1 be the divisor of M such that (a) = (R) as an ideal of Z/MZ.

(2) Assume ¢|M but ¢ fJR. Assume b = (V' for some O/ € Z/MZ. Then we have the
following commutative diagram in which the left square is cartesian.

S — S = S
! l !
Vi(M) — Y(1L,M() % vi(M)

where the left vertical arrow is ooy (a, b), the right vertical arrow is cops(a, b'), the middle
vertical arrow is (for the moduli interpretation of Y'(1, M (¢)) in 1.2.3) (E,, ¢/ (%, C)
where C'is the cyclic subgroup of E, of order M{ generated by ¢*M ¥ mod ¢, the left
upper horizontal arrow is associated to ¢'/M — ¢/ the left lower horizontal arrow is
the canonical projection, and the right lower horizontal arrow is 1),.

(3) Assume ¢|R. Then we have the following commutative diagram in which the left
square is cartesian.
S = Hus — ud
l l l
Yi(M) « Y(1,M(@©) % vi(M)

where o’ ranges over all elements of Z/MZ such that ¢a’ = a, the left vertical arrow
is oopr(a,b), the right vertical arrow at a' is ocopr(a’,b), the middle vertical arrow at
a is (B, qM¢,,C) where C is the cyclic subgroup of E, of order M{ generated by
q”™ ¢, mod ¢% where b is any lifting of b to Z/M(Z, the left upper horizontal arrow is
the canonical one, the right upper horizontal arrow is associated to ¢/ — ¢“/M | the left
lower horizontal arrow is the canonical projection, and the right lower horizontal arrow is
(o2

In these (1)-(3), T*(¢) is compatible with v,u* where u (resp. v) is the right (resp.
left) upper horizontal arrow of the diagram.
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1.4 Another model X{(M)
1.4.1. Let X{(M) be the quotient of X (L) (M|L, L > 3) by the subgroup

{(Z Z) € GL(2,Z/LZ) | a =1 mod M,c =0 mod M}.

(Recall that the corresponding condition for X; (M) was ¢ = 0 mod M and d = 1 mod M.)
Define similarly an open set Y] (M) of X{(M) as a quotient of Y'(L).

For M > 4, Y{(M) ®z Z[1/M] is the moduli space over Z[1/M] of an elliptic curve £
with an injective homomorphism Z/MZ(1) — E.

1.4.2. The schemes X (M) and X;(M) are related by the two isomorphisms
o X0(M) @ Z[1/M, (] = X1(M) @ Z[1/M, Cyl,  war 2 XU(M) = X1 (M).

The isomorphism vy, is given by the identifications

X1(M) @ Z[1/M, (]
a b

= the quotient of X (M) ® Z[1/M] by {(c d

) € GL(2,Z/LZ) | c=0,a=d=1mod M}
= X1 (M) @ Z[1/M, ().

The induced isomorphism Y] (M) QZ[1/M, (| = Yi(M)QZ[1/M, (pr) corresponds to the
isomorphism of moduli functors given by (E,«a) — (FE,3), where E is an elliptic curve,
a:Z/MZ(1) — E and (: Z/MZ — E are injective homomorphisms, and «((§,) = 5(a)
for a € Z/MZ.

The morphism vy : Y{(M)(C) = Yi(M)(C) is regarded as the identity map of
I'y(M)\'H.

The isomorphism wy; : Y{(M) = Y;(M) is the unique isomorphism which gives over
Z[1/M] the isomorphism of moduli functors (E,a) — (E/C,[) (o : Z/MZ(1) — E,
B:Z/MZ — E), where C'is the image of «, and 3 sends 1 to the image of an M-division
point e of E such that the Weil pairing sends (a (), €) to Car-

Via H — X{(M)(C) and H — X;(M)(C), wys corresponds to H — H ; 7+— —1/Mr.

This wy, is called the Atkin-Lehner involution.

1.4.3. Via the isomorphism wy;, T'(n) (resp. T*(n)) on X|(M) (n > 1) corresponds to
T*(n) (resp. T'(n)) on X;(M), and {(a) (a € (Z/MZ)*) on X|(M) corresponds to {(a)~*
on Xl(M)

1.4.4. Note that we have two isomorphisms

oarswyg - Hy(X0(M)) = Hy (X[ (M)).

This isomorphism vy, is regarded as the identity map of H (I'y(M)\'H,Z) Qz Z,.
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Lemma 1.4.5. (1) The isomorphism vy : HY(X1(M)) = HY(X!(M)) preserves the
actions of Hecke operators, dual Hecke operators and diamond operators, but changes the

action of Gal(Q/Q) as follows. For o € Gal(Q/Q) and for x € H'(X,(M)), we have
vy (ox) = (o)ovy(2)

where (o) is as in 1.2.9.

o)

(2) The isomorphism wy : H'(X1(M)) — HY(X{(M)) preserves the actions of
Gal(Q/Q), but exchanges the action of T'(n) on one side with the action of T*(n) on
the other, and the action of {a) (a € (Z/MZ)*) on one side with the action of {a)™' on
the other.

Proof. (1) The statement about Hecke (resp, dual Hecke) operators and diamond opera-
tors is clear. We consider the Galois action. Let ¢ and a be as above. The automorphism
-1

((1) 2) - aO 2 (g (1)) on X(M) induces 1 ® o on X{(M) ® Q((pr) but induces
(a) ® o on X1(M) ® Q((n). Hence Via vy @ X{(M) @ Q((y) = Xhi(M) @ Q(Cwm), 1®@0
on X{(M)® Q(Cx) corresponds to (a) ® o on X;(M) ® Q(Cxr). The statement about the
action of Gal(Q/Q) follows from this.

(2) follows from 1.4.3. [

1.5 p-adic relation of modular forms of different weights

Modular forms which appear in this paper are mainly of weight 2. However in several
places in sections 4, 7, 8, we use the fact that modular forms weight 2 are related p-adically
to modular forms of higher weights. We review this in this section 1.5. We also review
ordinary A-adic modular forms.

1.5.1. Fix an integer N > 1 which is prime to p. Let

H = lim B, (G (NpD)™, H = lim B (Vi (Np)*™,

T

b =1limbh(Np")g,  § = lim H(Np")3".
Then h acts on H and $ acts on H . We have a surjective ring homomorphism § — b
defined by restricting the actions on H to H.

1.5.2. Let
A= imZ,[(Z/Ny' 2)*) = Z,][2; x (Z/NZ)"])

pam—
T

We have canonical ring homomorphisms
A—=bh A—9H

which send the group element [a] of A (a € Z); x (Z/NZ)*) to the diamond operator (a).
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1.5.3. For a commutative ring R, let Q)(R) be the total quotient ring of R defined by
Q(R)={a/b| a,b € R,bis a non-zero-divisor of R}.

1.5.4. Regard 1+pZ, as a subgroup of Z x {1} C Z3 x (Z/NZ)*, and regard Z,[[1+pZ,)]
as a subring of A. Then the homomorphisms Z,[[1 4+ pZ,|| — b and Z,[[1 + pZ,]] — 9
are finite flat ([19]). From this we have

Q(h) =h®a Q(A), Q) = H @ QA).
Furthermore, H and H are finitely generated free Z,[[1 + pZ,]]-modules.

Proposition 1.5.5. (Hida [17] section 1.) For any r > 1, we have isomorphisms
b @1 Z[(Z/Np'Z)*] = b(Np)Z, 5 @x L(Z/NP'Z)] S H(Np )3
1.5.6. Let £ > 2, M > 4. Let
Vi(X1(M))z := H'(X1(M)(C), juFap—s) = Ve(Yi(M))z := H' (Yi(M)(C), Fr ),

where Fz, is the r-th symmetric power Sym"(R'f,Z) (r > 0) with f : E — Y1(M) ®
Z[1/M] the universal elliptic curve, and j : Y1 (M) — X;(M) is the inclusion map.
These are the weight k-versions of Vo(X1(M))z = HY (X1 (M)(C),Z), Va(Yi(M))z =
H'(%,(M)(C), 2).

For any commutative ring R, let Vi(X1(M))g := Vi(X1(M))z @z R, Vi,(Yi(M))g =
Ve(Yi(M))z @z R.

Then V(X1 (M))z, and Vi, (Y1(M))z, are understood as étale cohomology groups, and
hence Gal(Q/Q) acts on them.

Let Si(M)g (resp. My(M)g) be the space of cusp forms (resp. modular forms) on
X1(M)q of weight k. Tt is a subspace of (Y, ¢ ®o, coLie(E)**2)) for Y = ¥1(M)q
where colie(E) is the Oy-dual of the Lie algebra of the universal elliptic curve F over Y.

For a commutative ring R over Q, let Si,(M)r = Sk(M)o®qgR, Mi(M)r = Mi(M)o®q
R. We have the period map

per : My(M)c — Vi(Yi(M))c

which induces
per: Sk(M)(c — Vk(Xl(M))(C

These maps are injective and induce the Eichler-Shimura isomorphisms

Se(M)c ® Sp(M)c = Vi(Xi(M))e  Mp(M)c & Sp(M)c = Vi(Y1(M))c,
where m denotes the complex conjugation.
Like in the case k = 2, Hecke operators T'(n) (n > 1), dual Hecke operators T*(n)
(n > 1), and diamond operators (n) (n > 1, (n, M) = 1) act on Vi(X1(M))z, Vi(Y1(M))z,
Sk(M)g, and My (M)g, and these actions are compatible with the Eichler-Shimura iso-
morphisms.
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The different weights are connected p-adically when we go to the inverse limit of level
Np" (r — o0) as follows.

1.5.7. (Shimura [53], Hida [18].) We have isomorphisms
T s H = lim Vo (X, (Np” ))“d — hm Vi(X1(Np")Z (k = 2),

T

™+ H = lim Vo (Y1 (Np” ))o;d — 1lim Vi (Yo (Np"))3 (k = 2) ;

7‘ T‘

x+— xeb™?  (we regard ef? € liLIlHO(X1<NpT>,j*(fk_g/prfk_2>(l€ —2))).

T

This isomorphism 7, preserves the actions of Gal(Q/Q). Furthermore,
ol (n)=T"(n)om, (n=>1),
T o {(a,b)) = a**{(a,b)) om, (a €Z),be (Z/NZ)™).

Proposition 1.5.8. (Hida [17] section 1, Ohta [40] Proposition 2.3.3.) For any k > 2
and r > 1, the isomorphz’sms T 1n 1.5.7 induce isomorphisms

HOAL|(Z/Np'Z)*] = Vi(Xa(Np")2 (k=2), H@\L|[(Z/Np'Z)*] = Vi(Yi(Np")g (k—2).
Here N — Z,[(Z/Np"Z)*] is the composition

th k

A™M5E N S 7 (/NPT
in which the first arrow sends the group element [(a,b)] (a € Z;, b € (Z/NZ)*) of A (this

element is identified with diamond operator) to a**[(a,b)] and the second arrow is the
canonical projection.

1.5.9. Next we consider modular forms. Assume M > 4.
Following Ohta [38] (2.1.1), we define the Atkin-Lehner operator wy; : My(M)c —
Mj,(M)c by

(war())(r) = (=D M5 f(=1/M7)  (f € Mg(M)e, T € H).

In the case k = 2, via the Eichler-Shimura isomorphism, this wj; is compatible with w,, :
HYT (M) \H, Z) — HYTy (M) \ 'H,Z) induced by the map I'y( M)\ H — Ty (M)\ H ; 7+
—1/MT. For a general k, via the Eichler-Shimura isomorphism, this w,, is compatible
with the homomorphism

wy : Vi(Y1(M))g — Vi(Yi(M))g
defined as follows. Let E be the universal elliptic curve T'y(M)\((H x C)/ ~) over

[y (M) \ 'H, where ~ is the equivalence relation defined by (7,2) ~ (7/,2") &7 =72 =2
mod Z7 + Z and I'1 (M) acts on H x C by

a b atr+b =z
(& 0) s (T )

c ct+d er+d

preserving the equivalence. Then the map F — FE induced by H xC — H xC; (7,2) —
(—=1/Mt, z/7) induces a homomorphism wh, : Vi(Y1(M))z — Vi(Yi(M))z. We define
wy = (—1D)EM> R,
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1.5.10. Let
Sk(M)Z = {f € Sk(M)Q ’ an(wM(f)) € Z for all n > 1},

Mp(M)g ={f € Mp(M)g | an(wp(f)) € Z for all n > 1},
where a,, is the n-th coefficient of the g-expansion (at the co-cusp). Then Si(M)z®zQ =
Sk(M)Q (resp. Mk(M)Z Q7 @ = Mk(M)@), and Sk(M)Z (resp. Mk(M)Z) is stable in
Si(M)g (resp. My(M)g) under the actions of 7*(n) (n > 1) and (a) (a € (Z/MZ)*)
(Hida [17], §1).
1.5.11. (Hida [19] section 7, Wiles [60], Ohta [38] section 2.) For r > 1, consider the
injective homomorphisms

Sk(Np")z — Z(Z/Np"Z)*lgllq C Z[(Z/Np"Z)*][[4l],
My (Np")z — Z(Z/Np"Z)][[ql] + QUZ/Np"Z)*] C Q(Z/Np"Z)*]lq]];
f— Z (g-expansion of <a>_1T(p)"wNpr(f)) - lal.

a€(Z/NprZ)*

For r > 1, the trace map Sp(Np"™)g — Si(Np")g (resp. Mp(Np™)g — Mp(Np")g)
sends Sy, (Np™™)z to Si(Np")z (resp. My (Np ™)z to My(Np")z). Via the above homo-
morphism, this trace map is compatible with the canonical projection Q[(Z/Np"Z)*][[q]] —
QUZ/Np"Z)*][lq]]. When we go to the inverse limit of the trace map, the image of
lim M (Np")g' — lim Q,[(Z/Np"Z)*][[q]] is contained in A[[g]l+Q(A) = {372 ang" | an €
A for n > 1,a90 € Q(A)}. Let Spa be the image of the injection lim Si(Np")F? —
Allgllq € Al[q]] and let Mj,x be the image of the injection lim_ My (Np")gd — Q(A)[[g]]-

Then we have

Fact. For r € Z, let tw, : Q(A)[[q]] = Q(A)[[g]] be the ring isomorphism induced

from the ring isomorphism tw, : A = A ; [(a,b)] = a"[(a,b)] (a € Z), b € (Z/NZ)).

Then twy_s : Q(A)[[g]] — Q(A)[[¢]] induces isomorphisms S5 o = Sk and M 5 M a.
Furthermore, the composition

. o twy_ ~
T im My(Np" )5t = My~ =" My x — lim My,(Np")3
T T

satisfies
mroT*(n)=T"(n)om, (n>1),

o ((a,b)) = a>*((a,b)) o (a € Z2,b € (Z/NT)¥).

We denote Sy p (resp. My a) simply by Sy (resp. My), and call an element of this
space an ordinary A-adic cusp (resp. modular) form.

1.5.12. We define an h-module structure of Sy and an $H-module structure of M, by
identifying Sy with the inverse limit of Sy(N pr)%‘;d and by identifying M, with the inverse
limit of My(Np")3. The actions of T*(n) € § and (a) € $ (a € Z x (Z/NZ)*) on
M, defined by this structure coincide with the usual actions of T'(n) and {a)~! on My,
respectively. This is because we use wy,- in the definition of lim M, (Np")z, — Q(A)[[g]],

which exchanges T*(n) and T'(n). We have the similar fact for the action of f on Sy.
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1.6 A-adic Poincaré duality

We describe the A-adic Poincaré duality of Ohta defined in section 4 of [38] (see 1.6.3
below) following [51] section 4, and define a variant (1.6.6) of it.
Let N > 1 be prime to p, and let A := lim Z,[(Z/Np"Z)*].

1.6.1. Let r > 1. Let
() H(X:(Np")(C), Z) x H'(Xy(Np")(C),Z) — Z
be the usual pairing of Poincaré duality.
1.6.2. Consider the pairing
(2 )anvpr  Ha(Xa(Np")) x He (X2 (Np")) — Zy[(Z/Np"Z)],
(@y)— Y. (2 (a)oypwyy T (p)y) - [al.

a€(Z/NprZ)*

Here wy,r and vy, are as in section 1.4.
1.6.3. The pairings in 1.6.2 for » > 1 induce a pairing

HxH—A; (z,y) = ((Tr, ) a,npr )1,
where x, (resp. y,) denotes the image of x (resp. y) in Hj (X1(Np")).
1.6.4. The pairing (, )a : H x H — A has the following properties.

(1) For any a € b, we have
(az,y)a = (z, ay)s.

(2) For any a € ZX x (Z/NZ)*, we have
(a)z, y)a = (z, (a)y)a = [a](z, y)a-
(3) For o € Gal(Q/Q), we have
(o2, 0y)n = ()" (0) " (2, y)a-
(4) We have an isomorphism
H = Hom x(H,A) ; & — (y — (2,9)1)-

1.6.5. Let
(= =)ao: H X H — Zy[[1 + py)]

be the composition
H x H— A — Zy[[1+ pZ,]|

where the second arrow sends [a] (¢ € Z; x (Z/NZ)*) to [a] if @ € (1 + pZ,) x {1} C
Zy x (Z/NZ)*, and to 0 otherwise.

Then (1, )ao is a perfect pairing of finitely generated free Z,[[1 + pZ,]]-modules.

If p Jo(N), then the pairing (, ): H x H — A itself is a perfect pairing of finitely
generated projective A-modules.
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Proposition 1.6.6. (1) We have a pairing
(=, =)a: Hx H— Sy
defined by

o0

(2, 9)a =Y (2, T (n)y)a - 4"

n=1

(2) This pairing satisfies

((az,y))a = (2, ay))a = a((z,9))a, (2, 9))a = = ((y,7))a

forz,y € H and a € h. Here and in the following (3), the h-module structure of Sy is as
in 1.5.12.
(8) This pairing is perfect in the following sense. We have an isomorphism

H — Hom y(H,Sy) ; = (y = ((,))).

Proof. By the duality theory of Hida [19] section 7.3, Theorem 5, we have an isomorphism
Sa = Homa(h,A) ; f = (b ay(hf)).

The inverse map is given by b+ > >°  b(T*(n))q™ € Sy (b € Homa(h, A)). For z,y € H,
we have an element of Hom (h, A) defined by a — (z,ay)s. By the above isomorphism
of Hida, we have the pairing in (1).

(2) and (3) follow from the properties of the pairing of (—, —), in 1.6.4. O

1.6.7. Let 3 B
H, =lim H!(YA(Np") ® Q, Z,)*".

r

Here H! is the cohomology with compact supports.
We have similarly a pairing

(—,—)a:HxH.—A.

This pairing also has the properties corresponding to (1)—(3) in 1.6.4. By using the duality
My = Hom o (9,A) ; f +— (h— ai(hf)) of Hida ([19] section 7.3, Theorem 5), we have
a pairing o

((=,=)a: Hx H, — My

characterized by the property ai(h - ((x,y))a) = (z, hy)a (h € Hy, x € H,ye f[c). This
pairing also has the properties corresponding to (2) and (3) in Proposition 1.6.6.

1.6.8. We consider the relation between weight 2 and weight k£ > 2. Let
(, )+ Vi(Xa(Np"))z x Vi(X1(Np"))z — Q

be the pairing induced by the pairing

Frp—oxFrp—o— Q; (1., . Tp_2, Y1 ... Yp—2) — (k—2)171 Z($1Uya(1)) o (Th—2UYp(k—2))

g
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(z;,y; € R f,Z) with the notation as in 1.5.6, where o ranges over all bijections {1, ..., k—
2} —{1,...,k — 2} and U is the cup product R'f,Z x R' f,Z — R*f,Z = 7.
For r > 1 and k > 2, define

(5 Ik 2 V(Xa(ND"))z X Vi(X1(Np"))z — Q[(Z/Np"Z)*]

(x,y) — Z (x, (a)v&;rwNprT*(p)Ty) - lal.
a€(Z/NpTZ)*
Let
(C D s Ve(Xa(Np"))z x V(X (Np"))z — Sk(Np')g

be the pairing which sends (z,y) to f € Si(Np")g such that in the map Si(Np") —
QUZ/Np"Z)*1[lq]) in 1.5.11, f corresponds to > >, (z,T*(n)y)x¢". The unique existence
of such f follows from duality of Hida ([19] section 5.3)

Sp(Np")g = Hom g (hi(Np")q, Q).

Here hi(Np")g is the Q-algebra of Hecke operators acting on Si(Np"), and a homomor-
phism of @-modules h : h(Np")g — Q corresponds to Y, h(T*(n))q" € Si(Np")qg.

1.6.9. By Ohta [38] Theorem 4.2.5, we have

(T (%), T (U))re = Ther((2,9)a)  for z,y € H

where the two m,, on the left hand side denote the homomorphism H — Vi, ((X1(Np"))z, (k—

~

2) = Vi(X1(Np"))z,, and m, on the right hand side denotes the composition A —
A — Q,[(Z/Np"Z)*] in which the first arrow sends the group element [a] (a = (b,¢) €
L) x (Z/NZ)*) to b*~?[a] and the second arrow is the canonical projection.
From this, we have
Proposition 1.6.10.
(e (@), e (1)) e = Top (2, 9))a) - forz,y € H
where the two m, on the left hand side denote the homomorphism

H — V(X1 (Np"))z, (k — 2) = Vi(X1(Np"))z,

induced by m, in 1.5.7, and 7y, on the right hand side denotes the composition Sy =
Sk = lim Si(Np")z, — Sk(Np")z, where the first arrow is twy_o (1.5.11) and the last
arrow s the canonical projection.
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1.7 A-adic Eichler-Shimura isomorphism

We review the theory A-adic Eichler-Shimura isomorphisms obtained in Ohta [38], [40].
Our formulation is slightly different from that of Ohta: We use X;(M) though he used
X1 (M), so the Galois action on the étale cohomology H' is changed. We slightly improve
his theory by using the functor D defined in 1.7.4 (see 1.7.12).

Let M > 4 and assume p divides M.

1.7.1. For a smooth proper curve C' over Q,, we have an isomorphism
[(C, Q) = Dgp(H'(C © Qy, Q,)(1))

where Dgyg is the de Rham functor of Fontaine with filtration (Djg); ([8]). If we take
X1 (M)®Q, as C, I'(C, Q) is identified with Sy(M)g, = S2(M)g ®g Q,. Hence we have
an isomorphism

S2(M)g, = Dap(Hg (X1 (M))(1) ®z, Q).

For a smooth proper curve C' over QQ, and for a dense open subscheme C° of C, if we
denote C' — C° by X, we have an isomorphism

D(C,Qc(log X)) = Dgp(H'(C° ® Q,, Q,)(1)).

If we take X1(M) ® Q, as C' and Y1(M) ® Q, as C°, T'(C, Q4 (log(X))) is identified with
M5(M)q,. Hence we have an isomorphism

My(M)g, = Dap(He(X1(M))(1) ®2z, Q).
These induce isomorphisms of the ordinary parts
So(M)G = Dgp(He (X1 (M))(1) @2z, Qy),
Mp(M)gy 2= Dap(Hg, (Yi(M))™(1) @z, Q).
1.7.2. We have exact sequences of finitely generated free Z,-modules endowed with actions
of Gal(Q,/Q,) and Hecke operators
0 — Hy(Xy(M))Sy — Hg(Xa(M))™ — Hg (X2(M)gre — 0

sub quo

0 — He (Yi(M))gi, — Hg (Yi(M))*" — Hg, (Y1 (M))qre — 0

sub quo

characterized by the following properties: The actions of Gal(Q,/Q,) on HZ (X;(M))%d (1)

and HY (Y1(M))%d(1) are unramified, and for an element o of the inertia subgro?lp of
Gal(Q,/Q,), the actions of o on HZ(X;(M))¢ and HE (Y1(M))o¢ coincide with the
actions of (o)~ (1.2.9).

The canonical map HZ (X (M) — HE(Y1(M))2d is an isomorphism.

sub sub
We have isomorphisms

LR

Dir(Hg(X1(M)))(1) ®z, Qp) — Dar(Hg (X1(M))ono(1) ©2, Qp),

L

Dar(Ha(Vi(M))*(1) ®z, Qp) = Dar(He(Y1(M))qio(1) ®z, Q).
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1.7.3. For a topological abelian group A such that A 5 lim , AJA" where A’ ranges over
all open subgroups of A, and for a topological abelian group B having the same property
as A, we define the topological tensor product AQB by

A®B = lim A/A' @, B/B'
A'B’

where A’ (resp. B’) ranges over all open subgroups of A (resp. B).

1.7.4. For a pro-p abelian group 7' endowed with a continuous unramified action of

Gal(@p/@p)a let
D(T) = (T&W(F,))""~" = {x € T&/W(F,) | (Fr, ® Frp)(w) = }.
Here the topological tensor product is defined with respect to the original topology of T’

and the p-adic topology of T_/V(I_Fp), and F'ry, is the arithmetic Frobenius (the element of
Gal(Qy"/Qy), where Q) C Q, is the maximal unramified extension of Q,, which acts on
the residue field I, of Q)" by @ + 7). Then D(T') is also a pro-p abelian group, and we

have a canonical isomorphism

D(T)&W (F,) = T&W (F,).
1.7.5. For a pro-p abelian group T' endowed with a continuous unramified action of
Gal(Q,/Qy), let ¢ : D(T) — D(T) be the homomorphism induced by 1 ® Fr, on
T@W (F,). It is a bijection. It is also induced by Fry'@1on T@W (F,). We can recover
T from D(T) and ¢ : D(T) — D(T) as T = {x € D(T)@W (F,) | (¢ ® Fr,)(z) = z}.

[a¥)

Proposition 1.7.6. There is a functorial isomorphism of pro-p abelian groups D(T) = T.
In other words, D is isomorphic to the forgetful functor as a functor from the category
of pro-p-abelian groups endowed with continuous unramified actions of Gal(@p/@p) to the
category of pro-p-abelian groups.

Proof. For each n > 1, take an element «,, of W(F,n) satisfying the following conditions
(i) and (ii).

(i) For each n > 1, we have an isomorphism Z,|Gal(L, /Q,)] 5 W(Ep) 5 g — gom,
where L, is the field of fractions of W (IFn).

(ii) If m,n > 1 and n|m, the trace map W (Fym) — W (F,n) sends a,, to ay,.

The functorial isomorphism 7' = D(T') is given as follows. Assume first that 7' is finite.
Then there is n > 1 such that the action of Gal(Q,/Q,) on T factors through Gal(L,,/Q,).

For this n, we define the isomorphism 7' = D(T) as x — > ieznmz Fryp(on) @ Fry(x). This
isomorphism is independent of the choice of n. For general T', we define the isomorphism
T = D(T) as the inverse limit of these isomorphisms for finite quotients of 7. O

1.7.7. Since the actions of Gal(Q,/Q,) on HZ(X;(M))d(1) and on HE (Yi(M))ed (1)

are unramified, we have qaue quo
DdR(Hé}t(Xl(M>>$S)(1)®Zp@p) = DcryS(Hélt(Xl(M))Zru%(l)@)zp@p) = D(Hélt(Xl(M))gﬁ(l»@)zp(@pa
Dan(Hh (VM) (1)02,Qy) & Do (A (Vi (M) 58 (1)9,Q,) 2 DH(V(M))3(1)2,Q,.
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1.7.8. Hence we have isomorphisms
So(M)g 22 D(Hg (X1 (M))qio (1)) ®z, Qp,
My (M) = D(Hg (Y1 (M))gio(1) @2z, Q.

Proposition 1.7.9. Let So(M)z, and My(M)z, be as in section 1.5. Then the isomor-
phisms in 1.7.8 induce isomorphisms

So(M)F* = D(HL(X\(M))33(1)),  My(M)Z = D(HL(Y1 (M) (1)).

quo quo

Proof. Let C, be the completion of Q,, and let Oc, be the valuation ring of C,. Ohta
([40]) proved that (the isomorphisms in 1.7.8) ®q,C, induce isomorphisms

Sa(M)Z! ©2, Oc, = Hy(X1(M))ors @2, Oc,

My (M)g! @z, Oc, = H&(i(M))i; ©z, Oc,.
Hence the isomorphisms in 1.7.8 induce an isomorphism from
Sa(M)gy' = (S2(M)z! ®z, Q) N (S2(M)g @z, Oc,)
onto

D(Hg(X1(M))quo(1)) = (D(Hg (X1(M))q1a (1) @z, Qp) N (D(Hz (X1(M))gio (1)) ®2, Oc, )

quo quo quo

and an isomorphism from
My(M)g = (Mo (M3 @z, Qp) N (Ma(M)3! @z, Oc,)
onto
D(Hg,(Yi(M))quo(1)) = (D(Hg (Yi(M))qio(1)) @2, Qp) N (D(He (Yi(M))oi (1)) ©2, Oc, )-
0

1.7.10. Now fix N > 1 which is prime to p. We take the inverse limit of the above story
at level M = Np" (r — o0). Let H, H, b, $, A, Sy, M, be as in section 1.5.
We have exact sequences

0_>]{sub_>]—I_>]_—Iquo_>07 O_>Hsub_>H_>Hquo_>0

where
Hayp :=lim H (X1 (Np"))2y Hauo := lim Hi (X1(Np"))one,
Hqy, = lim H (Vi (Np")o Hauo := lim Hj (Y1 (Np"))ome.

The canonical injection Hg,, — Hgyp, IS an isomorphism.
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From 1.7.9 and 1.7.6, we obtain

Proposition 1.7.11. (1) We have canonical isomorphisms (A-adic Eichler-Shimura iso-
morphisms) )
Sa = D(HquO(l))a My = D(HqHO(l))-
(2) Sa = Hquo as h-modules, and My = lflquo as $H-modules.
Here the h-module (resp. $-module) structure of Sy (resp. My) is as in 1.5.12.

1.7.12. The isomorphisms in 1.7.11 (1) induce isomorphisms
SA®W(FP) = Hqu0(1)®W(Fp)a MA®W(FP) = ﬁqu0(1)®W(Fp)~

In Ohta [38], [40], these isomorphisms are obtained when @W (F,) is replaced by ®O
where O is the valuation ring of a local field over @, which contains all roots of 1, and
are called the A-adic Eichler-Shimura isomorphisms.

1.7.13. As h-modules, Hg,y, is free of rank 1, and Sy and Hg,, are dualizing h-modules.
As $-modules, M, and ﬁquo are dualizing $)-modules. Here the b (resp. $)-module
structure on Sy (resp. My) is as in 1.7.11. (For Sy and M,, see Hida [19]. For H,, and
H o, see Hida [18], Mazur-Wiles [33], Ohta [38], [39], Tilouine [56].)

1.7.14. The Q(h)-module H ®, Q(h) is free of rank 2, and Hgy, ®p Q(h) and Hyue @5 Q(h)
are free (h)-modules of rank 1.

Concerning the action of Gal(Q/Q) on H ®y, Q(h) over Q(h), we have the following
A-adic version of 1.2.9 ([19] section 7):

(1) For a prime number ¢ which does not divide Np, the action is unramified at ¢, and
we have
det(1 — Fr;'u) =1 —TOu+ {l)u* =1 — (O)T*(O)u + {)u’.
Here F'ry is the arithmetic Frobenius of /.
(2) The determinant of o € Gal(Q/Q) is k(o) '{o)~t. Here (o) denotes (a) with a

the element of Z x (Z/NZ)* =lim (Z/Np"Z)* such that o(Cnyr) = (i for any r > 1,
and k is the cyclotomic character.

Note also ([38]):
(3) the action of Gal(Q,/Q,) on Hyy(1) is unramified,

(4) The action of an element o of the inertia subgroup of Gal(Q,/Q,) on Hgy, is given
by (o)~ 1.

1.7.15. In [38], Ohta uses X;(M). Identify H} (X;(M)) and H} (X](M)) via the iso-
moprhism vy, in section 1.4. This isomorphism vy, changes the action of Gal(Q/Q) as
described in 1.4.5 (1). Hence for X7, 1.7.14 (4) is replaced as follows. As in Ohta [40], the
action of an element o of the inertia subgroup of Gal(Q,/Q,) on Hy,, is trivial. In fact,
Hgyp, for X7 coincides with the fixed part of H under the action of the inertia subgroup

of Gal(@p/(@p).
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1.7.16. The following is not used in this paper, but put for the comparison. We have the
following exact sequences (cf. 1.4.5).

0 — [{o)*-action] — [T*(p)-ordinary part of Hj (X1(M))] — [unramified](—1) — 0.

0 — [unramified] — [T (p)-ordinary part of H}, (X|(M))] — [{o)-action](—1) — 0.
0 — [unramified] — [T'(p)-ordinary part of Hj (X,(M))] — [(¢) *-action](—1) — 0.
0 — [(o)-action] — [T'(p)-ordinary part of Hg, (X;(M))] — [unramified](—1) — 0.

Here [(o) ~-action] (resp. [unramified]) means a Gal(Q,/Q,)-module on which an element
o of the inertia subgroup Gal(Q,/Q,) acts by (¢)~! (resp. trivially).

As Ohta used X{ (M), the second exact sequence appeared in his papers [38] and [40].
We use the first exact sequence in this paper.

1.8 T*(p) and Frobenius

The aim of this section 1.8 is to prove the following proposition.

Proposition 1.8.1. Assume p|M. Then the action of T*(p) on H}(X1(M))%e(1) coin-

cides with the action of the arithmetic Frobenius Fr,. That is, the action of T*(p) on
D(HL(X1(M))2d (1)) coincides with the action of =% (1.7.4).

quo

Remark 1.8.2. (1) This proposition is proved in Ohta [41] 3.4.2 (cf. also Mazur-Wiles
[32]) except “one Teichmiiller component” in the following sense.

Regard (Z/pZ)* as a subgroup of (Z/MZ)* via the unique injective homomorphism
such that the composition (Z/pZ)* — (Z/MZ)* — (Z/pZ)* is the identity map and such
that if we write M = Np" with (N, p) = 1, then the composition (Z/pZ)* — (Z/MZ)* —
(Z/NZ)* is trivial. Consider the direct sum decomposition D(H(X1(M))3d(1)) =
®icz/(p-1)z (the i-component) where the i-component is the part on which (a) for a €
(Z/pZ)* C (Z/MZ)* acts as w(a)® with w the Teichmiiller character. Ohta [41] 3.4.2

shows that on each i-component with ¢ € Z/(p — 1)Z — {0}, T*(p) and F'r, coincide.

(2) It seems that this proposition is reduced to the work Saito [48] on the p-adic
representation of Gal(Q,/Q,) associated to an eigen cusp form. The following proof does
not use [48], but uses g-expansions.

1.8.3. Consider the two homomorphisms

T(p), ¢q : Zyllalldq — Zy[[g]]dg;

T(p)(Y_ anq"dlog(q)) = Y _ anyg"dlog(q),
n=1 n=1
2q(Y_ ang"dlog(q)) = > ang™dlog(¢?) = p- Y ang"dlog(q).
n=1 n=1 n=1

We have T'(p) o ¢, = p, to which we are going to reduce 1.8.1.



26

1.8.4. Consider the canonical map of de Rham cohomology groups over Q,

aar © Hip(X1(M)q,) — Hap(Spec(Zy(lq]] ®z, Qp)) = (Z,llqlldq) /dZ,[lq]] @z, Q,

which is induced from Spec(Z,[[q] ®z, Q,(Cnr)) — X{(M) =¥ X;(M) where the first
arrow is the g-expansion.

Via this map, T*(p) on Hjg(X1(M)g,) is compatible with the usual Hecke operator
T(p) : Zy[lq]]dg — Zy[[q]}dg (1.8.3).

The restriction of agr to Sa(M)g, = D(X1(M)g,, ') C Hijp(X1(M)g,) sends f €
S2(M)q, to the class of the g-expansion of wy(f).

1.8.5. Consider the functor D, of Fontaine ([9]), [10]). We have a homomorphism

Apst - ‘DpSt(Hélt(X1<M))Qp) - (Zp[[q]]dq)/dzp[[q]] ®z, Qpur

defined as follows. Here Q, ., C @p is the maximal unramified extension of Q,. The
space (Zy|[q]ldq)/dZ,[[q]] is regarded as the crystalline cohomology of F,[[¢]]. On the
other hand, X;(M)g, has a model X of semi-stable reduction over Oy for some finite
extension L C Q, of Q,, and by Tsuji [57], if Ly denotes the largest unramified extension
of Q, contained in L, then Dy (Hg (X1(M))g,) is identified with Hy, ..(C) ®0,, Qpur
where C' is the reduction of X and H,, ., is the log crystalline cohomology. The map

Spec(Op[[q]]®o, L(Car)) — X which is compatible with Spec(Z,[[q]]®z, Qp(Car)) — X1 (M)
induces a homomorphism

Higg crys(C) = (O llallda) /dO1,[[al] ®z, @,

of log crystalline cohomology. Hence we have the above homomorphism a,;.
The homomorphisms a4z and a,s are compatible with the isomorphism

H;R(Xl(M)Qp) ®Qp Qp = DdR(Hélt(Xl(M))Qp) ®Qp Qp = DpSt(Hé}t(Xl(M))Qp) ®Qp,u7‘ @p'

Via the homomorphism a,s, T*(p) on Dpg(Hg(X1(M))g,) and T(p) on Z,[[q]]dg
(1.8.3) are compatible. Furthermore, via ayg, ¢ on Dyg(H (X1(M))g,) ([8]) and ¢, F'ry,

€

on Zy[lqlldqg ®z, Qpur (1.8.3) are compatible because the former is compatible with the
map ¢ on Hy, ,..(C) induced by the p-th power map in characteristic p and the latter is
also induced by the p-th power map in characteristic p.

1.8.6. We have an exact sequence

0 — Dpst(Hey (X1(M))25 0,) = Dpst(Ha (X1(M))ge) = Dpst(Hg (X1(M))oneg,) — 0.

quO’Qp

The ¢ on Dyg (HE (X1 (M) o ) coincides with p times the ¢ on D, (HZ (X1 (M) o (1))

quo,Qp quo,Qp

and hence coincides with p times the ¢ on D(HE (X1(M))%3(1)) ®z, Q,.

quo

Lemma 1.8.7. The map aps; kills Dyst(H (X1 (M) o,)-
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Proof. By 1.7.2, the action of Gal(Q,/Q,(Cas)) on HE (X (M))2{ is unramified. Hence the
action of @ on Dy (Hg (X1 (M) g, ) is of slope 0. That is, there is a finitely generated
Zy-submodule L of Dyq(Hy(X1(M))2 o) which generates Dy (Hg (X1 (M) o) over
Q, such that ¢(L) = L. Since this ¢ is compatible with ¢, on Z,[[q]]dg (1.8.5) and the
image of ¢} : Z,[[q]ldq — Z,|[q]]dg is contained in p"Z,[[q]]dq for any n > 0, we have the

result. ]

1.8.8. By 1.8.7, aps induces a homomorphism

b+ Dpst(Hee(X1(M))quom,) = (Zyllg]ld1og(q))/dZy[[q)] ®z, Qp,ur-

The composition of this map with My(M)z, — D(H} (X1 (M))erd (1)) (note D(HY (X1 (M))%d(1))q,
Dot (HL (X1 (M) (1)g, ) is the map induced by agr. Hence the image of D(H} (X1 (M ))g{l‘i( )

under b is contained in (Z,[[q]|dq)/dZ,[[q]]-
Note that for n > 0, the map T'(p)" : Z,[[q]]dqg — Z,[[¢]]dq induces

(Zylalldq)/dZylq]) — (Zylalldq)/p" dZy[[q]}-

The composition
T(p)" 0 agroT*(p) ™" : So(M)g! — (Zy[d])dq) /p"dZ,[q)]

sends f € Sy(M )OZ;d to the class of g-expansion of wy;(f). Hence the inverse limit of the
last maps for n > 1 is the map Sy(M)3¢ — Z,[[q]]d1og(q) which sends f € Sy(M)Z to
the g-expansion of wy,(f), and which is clearly injective. Hence the inverse limit

b: D(Hy (X, (M))aue(1)) — Zy[lalldg

quo

of
T(p)" oboT*(p)™ : D(Hg (X1 (M))ino(1) = (Zyl[g])dg) /p"dZ,[q]]

is injective. Via b, T*(p) (resp. py) on D(HL (X (M ))erd (1)) is compatible with T'(p)

(resp. ¢,) on Z,[[q]]dg. Since T'(p) o ¢, = p on Z,[[q]]d1og(q), we have T*(p) o p =1 on
D(Hg (X1(M))gio(1))-

quo

1.9 Eisenstein ideal, Drinfeld-Manin splitting

We review some notions concerning Hecke operators which are necessary for this paper.

1.9.1. (Eisenstein ideal.) Assume p[M. Let N > 1, (N,p) =1, and let h = lim H(Np" )Ord
H= @Tﬁ(NpT)%;d as usual. Let R be one of h(M)z,, H(M)z,, b, 9.
The Eisenstein ideal of R is defined to be the ideal generated by 1 —T*(¢) + £(¢)~* for

all prime numbers ¢ fM and 1 — T*(¢) for all prime numbers ¢|M.
We will denote the Eisenstein ideal of R by I.

1.9.2. (Eisenstein component.) Let R be as above. Then R is a complete semi-local ring,
and hence R = [][,, R, where m ranges over all maximal ideals (there are only finitely
many m) and R, is the local ring of R at m which is a complete local ring.

The Eisenstein component Rp of R is defined to be [[, R, where m ranges over all
maximal ideals of R which contain the Eisenstein ideal of R.
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1.9.3. There is a unique left inverse of the canonical injection H'(X;(M)(C),Q) —
HY (Y1 (M)(C),Q) (resp. So(M)g — My(M)g) which is compatible with the actions of
H(M)g. i

Let N > 1,(N,p) =1,and let H, H, Sy, My and $) be as before. Then there is a unique
left inverse of the canonical injection H ®4 Q(A) — H @5 Q(A) (resp. Sy @4 Q(A) —
My ®4 Q(A)) which is compatible with the actions of §).

These left inverses are called Drinfeld-Manin splittings.

2 Beilinson elements in K> of modular curves

Beilinson elements in K5 of modular curves were defined by Beilinson in [2], and studied
by him and then later by [22]. In this section, we review basic definitions (section 2.1),
norm relations of Beilinson elements (section 2.2), and the relations of Beilinson elements
to values at s = 1 of complex L-functions of modular forms (sections 2.3 and 2.4). We
slightly improve results in [22]: Beilinson elements of the type {go.a, g0} with two 0 in
the left entries, which appear in this section and play important roles in this paper, were
not considered in [22]. Beilinson elements in section 2.4 related to the modular symbols
[u : v], were not considered in [22].

2.1 Beilinson elements on Y (m, M)

2.1.1. Siegel units ([25]).

For (o, 3) € (Q/Z)?—{(0,0)} and for an integer ¢ which is prime to 6 and to the orders
of av and f3, the Siegel unit g, g is defined. It is an element of O(Y (m, M) ® Z[1/mM])*
for integers m, M > 1, m + M > 5 such that ma = 0 and M3 = 0. It is characterized by
its g-expansion as follows. Let

%) =J[Q-q"t) - [J@—qt™") € zft, 1/4][[q]] ",
n>0 n>1
D) = T (=) F (1) 7, (1) € 20t 1/ [al)la )
Write a = a/m mod Z, = b/M mod Z (a,b € Z). Then g, s has the g-expansion
eJap = H(qV"Cr) in Z[1/mM, Culllg" ™ lg

Here ¢'/™ = €2™7/™ (7 € H). Taking ¢ such that ¢ = 1 mod m, ¢ = 1 mod M and
c# %1, let

Jap = cJap ® (¢ = 1)7" € O(Y (m, M) ® Z[1/mM])* ® Q.
Then g, s is independent of the choice of such c.

2.1.2. The following distribution property of Siegel units is often used in section 2.2.
Let L > 1, and assume (¢, L) = 1. Then we have
I c905 = cgap in OV (mL, ML) @ Z[1/mML])*.
a/,ﬁ/
where (o, ') ranges over all elements of (Q/Z)? such that o = Lo’ and 3 = Lf3'.
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S

2.1.3. If m|L, M|L, for (t

Z) € GL(2,Z/LZ),

t v

(S u) (cga,ﬁ) = cYuo’ B with (()/76/) — (Oé, 5) (‘; Z) '

In particular, since the action of the matrix (_01 _01> on Y(L) is trivial, we have
(1) cYa,p = c9—a,—3-

2.1.4. For a matrix R = u

s

t
Beilinson elements . gz, 1 (R) € Ko(Y (m, M)®Z[1/mM]) and 2, pm(R) € Ko(Y (m, M)®
Z[1/mM]) ® Q, where ¢,d € Z and (cd,6mM ) = 1, as follows.

€ M(2,7Z) satisfying the condition (i) below, define

cdZmM(R) = caZmm <§ g) = {cGs/mu/s dGt/moym } € Ko(Y(m, M) ® Z[1/mM]),
2 (R) = {Gsjmu/nts Geymom} € Ko (Y (m, M) @ Z[1/mM]) @ Q.
Here {—, —} is the Steinberg symbol.
(i) Neither the images of (s,u) nor (t,v) in Z/mZ x Z/MZ is (0,0).
These Beilinson elements depend only on s, mod m and u,v mod M, and so we often
regard them as functions of s,¢ mod m and u,v mod M.
In the case m = M and R’ € SL(2,7Z), by 2.1.3, we have

(R)"(zaene(R)) = 2 (RR), (R (cazmm(R)) = caznn(RR).

2.2 Norm relations

We prove Propositions 2.2.2, 2.2.3, 2.2.4, 2.2.5 on norms of Beilinson elements.
For an integer m > 1, let prime(m) be the set of all prime divisors of m.
We will often use the following lemma.

Lemma 2.2.1. Let m, M, L be positive integers. Assume m|L, M|L. Then we have the
following result.

(1) If m|m’|L, and M|M'|L, Gr,(m', M") is a normal subgroup of Gr(m,M).

(2) Let € be a prime. Then G(m,M)/G(mt, M{) is isomorphic to

14+ mz my Ty )
M2, F b 14 dl{|M
F) (b ( P HMU)H(Z u)) if thm and (

1 Fg Fg 1 z u
T m :
0 F Fo| (by (Mz 1—|—J%4u> — 10 x yl|) ifl m but f|M
0 0 1 0 0 1

(GL(2,F) (by mod ¢) if € fmM.
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Proposition 2.2.2. Let m,M > 1 and assume m + M > 5. Assume prime(m) C
prime(M). Let L > 1. Let R € M(2,7Z), assume that the condition (i) in 2.1.4 is
satisfied, and assume further that the image of R in M(2,7Z/LZ) belongs to GL(2,Z/LZ).
Let ¢,d € Z and assume (cd,6mML) = 1.

Then the norm map Ko(Y(mL, ML) @ Z[1/mML]) — Ky(Y(m, M) ® Z[1/mML))
sends ¢ qzmrmrn(R) to

( H Py) - cazmm(R),

O|L )n

where HfILWn is the product over all prime divisors £ of L which do not divide m, and

Pr=1—T%(0) (165 (1)>*+(16£ 1%)*.g if0 M,

P=1—T"(0) (165 g’) if 01 M.

? Z) The proof is essentially the same as that of Proposition 2.4

in [22], where we treated the case s =1, u=0,t=0,v = 1.
We may assume that L is a prime number ¢. In the following (1) (resp. (2), resp. (3)),
we treat the case ¢|m (resp. ¢ fm but ¢|M, resp. ¢ fM).

(1) Assume ¢|m. Take an integer J > 1 such that m¢|J and M{|J. Let

Proof. Write R =

t v t v

H={heGym M) | (-5 7o)h = (5 30)t

1+ xvm yum

—xtM 1 —ytM
Then the morphism Y (mf, M{¢) — Y (m,M) factors as Y(ml, M{) — H\Y(J) —
Y (m, M), and the norm map Ky(Y (ml, M{) @ Z[1/mM{]) — Ky(Y (m, M) Z[1/mM/])
factors as Ko (Y (ml, M€) @ Z[1/mM€) 3 Ky(H\ Y (J) @ Z[1/mM ) 22 Ky (Y (m, M) ®
Z[1/mMY{]), where Ny and N, are norm maps.

={heGym,M)|h= < ) mod G j(mt, M{) for some x,y € Z}.

Claim 1. Nl sends c,dZmL,ML(R) to {cgs/m,u/Mvdgt/mé,v/MZ}-
We prove Claim 1. Since 49t /mev/me € O(H\ Y (J) @ Z[1/mML])*,

Nl(c,dZmL,ML(R>> - {Nl(cgs/mf,u/MZ)7 dgt/mﬁ,v/M€}7

where N; on the right hand side is the norm map Ny : O(Y (mf, M{) @ Z[1/mM{])* —
OH\Y(J)®Z[1/mM{])*. Let F,; be a set in Z of representatives of F,. We have

1+ 2x2vm yum i
Nl(cQs/mZ,u/Mﬁ) = H < —atM 1 — th) cYs/mlu/Me

ac,yEng

- H cYs/mb+(sv—tu)z /Lu/M+(sv—tu)y/L = cGs/mu/M

m,yGIF'g
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by Lemma 2.2.1 and by the distribution property 2.1.2 of Siegel units. This proves Claim
1.
Since gs/mum € OY (m, M) @ Z[1/mM])*,

N2({cgs/m,u/M7 dgt/mﬁ,v/Mf}) = {cQs/m,u/My N2 (dgt/mﬁ,v/ME)}y

where Ny on the right hand side is the norm map Ny : O(H \ Y (J) ® Z[1/mM/{])* —
O(Y (m, M) ® Z[1/mM¢])*. We have similarly,

N2(dgt/mﬁ,v/MZ) = d9t/mu/M-

(2) Assume ¢ fm but ¢|M. Let J > 1 be as in the proof of (1).
By using Lemma 2.2.1 (2), we see that there exists an element h € G ;(m, M) such
that

S U t v

(2.1) (W’W)h or <W’W)

he(1/mZ]Z x (1/MOZ]Z C Q/Z x Q/Z.
In what follows, we show the result assuming that we can take h € G;(m, M) such that
(t/ml,v/ MO € (1/m)Z]Z x (1/MF)/Z. The other case can be treated in the same way.
Put
h*(c,dsz,ML(R)) = {cgs’/m&u’/Mﬂy dgtl’/m,v’/Mﬁ}

with some s, v/, o', ¢/ € Z satisfying s =s mod m,v' =u mod M, v =v mod M, and
' =1 mod m. By our assumption (t/ml,v/MC)h € (1/m)Z/Z x (1/M{)]Z, we have
¢ fs'v'. Tt is clear that h*(cqzmrn(R)) has the same image as .gzmr v (R) under the
norm map Ky (Y (ml, M{)) — Ks(Y (m, M)) in question.

The morphism Y (mt, M¢) — Y(m, M) factors as Y (ml, M{) — Y (m,M({)) —
Y (m, M). Note that Y (m, M({)) is the quotient of Y (mf, M¢) by the action of the ma-
T my
0 1+ Muw
(Z/mlZ)* = (L)L) x(Z/mZ)* is (x,1). The norm map Ks(Y (ml, M)QZ[1/mMI]) —
Ky(Y(m, M(0)) ® Z[1/mM{]) sends h*(cazmr.mr(R)) to

trices with x € I?Z, y,w € Fy, where & denotes an integer whose image in

Z {cgs’i/mf, w [Me4y/es dgee’ /m, ’U’/MZ—O—w/Z} (denote this by A)

erF‘; ywel,

As in 1.2.3, let © : Y(m,M(¢)) — Y (m,M) be the canonical projection and let
e : Y(m,M({)) — Y(m, M) be the unique morphism which is compatible with H —
H ; 7+ {7 so that T*(¢) = m);. We have

Vi (cGajmp/m) = H cGa/mb/Mi+v/t

UEF@

for any a,b € Z. Since

H c9s'z /mb+w’ JLa! [ME+y /L = cYs/mu/M

w’,yeﬁ‘g
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(note that 7 = s = s mod m and v’ = u mod M),

-1
H cGs'E/mlu’ JML+y/t = ( H Cgs’/mZJr:v/Z,u’/MZer/E)(H cgsf’/m,u’/M€+y/Z)
z€lF) yel, z,y€F, yeF,

= (cgs/m,u/M)( H cgsé’/m,u’/Mé-I—y/Z)il-

yeF,

Hence
A= {cgs/m,u/M7 H dgtf’/m,v’/ME—l—w/Z} - wZ{cgsZ’/m,u/Ma dgté’/m,v/M}-
U)GIF[
The norm map 7, : Ko(Y (m, M(¢)) @ Z[1/mM{]) — KoY (m, M) @ Z[1/mM{]) sends A
to
{cgs/m,u/M7 T H dgté’/m,v’/MEer/Z} - T*<£){cgsf’/m,u/Ma dgtf’/m,'u/M}-
wEFe

As Y (m, M) is the quotient of Y (m, M (¢)) by the action of <w’1M (1)) (w' € Fy), it

follows

Ty H dgee’ /mu' JMe+w /e = H Al Jm+w' JLv' [MO+w/l = d9t/mu/M -

wel, w wel,
Hence we obtain the result.

(3) Assume ¢ fM. Let J > 1 be as in the proof of (1).

As in (2), there exists h € G;(m, M) such that (2.1) in the proof of (2) is satis-
fied. As in (2), we show the result assuming that we can take h € G;(m, M) such that
(t/ml,v/ML)h € (1/m)Z]/Z x (1/MV)/Z. The other case can be treated in the same way.

Take an integer ¢ satisfying /¢ =1 mod mM. Put

h*<c,dsz,ML(R)) = {cgs’/mf,u’/va dgté’/m,v’/MZ}

for s',u', v € 7Z satisfying s’ = s mod m,u =« mod M, and v = v mod M. We also
have [ /s'v'. Clearly h*(;42mr.mr(R)) has the same image as .q2pmr. v (R) under the
norm map Ky(Y (ml, M{) @ Z[1/mM{l)]) — Ky(Y (m, M) @ Z[1/mM¢]).
The morphism Y (mé, M¢) — Y (m, M) factors as Y (mt, M{) — Y (m, M{) — Y (m, M ({)) —

Y (m, M). The Y (m,M/) is the quotient of Y (mf, M¢) by the action of the matrices

T my

0 1
(Z/EZ)X X (Z/mZ)X is (x,l). Since dgte' Jma' JMe € (’)(Y(m, Mﬁ) & Z[l/mME])X, the
norm map Ny : Ky(Y(ml, M{) ® Z[1/mM{])) — Ky(Y(m,Ml) @ Z[1/mM{]) sends
h*(c.azmr,mrL(R)) to

with 2 € F, y € Fy, where & denotes an integer whose image in (Z/mfZ)* =

Ni(h*(c.azmpmrn(R))) = {N1(cgs' ymew /nie) s agee jmoo jnie}
cYs/mu/M

Z{ H c9s'@/ml, u' /Mi+y/l> d9te’ /m, v’/MZ} = {H y d9te’ /m, v’/Mé}-

~ - F 14 ' /M2 0
seby ek, yeBy cJst!fm, ! [Me+y/
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Here N; on the right hand side of the first equality is the norm map Ny : O(Y (ml, M{) ®
Z[l/mMﬁ])X — O(Y(m, M€)®Z[1/mM£])X, and we see Nl(cQs’/mf,u’/MZ) € O( ( (6))
Z[1,, M),

The Y (m, M(¢)) is the quotient of Y (m, M) by the action of the matrices ((1] 2})
with @ € F/, here w denotes an integer such that whose image in (Z/M{Z)*
(Z/EZ) X (Z/MZ)* is (w,1). The norm map Ny : Ky(Y(m, M{) ® Z[1/mMF])
Ky(Y(m,M({)) ® Z[l/mMﬁ]) sends Ny (h*(c.a2mr.mr(R))) to

~

!

% cYs m,u/M
No(Ni(h*(cazmrmn(R)))) = { [ s No(agee jm, v /nre) }
HyGIF‘g c9st' Jm, u' /[Ml+y/L
_ { c9s/mu/M Hwe]ﬁz agee’ Jm, v' /Me4w/ e }
Hyeﬁ“g cGst! Jm, u' | Ml+y/t ’ agie’ jm, v'e' /M

= {cgs/m7 u/M> H dgie’ /m, W/MZ«HU/@} + {H cst! fm, ! [ML+y /Ly dGte’ Jm, U/E’/M}

’we]i“[ yEsz

- 7~/)2<{cgs€’/m, u/Ms dGte’ /m, U/M} - {cQs/m,u/Ma dgue’ /m, U’Z’/M}-

Here ¢y : Y (m,M({)) — Y(m, M) is as in 1.2.3. Let 7 : Y (m, M (¢)) — Y (m, M) be the
canonical projection. Recall that w1} = T*(¢). Now the norm map m, : Ko(Y (m, M({))®
Z[1/mMU)) — Ko(Y(m, M) @ Z[1/mM¢¥]) sends No(N1(h*(cazmrmrn(R)))) to

{cgs/m7 u/M> 7T*< H dgue’ /m, v’/M€+u/€)} + {7-(*< H cYst! m, u’/MZer/Z)a agie’ /m, vﬂ’/M}
wE]Fg yGFe

- 7" (E){cgsé’/m, u/Ms d9te’ Jm, v/M} - (g + 1){cgs/m,u/M7 agte’ jm, vf’/M}'

We can show

7 H 4G4t fm, o N E+w)e) = dGtjm, v/t * (aGee fm, v ar)s

wEsz

77*( H cYst! /m, u’/M€+y/£) = cOs/m,u/M * (cgsf’/m7 uE’/M)éa
yef,

just as in the computation of 7, at the end of the proof of the case (2). Hence we obtain
the result. 0

Proposition 2.2.3. Let m, M > 1 and assume m + M > 5. Let L. > 1 and assume
prime(mL) C prime(M). Let ¢,d € Z and assume (cd,6mML) = 1. Let R € M(2,7)
and assume the image of R in M(2,7Z/LZ) belongs to GL(2,Z/LZ). Let

g:Y(m,ML)— Y(m,L)

be the unique morphism which is compatible with H — H ; 7 — L1. Over Z[1/mM L],
this morphism is described as (E, ey, eq) — (E' €, ¢e,) where E' is the quotient of E by
the subgroup generated by Mes, and € is the image of e; in E'. Then the norm map
gx + Ko(Y(m, ML) @ Z[1/mML]) — Ks(Y(m, M) ® Z[1/mML]) associated to g sends
e.d?mML(R) t0 ¢qzm v (R).
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Proof. We may and do assume that L is a prime number /.
Then the morphism g factors as

Y (m, M{) — Y (m, M(0)) —= Y (m(¢), M) — Y (m, M).

14

Here the arrows — are the canonical projections and ¢, is the unique isomorphism which
is compatible with 7 — /7 on the upper half plane.

WMeR:<8u.
t v

The first arrow in the above factorization of ¢ sends . g2y, mn(R) to

Z{cgs/m,u/M€+uz/€7 dgt/m,'u/Mervx/Z}
z€lFy
= Z {cgs/mZer/Z,u/M@Q+ui/€2+z/é7 dgt/mZer/E,v/MEQ+v9~c/€2+w’/2} = ;(n)

z,y,z,w,w €Fy

with
n= Z {cgs/mﬁ—l—y/é,u/ME—i-ua:/h dgt/mf-l-w/Z,U/MZ—&—vx/é}'

JJ,y,’UJE]F,g

Here the first = is by the distribution properties of Siegel units. Here z is a lifting of x
to Z/(*Z.
The norm map of Y (m(€), M) ® Z[1/mM{] — Y (m, M) @ Z[1/mM¢{] sends 1 to

1 mz
Zﬁ (0 1 ) = Z {cgs/mé—l-y/E,sz/€+u/MZ+um/€7 dgt/m[—l—w/f,tz/[—l—v/Mé—l—vx/Z}

z€F, z,y,z,wel,

= Z {cgs/mé—l-y/f,u/Mé—l—x/Z, dgt/mé—l—w/f,v/MZ-l—z/Z} = {cgs/m,u/Ma dgt/m,v/M}-

xvyvszelFé

]

Proposition 2.2.4. Let m,M > 1 and assume m + M > 5. Let L > 1 and assume
prime(mL) C prime(M). Let c,d € Z and assume (cd,6mML) = 1. Let R € M(2,7Z)
and assume the image of R in M(2,7/LZ) belongs to GL(2,7/LZ). Let

f:Y(mL,M)—Y(m,M)

be the unique morphism which is compatible with H — H ; 7+ 7/L. Over Z[1/mML],
this morphism is described as (E,e1,es) — (E' €}, ¢ey) where E' is the quotient of E by
the subgroup generated by Mey, and €, is the the image of e; in E'. Then the norm map
fo i Ko(Y(mL, M) ® Z[1/mML)) — Ky(Y(m, M) ® Z[1/mML]) associated to [ sends
c,dZmL,M(R) to

TLa-m0 (4 ) Mot

lteC

where C' denotes the set of all prime divisors of L which do not divide m.
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Proof. Consider the unique morphism g : Y (mZL, ML) — Y (mL, M) which is compatible
with H — H ;7 +— L7 considered in Proposition 2.2.3 (m there is mL here). Then
the composition f o g coincides with the canonical projection Y (mL, ML) — Y (m, M).
By Proposition 2.2.2 it is sufficient to prove that the norm map ¢. associated to g
sends ¢ gzmrmr(R) € Ko(Y(mL, ML) ® Z[1/mML]) to cazmrm(R) € Ko(Y(mL, M) ®
Z[1/mML]). But this follows from Proposition 2.2.3 which we apply by taking mL as m
there.

O

Proposition 2.2.5. Assume p|M. Consider the map
Ky(Y1(Mp) ® Z[1/M))[Z/MpZ] — K2(Y1(M) ® Z[1/M])[Z/MZ],

where Ko(Y1(Mp) ® Z[1/M]) — Ky(Y1(M) @ Z[1/M]) is the norm map and Z/MpZ —
Z/MZ is given by the natural projection. For a divisor M' of M such that M /M’ is prime
to p, under this map, we have

Z {cgo,a/Mp7 d90,1/M/p} : [CL] = T (P) Z {ch,a/Ma dg(),l/M’} : [CL]-
a€Z/MpZ,(a,p)=1 a€Z/MZ,(a,p)=1

Proof. For each a € Z/MZ such that (a,p) = 1, take a lifting @ in Z/MpZ of a. The
image of
ZCLEZ/MPZ,(G,J)):I{Cgova/Mp’ ng,l/M’p}[a] n K2<}/1(Mp) ® Z[l/MpD[Z/MZ] is

Z {H c90,a/Mp-+z/p; dgo,l/M/p}[a] = Z {@U;(cgo,a/M),dgo,l/M/p}[a]-
a€Z/MZ,(a,p)=1 zclF, a€Z/MZ,(a,p)=1
Since ¥ (ogo.anr) € Ki(Y (1, M(p)) @Z[1/Mp]), the norm map K, (Y (Mp) @ Z[1/Mp]) —

Ky(Y1(1, M(p)) ® Z[1/Mp]) sends {45 (cgo.a/ar)s ago,i/mrp} 10 {405 (cGo,asnr), N (ago,1/nrp) by
where N is the norm map O(Y;(Mp) ® Z[1/Mp])* — O(Y (1, M(p)) @ Z[1/Mp])*. We
have

1 0 * .
Namine) =TT (g 1 4yar) eomvin = Tl atsmosan = 500010

yelF, yEIF‘p

Hence the norm map Ky (Y1 (Mp)®Z[1/Mp]) — Ko(Y (1, M (p))RZ[1/Mp]) sends {5 (cgo,a/a1), ago,1/arp }
to V¥ ({cgo.a/nr, agoaymr }). Since T*(p) = mapy where 7 @ Y(1, M(p)) — Y1(M) is the

canonical projection, the norm map Ks(Y;(Mp) ® Z[1/Mp]) — Ko(Y1(M) ® Z[1/Mp))

sends {%f(cgo,a/M), ng,l/M’p} to T*(p){cgma/M, dgo,l/M’}- []

Remark 2.2.6. These propositions have the evident versions for z,, p(R) € Ko(Y (m, M)®

Z[1/mM]) ® Q without ¢, d, which can be proved in the same way as these propositions.

2.3 Beilinson elements on Y (m, M) and zeta values

We review the relation of Beilinson elements to the values of L-functions of modular forms
at s = 1 obtained in [22] section 9. The L-functions here are the complex L-functions,
but the relation is given p-adically. We will use this relation in section 3.

Concerning the relations of Beilinson elements to these L-functions at s = 0 (through
the regulator maps), see [2] section 5 (cf. also [22] section 2).
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2.3.1. Zeta function Z,, p(s). We consider the following zeta function of Y (m, M) which
is an operator-valued function acting on H'(Y (m, M)(C), C).

Zm;M(S> = Z T*(n) (1én (1)> .n7S = H Pg(ﬁ_s)_l

n>1,(n,m)= ¢ prime

where

Py(u) =1 —T*(() <1(/)€ (1)) cu+ <1(/)€ 1(/)6)* u? i 0 fmM,

Puu) = 1—T*(¢) (165 (1)> cu i€ fm but (M,

Py(u) =1 if |m.

Zm.m(s) converges when Re(s) > 2, and has meromorphic analytic continuation to
the whole complex plane C and is holomorphic on C except at s = 2.

2.3.2. When m = M, Zys p(s) commutes with the action of GL(2,Z/MZ).

2.3.3. Let m, M > 1,m+M > 5. For o, § € P(Q), let {cx, B}y () € Hi(X (m, M)(C), {cusps}, Z)
be the class of the image in X (m, M)(C) of the route on the upper half plane from « to
(. Via the canonical isomorphism of Poincaré duality

H\(X (m, M)(C), {cusps}, Z) = H' (Y (m, M)(C), Z)(1),

we regard as
{o, BYy(mm) € HY(Y (m, M)(C),Z)(1).

Here (1) is the Tate twist ®zZ(1) where Z(1) = Z - 2mi C C. Note that the above
isomorphism of Poincaré duality preserves the action of the complex conjugation (the
complex conjugation acts also on Z(1) here).

2.3.4. Let My(m, M)g be the space of all modular forms of weight 2 on X (m, M) ® Q.
It is the space of differential forms on X (m, M) ® Q having (possibly) log poles at cusps.
We have the period map

per : Msy(m, M)g — H*(Y (m, M)(C),C).

2.3.5. For a finite extension L of @, and for a finite dimensional Q,-vector space V'
endowed with a continuous action of Gal(L/L) which is a de Rham representation of
Gal(L/L), let

exp*: H'(L,V) — D3, (V) = DS, (L, V)

be the dual exponential homomorphism. Here H'(L,—) denotes the continuous Galois
cohomology of Gal(L/L).

In the case L = Q, and V' = H} (Y (m, M))(1), D3z(V) = Ms(m, M)g,. Hence we
have the dual exponential map

exp” : HY(Qy, Hgy (Y (m, M))(1)) — Ma(m, M)q,.
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2.3.6. We consider the following composition.

. n n 1) . 7 n ~ 1: 3 V23
lim /(Y (mp", Mp™)) = lim H*(Y (mp", Mp"), Z,(2)) = lim H*(Y (mp", Mp"), Zy(1))

(2

— H*(Y (m, M), Z,(1)) = HY(Z[1/mM], Ho (Y (m, M))(1)) — H'(Qp, Hg, (Y (m, M)))
eXp M2<m M)Qp

~—

Here (1) is the Chern class map, the isomorphism id defined by (®C§L_1)n where (pn is
the p™-th root of 1 on Y (mp™, Mp") whose pull back to H via H — Y;(mp", Mp™)(C) is
exp(2mi/p"), and (2) comes from the spectral sequence

HY(Z[1/mM], H},(Y (m, M))(1)) = H™(Y (m, M) ® Z[1/mM], Z,(1))

and the fact HZ (Y (m, M)) = 0 (because Y (m, M) is an affine curve).
We will denote this composite map also by exp*.

2.3.7. (The case k =2 and r = 1" = 1 of) [22] Theorem 4.6 and Theorem 9.5.
Let ¢,d € Z, (cd,6mM) = 1. Let

=@ D) —a(y 9))- 22 ¢ iy anie).2),

10

0 1) Jn>1 to an element w

Then the composite map exp* in 2.3.6 sends (¢aZmpn rrpn (

of My(m, M)g (without ®Q,) such that

per(w)t = Z, m(1) -

in H(Y(m, M)(C),C). Here (—)* denotes the C-linear map H*(Y(m, M)(C),C) —
H(Y (m, M)(C),C) induced by (1+1)/2: H'(Y (m, M)(C),Q) — H'(Y(m, M)(C),Q),
where ¢ is the map induced by the complex conjugation Y (m, M)(C) — Y (m, M)(C).

2.4 Beilinson elements on Y;(M) ® Q((,,) and zeta values

We review modular symbols (Manin symbols) which are used in [51] (cf. [27]).
Let M > 4.

2.4.1. For u,v € Z/MZ such that (u,v) = (1) as an ideal of Z/MZ, let
[w: vlvian € H'(Y1(M)(C), Z)(1)

be as follows ([51] 3.1). Take liftings @, 0 € Z of u,v and x,y € Z such that xa — yo = 1.
Let -
0 u
[u: U]Y1(M) = {_Wa _y_M}Yl(M)
where {—, =}y, () is as in 2.3.3. It can be shown that this is independent of the choices
of u,v,s,t.
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We have
[~ =vlyan) = [u vy, [ Uiy = —[u s =]y )

In the case an integer N > 1 which is prime to p is fixed, we denote [u : v]y,(npr) by
[u: v], as in [51].
The following facts are known.

(1) The elements [u : vy, (ar) generate H(Yy(M)(C),Z) as a Z-module.
(2) For a € (Z/MZ)*, the diamond operator

(a) - H'(Y1(M)(C),Z)(1) — H'(Y1(M)(C), Z)(1)

sends [u : v]y; () to [au @ avly, (.

[ (3]) The com[plex ]conjugation L HY (Y1 (M)(C),Z)(1) — HY(Y1(M)(C),Z)(1) sends
Ut U)y; () O — (U Uy (ar)-

We consider Beilinson elements in K»(Y;(M)®Z[1/Mm, (,,]) which are closely related
to [u : vy, ()

2.4.2. Let M >4, m > 1.
Let u,v € Z/MZ, (u,v) = (1). In the case m = 1, we assume u # 0, v # 0.
We define

cd?21mm(u,v) € Ko(Yi(M)QZ[L/Mm, (nl)y  z1mm(u,v) € Ko(Y1(M)QZ[1/Mm, () 2Q

as follows.
Take liftings u,v € Z of u,v and take integers s,t such that sv — tu = 1. Let

e.d?1,m,m(u, v) be the image of . 42 rvm N g) € Ky(Y(m, Mm) ® Z[1/Mm]) under the

t
norm map Ko(Y (m, Mm) ® Z[1/Mm]) — Ky(Y1(M) ® Z[1/Mm,(y]). (The definition of
21 m.m(u, v) without ¢, d is similar.)

Then this is independent of the choices of u, v, s,t. We prove this.

/ ~/
Take also @',7', ',t and let R’ = (i, Z,) Let

Z w

(x y) .= R™'R' € SL(2,Z).
Then
t—w =ur—uww =0, w=s0—ti'=sv—ta=1 mod M.
We have

M *
c,dZm,Mm(R,) - (Z;]Uw y/ ) c,dZm,Mm<R)-

w
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M
That is, these Beilinson elements are connected by the automorphism ( y/ )

Y (m, Mm) ® Z[1/Mm] over V(M) ® Z[1/Mm,(,]. Hence their norms to Yl
Z[1/Mm, (] coincide.
In particular,

c,dzl,M,l(ua U) = {cgo,u/M, dgo,v/M}-

The (without ¢, d)-version is defined similarly.

2.4.3. For a € (Z/mZ)*, let o, be the element of Gal(Q((y)/Q) characterized by
0a(Gm) = G-

Proposition 2.4.4. (Norm relation.) Let L > 1. Then the norm map Ky(Y1(M) ®
Z[1/MmL,(pr)) — Ko (Yi(M) @ Z[1/MmL, () sends cazi ymme(u,v) to

H (1—0,'@T*(0)) + cazrarm(u,v),
tec

where C' denotes the set of all prime numbers which divide L but which do not divide m.

This follows from Proposition 2.2.2.
In the rest of this section 2.4, we consider the relation of these Beilinson elements and
the value at s = 1 of L-functions of modular forms.

2.4.5. Zeta function Zj ppm(s).
We consider the following operator-valued zeta function acting on

Z|Gal(Q(¢n) / Q)] @zig21y) H' (Y1(M)(C), C).

Here —1 in {£1} acts on Z[Gal(Q((,)/Q)] as the complex conjugation in Gal(Q((,)/Q)
and acts on H*(Y;(M)(C), Z) as the map induced by the complex conjugation Y; (M)(C) —
Y1(M)(C). Let

Zym(s)= Y ot @T (™ = [ P

(n,m)=1 £:prime

Here o, is as in 2.4.3, and
Pu)=1—0,'@T* (Ou+o,2@ )~ - u? ifl fMm,
Pu)=1—-0,"@T*(l)u if |]M but { Jm,

Py(u) =1 ifl|m

This zeta function and the zeta function Zy;,,(s) in 2.3.1 are compatible through the
projection Y (m, M) — Y1 (M) @ Q(Cn)-
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2.4.6. We define an element

calt s Vam € Z[Gal(Q(Gn) /Q)] @zggz1y H' (Y1(M)(C), Z)
as follows:
el Vi arm = EdP®u : vy, (i —0a®[u : dvly, an—d*oe®[cu : vy, (i) FTea®cu : dvly; (an-
If c=d=1mod M, then

el Vi am = (& — 0)(d® — 04) @ [u: V]yy )
2.4.7. We consider the period map

My(M)g & Q((mpr) — Z[Gal(Q(() /Q)] @zigary H' (X1 (M)(C),C)
TRy Y o®o (y)per(z)

ceG

(G = Gal(Q(¢n)/Q), where per is the period map My(M)g — H'(Y1(M)(C),C)).
This period map and the period map for Y (M, N) in 2.3.4 are related as in the following
commutative diagram.

Mg(mle)Q = HY (Y (m, Aﬂm)(@),@)ﬂ
Mz(M)g ® QGmpr) ™ Z[Gal(Q(Gn)/Q)] ®zigary H' (Y1(M)(C), C).

Here (—)/¢ denotes (—)/(1—1¢)(—), and the right vertical arrow is induced from the trace
map

H(Y (m, Mm)(C), Z) — H'((Y1(M)®Q(Cn))(C), Z) = Z[Gal(Q((m) /Q)|@zH (Y1 (M)(C), Z).
2.4.8. We consider the following composite map, which is defined similarly to 2.3.6.
i (V3 (M) @ Z{Ggn]) — litm B (Vi (M) © ZGoir] Zy(2))

— Wi H(Z[1/m, Gy ], Het (Yi(M)(2)) 22 lim HY(Z[1/m, Gupe], Hz, (Y1 (M)(1))

exp*

- Hl(@p ® Q(Cm), Helt<Y1<M)(1>>> — My(M)g ® Q((n) ® Qp.

We will denote this composite map also by exp*. This composite map exp* is compatible
with the composite map exp* in 2.3.6 as in the following commutative diagram.

lim K5(Y (mp", Mmp") @ Z[1/Mm)]) xE My(m, Mm)q,
! !
exp*

lil_nn Ky (Y1A(M) @ Z[L/Mm, Gupr]) = M(M)g ® Q(Gm) ® Q.

Theorem 2.4.9. Assume p|M, plm. Then the composite map exp* in 2.4.8 sends
(,d21,Mmpn (U, V) )n>0 to an element of My(M)o@Q((n) (without ®Q,,) whose period image
in Z[Gal(Q(¢n)/Q)] Qz[{+1}] H'(Y1(M)(C),C) coincides with Zy (1) - calv s uli pm.
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Proof. We use Proposition 2.2.4 and the zeta value formula at s = 1 in section 2.3.

Take liftings @, ¥ of u, v to Z, respectively, such that (@, 0) = 1, and take s,t € Z such
that sv —tu = 1.

Let f': Y (Mm,Mm) — Y (m, Mm) be the unique morphism which commutes with
H— H; 7w 7/M,and let f: Y(Mm,Mm) — Yi(M) ® Z|[(,] be the composition

Y (Mm, Mm) LR Y (m, Mm) — Y1 (M) ® Z[(,] where the second arrow is the canonical
projection. Let v € HY (Y (Mm, Mm)(C),Z) be as in section 2.3 (we replace M and N in
section 2.3 by Mm and Mm, respectively). Consider the commutative diagrams

exp™

lim KoY (Mmp", Mmp")) —— My(Mm, Mm)q,

| |

lim  Kp(Yi(M) ® ZlGupn]) 2 My(M)g ® Q(Gn) ® Qp,

My(Mm, Mm)y —— HY (Y (Mm, Mm)(C),C) /e

f*l lf*
My(M)g ® Q(6pr) —— Z[Gal(Q(Gn)/Q)] @zjgw1y) H (Y1(M)(CT), C).

Here — /¢ denotes (—)/(1—¢)(—). By 2.3.7, by the upper horizontal rows in these diagrams,

we have
10
(c,dZMmp",Mmp” (0 1) )nzo = W, W= ZMm,Mm(l) e

for some w € My(Mm, Mm)g, where 7 is as in 2.3.7. Applying f. <§ :) to this, we

have that by the lower horizontal rows of these diagrams,
s a\
))nzo = fi (t @) w,
s w\ s )

~ ([0 - o &0 Zua)- £ (] 5)

LeC

S
f* (c,dZMmp",Mmp" (t

S

Here C' denotes the set of prime numbers which divide M but which do not divide m. By
Proposition 2.2.4, we have

s u

f* (c,dZMmp”,Mmp” (t D

Yooz = (T1 = 07" ST ) sttt (1.
tec
We have exp* o(0, ' @ T*(¢)) = (0, @ T*(¢)){~! o exp* for the lower horizinral arrow exp*
of the first diagram.
Claim 1. For ¢ € C, the endomorphism 1 — o, ' @ T*(£)(~1 of My(M)g ® Q((y) and
the endomorphism 1 — o, ' @ T*(€)(~! of Z[Gal(Q((n)/Q)] ®z+1y H' (Y1(M)(C), Q) are

isomorphisms.
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This is because the eigen values of T%(¢) are algebraic numbers whose complex absolute
values are 1 or ¢1/2.

By Claim 1, we have that the lower horizontal arrow of the first diagram sends
(,d21,Mmpn (U, V))n>0 to an element w' of My(M)g @ Q((,,) whose image under the lower
horizontal arrow of the second diagram is Zj pr,(1) - fi(y). It remains to prove that
fe(7) = —calu : V|1 mm/(270). We have

s @) v —u
f* (t ,&) {O; OO}Y(Mm,Mm) = f* (_t ) {O,m}y(Mn%Mm)

S

i v U v
- f*{_} _E}Y(Mm,Mm) - {_m’ _W}Yl(M) - [U : U]Yl(M)~

By modifying this computation slightly, we obtain

—_

s U * c 0 * c 0 *
f* <t {]) (O ) {07 OO}Y(Mm,Mm) = (0 1) [CU : U]Yl(M) =0.® [Cu . U]Yl(M)a

s @\ (1 0\" 10\ -
f* (t f)) <O d) {0,00}Y(Mm,Mm): <O d) [d 1U:U]Y1(M)

d 0\, ,urs
= (O 1) (d)*[d L : Uy () = 04 @ [u: dvly, (-

These prove f.(y) = —calt : V)1 p.m/(270).

In the above, we used the facts

(6 5) =o (5 0) =

for Y1(M). O

3 Beilinson elements in Galois cohomology
In this section 3, we construct a correspondence
modular symbol — Beilinson element (in Galois cohomology)

having characterizations by zeta values. In section 3.1, we construct systems of Beilinson
elements in the direction of cyclotomic extensions. In section 3.2, we consider the ordinary
component of 3.1 and extend it also to the level direction. In section 3.3, for the ordinary
component, we construct other systems of Beilinson elements in the direction of level
changes of modular curves.

This section 3 is an improvement of Theorem 12.5 of [22] in which we considered the
f-components of the above correspondences associated to individual Hecke-eigen cusp
forms f. The improvement in this section is in the similar direction as in Ochiai [37] in
which individual Hecke-eigen cusp forms are replaced by Hida families of cusp forms.
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3.1 Cyclotomic direction

3.1.1. Fix m, M > 1. Assume p fm, p|M. Let

A(mp®) := lim Z,[(Z/mp"2)"] = Zy[[Z,; x (Z/mZ)"]].

n>1

Let Q(Cmpee) = UnQ(Cpn ). We have the isomorphism
Gal(Q(Cmp)/Q) = hm(Z/mp Z)* =12, x (Z/mZ)",

0o < @, (Cmp ) = mp

Via this isomorphism, we identify A(mp>) with Z,[[Gal(Q((mp=)/Q)]]-
We consider the A(mp*>)-modules

Y = lim HY(Z[L/Mm, Gy, Hiy(X2(M)), D = lim HY(Z[L/Mm, Gupn], H (Yi(M))).

n n

3.1.2. In the case there is no danger of confusion, we will denote the image of . 421 7, mpn (u, v) €
Ky(Yi(Mp"™) @ Z[1/Mmy, (pn]) in HY(Z[1/Mm, Cupn], Hi (Y1(M))(2)) by the same nota-
tion ¢,a1,,mpn (4, v), and the image of 2y ampn (w, v) in HY(Z[1/Mm, e |, HE (Y1(M))(2))®2,
Q, by the same notation 21 s mpn (u, v).

Proposition 3.1.3. (1) 2 is A(mp>)-torsion free.
(2) The map P — ) is injective.
(3) Q is p-torsion free.

(4) The A(mp™)-torsion of Q) is killed by 1 — ac, for any a € Z such that (a, mp) = 1
and a =1 mod M.

Proof. (The following proofs of (1) and (3) are essentially the same as the proof of a
similar result [22] Theorem 12.4 (2) for each Hecke eigen cusp form which is given in ibid.
section 13.)

We prove (1). We prove first that Q) is p-torsion free. The proof of (3) is sim-
ilar. Let U = HL(X1(M)). The exact sequence 0 — U 2 U — U/pU — 0 in-
duces an exact sequence A — B % B where A = lim HO(Z[1/Mm, (], U/pU) and
B =lim HY(Z[1/Mm, (], U). By the fact U/pU is finite, we have easily A = 0.

Hence for the proof of (1), it is sufficient to prove that 9 ®z, Q, is A(mp>)-torsion
free.

Recall that we have a direct decomposition H} (X;(M)) = &,V (f;) which is compat-
ible with the action of Gal(Q/Q) and with the action of the subring b(M )z, of H(M)z,
generated by T*(n) for all n such that (n, M) = 1. Here for each i, f; is a non-zero cusp
form of weight 2 which is an eigen form for any 7%*(n) such that (n, M) = 1, the action of
h(M)7, on V(f;) factors through a quotient L; of h(M); such that L; is a field of finite
degree over Q,, V(f;) is two dimensional over L;, and the action of Gal(Q/Q) on V (f;)
over L;, called the Galois representation associated to f;, is irreducible. This shows that
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there is no Gal(Q/Q)-stable Q,-subspace of HZ (X;(M)) on which the action of Gal(Q/Q)
is abelian.

Let A(mp™>)* be A(mp™) with the following action of Gal(Q/Q). If 7 € Gal(Q/Q)
with the image o in Gal(Q((pp~)/Q), T acts on A(mp™)* as the multiplication by o~! €
A(mp™). Then we have 9 = H'(Z[1/Mm],U) where U = H}(X1(M)) @z, A(mp™)*
with the diagonal action of Gal(Q/Q). Let f be a non-zero-divisor of A(mp>). The

exact sequence 0 — U EN JN /fU — 0 induces an exact sequence A — B EN
B, where A = HY(Z[1/Mm)|,U/fU) and B = H'(Z[1/Mm],U). Hence it is suffi-
cient to prove HYZ[1/Mm],U/fU) ®z, Q, = 0. We have H*(Z[1/Mm],U/fU) ®z,
Q, = Hom cuygyy (V, HY (X1 (M) &z, Q) where V = Hom g, (A(mp™)/ f A(mp™), Q)
Since the action of Gal(Q/Q) on V is abelian and Hy (X,(M)) ®z, Q, has no non-
zero Gal(Q/Q)-stable Q,-subspace on which the action of Gal(Q/Q) is abelian, we have
HOZ[1/Mm], U/ fU) &z, Q, = 0.

(2) follows from the fact ) is p-torsion free and the Drinfeld-Manin splitting 1.9.3.

We prove (4). We prove the equivalent statement that the A(mp>)-torsion of the Tate
twist (1) is killed by 1 — o, for any a € Z such that (a,mp) = 1 and a = 1 mod M.
Let U = (HL(YA/(M))/HL(X1(M)))(1). By (1) and (2), it is sufficient to prove that the
A(mp*)-torsion of lim HY(Z[1/Mm, ], U) is killed by 1 — o, for any a € Z such
that (a,mp) = 1 and @ = 1 mod M. As a representation of Gal(Q/Q) over Z,, U is
embedded in the free Z,-module whose base is the set of all cusps of X;(M)® Q. By the
same method as in the proof of (1), we have that lim HY(Z[1/Mm, (], U) is p-torsion
free. Since the residue fields of all cusps of Y;(M) are subfields of Q((ys) (1.3.3), the
action of Gal(Q/Q((y)) on U is trivial. Since the kernel of lim | HYZ[1/Mm, (], U) =
HY(Z[1/Mm], Uz, A(mp™)F) — H'(Z[L/Mm, (u], Uz, Amp>®)F) = Uz, H'(Z[1/Mm, (], A(mp™)F)
is killed by the non-zero integer [Q((y/) : Q], and hence is zero, it is sufficient to prove
that the A(mp>)-torsion of HY(Z[1/Mm, (y], A(mp™)*) is killed by 1 — o,. Let f be a
non-zero-divisor of A(mp>). By using the exact sequence 0 — A(mp™)* ER A(mp>)t —
A(mp™=)¢ ] f A(mp>=)* — 0, we are reduced to proving that H°(Z[1/Mm, Cu], A(mp™)*/ f A(mp>)?)
is killed by 1 — 0,. Since @ = 1 mod M, there is 7 € Gal(Q/Q((y;)) whose image in
Gal(Q(¢mp=)/Q) is 0. Since the multiplication by o, € A(mp™) on A(mp*)¢/f A(mp™)*
coincides with the action of 771, it acts trivially on H°(Z[1/Mm, (], A(mp™)¢/ f A(mp™)F).
Hence 1 — o, kills HY(Z[1/Mm, (u], A(mp™)*/ f A(mp™)*). O

Lemma 3.1.4. The kernel of

exp” : @(1) - llnM2(M) X Q@?ﬂp”) ® Qp

coincides with the A(mp®™)-torsion of P(1).
Proof. By Drinfeld-Manin splitting (1.9.3), we have
H;t(YI(M)) Xz, @p = Helt(Xl(M)) ®z, Qp ® Helt(YI(M))/H;t<X1(M)) 1z, @p

as a representation of Gal(Q/Q). Furthermore, H} (X1(M)) = ®;V (i) as in the proof of
(1) of 3.1.3. The map exp” : Q, ®z, Y(1) — lim M>(M) @g Q((mpr) @ Qp is the direct
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sum of the maps

exp” : Q, ®gz, lim H(Z[1/Mm, Gupn], Ti(1)) — lim Dap(V(£:)(1)) ©g Q(Capn),

n

where T; is a Gal(Q/Q)-stable Z,-lattice in V(f;), and the map

exp” 1 Qp®z,lim H(Z[1/Mm, Grpr], S) — lim Dap((He (Yi(M) / Hey (X1(M))) (1)) @0QGpr ).

n n

where S is a Gal(Q/Q)-stable Z,-lattice in (Hg(Yi(M))/Hg (X1(M)))(1) ®z, Qp. The
former map is injective by [22]. By the fact the action of Gal(Q/Q({as)) on S is trivial,
the kernel of the latter map coincides with the A(mp>)-torsion part. [l

Theorem 3.1.5. Let the notation be as in 3.1.1. Then, there ezists a unique A(mp®™)-
homomorphism

21,M,mp> - A(mpoo) Qz[{£1}] Hl(Yl(]\/[)(C), Z)
— D) Drpmpee) QA (mp™)) = (i H (Z[1/ M, Gupn], Hiy(Y1(M))(1))) @ mpey QA(mp™))

n

characterized by the following (i) and (ii).

Here —1 in {£1} acts on A(mp™) as o_1 and acts on H (Y, (M)(C),Z) by the complex
conjugation on Y1 (M)(C).

(i) For any vy € A(mp™®)®za1y H' (Y1(M)(C),Z) and for any ¢, d such that (cd,6Mm) =
Land c = d = 1mod M, (0. — ¢)(04 — d)z1,pmp=(7) belongs to the image of 9 in
D n(mp) Q(A(Mp™)).

(ii) Consider the dual exponential map

exXprpn + H(Z[L/Mm, Gy ], Hy(Y1(M))(1)) @2, Q) — Ma(M)g @ Q(Gupn) @ Qy
and the period map

permpn = Ma(M)g @ Q(Gprn) — Z[Gal(Q((mpr )/ Q)] @ziga1y) H' (Y1(M)(C), C) ;
TRy Y o®o (y)per(x)

oeG

where G = Gal(Q((npr ) /Q) and the last per is the period map Ma(M)g — H'(Y1(M)(C),C).

For v € HY (Y1(M)(C),Z) and for n > 1, the image of 21 ppmp () = 21 Mmp (1 @ 7)
in Ma(M)g @ Q((mpn) @ Q, under exp* is an element of Ma(M)g @ Q(mpn) whose image
in Z[Gal(Q(Gnpn ) /Q)] @zpge1y H' (Y1(M)(C), C) under per,» coincides with

Z17M7mpn<1) ’ ’y'
Here Zy prmpn (8) 4s the zeta function in section 2.4.

Here in (ii), exp* is applied to z1 prmp=(7) as (c—o.)"H(d—04) toexp* o(c—0.)(d—0y)
(c,d € Z, (cd,6Mm) =1, c=d=1mod M, and c,d ¢ {£1}).
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Proof. The relation of Beilinson elements and zeta values considered in section 2 plays an
essential role in the proof.

The uniqueness follows from Lemma 3.1.4 and the injectivity of the period maps
per,,n-
We prove the existence of 21 armpe. Let v € HY(Y1(M))(C),Z). Write v = >, a;[u; :
v;] with a; € H(M)z and u;, v; € Z/MZ such that (u;,v;) = (1) as an ideal of Z/MZ. Take
¢,d € Z — {£1} such that (cd,6Mm) = 1. Then ¢ — 0. and d — 04 are non-zero-divisors

in A(mp>). Let

A (V) = (P—coe) (AP =dog) ™ aitw_i(caz1mmpe (Ui v7)) € D(1)@pqmpe) Q(A(mp™)).

i

Here tw_; is the isomorphism 9)(2) S92z 2@ (Gt where (yn = exp(2mi/p™) €
Q C C. We show that 21 yzmpe () is independent of the choices of ¢, d and the presentation

of v as above. Assume we have other ¢/, d and another presentation v = > a}[u} : v]]

with a} € H(M)z. Then by Theorem 2.4.9, peroexp* sends both A =3 .(¢* — co.) 1 (d® —
A7) ™ - 01 - 01 (ca1agmp (5, 00)) and B = ()2 — o) (@) — (@)ow) ™ - af -
tW_1 (e ar 21, M mpoe (U5, U)) 80 Zy prmpn (1) - 7y Since the period maps pery,» (n > 1) are
injective, the images of A and B in lim M>(M)g ®g Q(Cmpr) ®g @, coincide. By Lemma
3.1.4, we have A = B.

We prove that 21y m () = 0_1(z1m.m (7)) (v € Hg, and ¢ is the complex conjugation).
It is sufficient to prove o_1. 421 m.m (U, V) = c.a21m.m(u, —v). Take liftings @, ¥ of u, v to Z
and take integers s,¢ such that sv —t@ = 1. Then o_1(.421m.m(u,v)) is the image under
Ky (Y (m, Mm) ® Z[1/Mm)]) — Ky(Y1(M) ® Z[1/Mm,(,,]) of

~-1 0\
< 0 1) {cgs/m,ﬂ/mMydgt/m,f)/Mm} = {cgfs/m,ﬂ/mMadgft/m,f)/Mm}

= {cg—s/m,ﬂ/mM7 dgt/m,—f;/Mm}~

(The second = here is by 490,38 = d9—a,—p (2.1.3 (1)).) The image of the last element in
Ky(Y1 (M) @ Z[1/Mm, () 18 caz1,mm(u, —v) since (—s)(—0) — ta = 1.
This completes the proof of the theorem. n

Remark 3.1.6. For each Hecke-eigen cusp form f, the “f-component ” version of this
theorem was obtained in [22] Theorem 12.5.

The next Propositions 3.1.7, 3.1.8 follow from the proof of the above theorem.
Proposition 3.1.7. This homomorphism zy yrmp commutes with the action of (M )z, .

Proposition 3.1.8. Denote the homomorphism
2o - Amp™) @gpaay H' (Yi(M)(C), Z)(1)

— D(2) @a(mpe) QIA(MP™))
= (lim H*(Z[1/Mm, Gupn], Hy(Y1(M))(2))) @ @mpey Q(A(mp™))

n
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induced by 21 ppmpe by the same later 2y ppmpee -

(1) This map sends cqlu : V|1 pmmpe 10 (—c.a21 M mpr (U, V) )

(1i) Let v = [u : vly,(ary. Then the image of 21 amp=(1 ® ) in
HYZ[1/Mm, Cypn], HY(Y1(M))(2)) @2, Q, coincides with the image of —zy yrmpn (U : v)
(n>1).

Proposition 3.1.9. Assume M|M', m|m’, prime(M) = prime(M'). Consider the norm
map

Norm + (lim H(Z[1/Mn?', Guye], Ha(Yi(M')(1))) @agmpeey QA(mp))

n

— (lim H(Z[1/ M, G, Hy(Y1(M))(1))) @ampee) QA(mp™)).

n

Then for v € H'(Y1(M')(C),Z), we have

Norm(zi vty (7)) = (LT Pe(C) - 210105 (7).
¢

where ¢ ranges over all prime numbers which divide m' but which do not divide m, P(u)
is as in 2.4.5, and 7 is the image of v in H'(Y1(M)(C),Z).

Proof. Since prime(M) = prime(M’), Z; pr(s) and Z; pr(s) are compatible with the trace
map H'(Y1(M')(C),C) — H'(Y1(M)(C),C). By taking per o exp*, Proposition 3.1.9 is
seen from the relation Theorem 2.4.9 of Beilinson elements to the values of these zeta
functions at s = 1. O

3.2 Cyclotomic and level directions for the ordinary part

3.2.1. We consider the ordinary component of section 3.1, and consider the inverse limits
for varying levels. Fix N, m > 1 which are prime to p.
As in section 1.5, let

H = lim Hyy (X1 (Np") ® Q. Z,)™ € H = lim Hy, (Yi(Np") @ Q, Z,)™".

T 7

In this section 3.2, let
A= liLmZ][,[(Z/mp"Z)X X (Z/Np"Z)*]

n,r

5 A= M Z,[(Z/Np'2)"] = Z,[Z; x (Z/NZ)¥].

In A, we identify the left (Z/mp"Z)* with Gal(Q((npr)/Q) by @ — o, (3.1.1), and the
right (Z/Np"Z)* with the group of diamond operators. Then lim HY(Z[1/mNp, Gy, H)
is regarded as a A-module.

We consider the A-modules

3 =lim HY(Z[1/Nmp, {upn], H) C 3 = lim H'(Z[1/Nmp, Gy, H).

n n
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3.2.2. Take ¢ € Z such that ¢ = 1 mod p, ¢ # 1 mod p?, (¢,m) = 1, ¢ = 1 mod N, take
d € 7Z having the same properties as ¢, and let

A= (c—0o)(d - og(d) € A.

Then A\ is a non-zero-divisor of A. The ideal of A generated by A is independent of the
choices of ¢,d, and hence the A-submodule AA™! of Q(A) which appears below is also
independent of the choices of ¢, d.

Theorem 3.2.3. Let the notation be as in 3.2.1. Let T be the set of all elements of 3
which are killed by 1 — ao, for any integer a such that (a,mp) =1 and a =1 mod N.
Then there exists a unique A-homomorphism

2 npempe t A @y H — (3/T)(1) @a AN

which induces the ordinary component of 21 Nprmpee (3.1.5) for any r > 1.
Here —1 in {1} acts on A as o_1 in the Galois group and acts on H by the complex
conjugation.

Note that ¥(1) is killed by A.
For the proof of Theorem 3.2.3, we use the following propositions 3.2.4 and 3.2.6.

Proposition 3.2.4. The action of Gal(Q/Q(Cx)) on (HL(Y1(Np))*d/HL (X, (Np"))°d)(1)

18 trivial.

Proof. For i € Z such that 0 < i < r, let S; C HL(Y1(Np")) be the intersection of the
kernels of the boundary maps Hj (Y1 (Np")) — Z,(—1) associated to cusps of X;(Np")®@Q
defined by (¢, d) € Py, (section 1.3) such that ¢ = ¢ mod Np” for some ¢ € Z satisfying
ord,(¢) <i. We have Sy D S; D -+ D S, = Hi (X1 (Np")).

By 1.3.3, the action of Gal(Q/Q(Cy)) on (HL (Y1(Np"))/So)(1) is trivial. Hence, for the
proof of proposition, it is sufficient to prove that HZ (Y;(Np"))* 4 NSy = HE (X (Np"))o.

€

By using 1.3.5 (2) and (3) applied to ¢ = p, we can prove the following (1) and (2).
(1) For 0 <i < r—1, we have T*(p)S; C Sit1.
(2) T (p)ST,1 C pSr,l + Sr-

By (1) and (2), the action of T*(p) on Sy/S, is topologically nilpotent. Hence we have
HL (Y (Np)) 1y = Sg10 = S0 = HY (X (Npr))oe. .
Lemma 3.2.5. As an $-module, H is generated by the elements ([p"'u : v),)p>1 € H
([51], Lemma 3.2), where v ranges over all integers which are prime to p and u ranges
over integers such that (u,v, N) = 1.

Proof. By the case k = 2 of Proposition 1.5.8, we have an isomorphism H®aZ,[(Z/NpZ)*] =
H(Y1(Np))°d. By this isomorphism, the elements ([p"'u : v],),>1 are sent to [u : v];
which generate HZ (Y;(Np))°™d. Hence we are done by Nakayama’s lemma. O
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Proposition 3.2.6. Let A = lim H'(Z[L/Mm, (upn], Hy(Y1(Np"))™?).

( (1) Fog)*y € Hét(Yl(NpT))ord, A 21, Nprmpe (7) belongs to the image of A in A @ (mpee)
Q(A(mp™)).

(2) The A(mp™>)-torsion part of A is killed by 1 — ao, for any integer a such that
(a,mp) =1 and a =1 mod N.

Proof. (1) follows from 3.2.5 by the fact .q[p" ' : v], = (¢ — 0.)(d — og{d))[p" u : v], if
c=d=1 mod Np.

By using 3.2.4, (2) can be proved in the same way as in the proof of Proposition 3.1.3
(4). m

3.2.7. Proof of the Theorem 3.2.3. This is reduced to the finite levels M = Np" by
Theorem 3.1.5 and Proposition 3.2.6.

3.3 Elements z?vpoo(’y) in the level direction for the ordinary part

3.3.1. Fix N > 1 which is prime to p.
In this section 3.3, let
A = ImZ,[(Z/Np'Z)*] = Z,[Z; x (Z/NZ)])

and regard it as the ring of diamond operators on X;(Np") (r > 1).
In this section 3.3, we consider Beilinson elements in H'(Z[1/Np|, H(2)) ®x Q(A).

Proposition 3.3.2. (1) 1 —T*(p) € b is a non-zero-divisor.
(2) The actions of 1 —T*(p) on H, Hyw, Hyuo are injective.

To prove this proposition, since Hy,y, is a free h-module and H g, is a faithful h-module,
it is sufficient to prove that the action of 1 — 7%(p) on Hy, is injective. By Proposition
1.8.1, we are reduced to the following proposition.

Proposition 3.3.3. 1 — F'r,, is injective on Hquo(1). Equivalently, 1 — ¢ on D(Hquo(1))
18 injective.

Proof. Take k > 2. Let r > 1. By Saito [48], all eigen values of the operator ¢
on Dy (Vi(X1(Np"))g,) in Q, are algebraic numbers whose all conjugates over Q in
C have absolute values in {p*=2/2 pk=1)/2 pk/2} = By Proposition 1.5.8, the quotient
D(Hquo(1)) @4 Q,[(Z/Np"Z)*] of D(Hquo(1)) ®z, Qp, where A — Z,[(Z/Np"Z)*] is given
through tw,_; as in 1.5.8, is a quotient of Dpg(Vi(X1(Np"))g,(k — 1) as a space with
an operator ¢. Hence on this quotient, all eigen values of ¢ in Qp are algebraic numbers
whose all complex conjugates over Q in C have absolute values in {p~*/2, pt1=+)/2 p(2=k)/2},
Take k£ > 3. Then since these absolute values are not 1, 1 — ¢ is injective on this quotient
of D(Hquo(1)) ®z, Qp. Hence 1 — ¢ is injective on D(Hguo(1)). O

3.3.4. By 3.3.2 (1) and by 1.5.4, the kernel of 1—T"*(p) on H*(Z[1/Np|, H(2)) is contained
in the A-torsion part.
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Lemma 3.3.5. (1) H*(Z[1/Np], H(2)) = H(Q,, H(2)) = 0.

(2) HO(Z[L/Np), (1] H)(2)) = HYQ,, (H/H)(2) =0.

(8) The canonical maps H'(Z[1/Np|, H(2)) — H'(Z[1/Np|, H(2)) and H(Q,, H(2)) —
HY(Q,, H(2)) are injective.

Proof. (1) and (2). These are reduced to H%(Qy, Hab(2)) = 0, H*(Qp, Hquo(2)) = 0, and
H°(Q,,(H/H)(2)) = 0, which can be seen easily.
(3) follows from (2). O

Concerning the A-torsion of H'(Z[1/Np|, H(2)) and that of H'(Q,, H(2)), we have

Proposition 3.3.6. (1) The canonical map from the A-torsion part of H'(Z[1/Np], H(2))
to the A-torsion part of H'(Q,, H(2)) is injective.

(2) On the A-torsion part of H*(Q,, H(2)) (and hence on the A-torsion part of HY(Z[1/Np),

by (1)), the diamond operator (c) for ¢ = (a,1) € ZY x (Z/NZ)* acts as a*.

Proof. We prove (1). Let z be a non-zero-divisor of A, and let E = H(2)/2H(2). Since
H is Z,[[1 + pZ,)]-flat (1.5.4), « : H(2) — H(2) is injective. Hence by (1), the ker-
nel of the action of = on HY(Z[1/Np|, H(2)) (resp. HY(Q,, H(2))) is isomorphic to
H°(Z[1/Np|,E) (resp. H°(Q,, F)). Thus we are reduced to the evident fact that the
map H°(Z[1/Np|, E) — H°(Q,, F) is injective.

We prove (2). Let L be the maximal unramified extension of Q,. We prove first that
HY(Q,, Hyuo(2)) is A-torsion free. By the exact sequence

0 — H'(Gal(L/Qy), H'(L, Hquo(2))) — H'(Qp, Hquo(2)) — H'(L, Hauo(2))

and by HO(L, Hyuo(2)) = Hyuo(1)QH(L, Z,(1)) = 0 (& is the topological tensor product
defined as in 1.7.3), it is sufficient to prove that H'(L, Hyuo(2)) is A-torsion free. But
HY(L, Hyo(2)) = Hyuo(1)QH' (L, Z,(1)), and this is A-torsion free.

We next prove that on the A-torsion part of H'(Qp, Hawn(2)), (¢) (¢ = (a,1) € Z) x
(Z/NZ)*) acts as a®. Let R = Z,[[Z}]] (we denote the group element of R corresponding
to a € Z, by [a]) and let R* be R with the following action of Gal(L/L): o € Gal(L/L)
acts on R* by [k(0)], where x denotes the cyclotomic character. Let R — A be a ring
homomorphism [a] — ((a,1)). Since o € Gal(L/L) acts on Hgy, as ((k(c),1)) (1.7.14
(4)) and since Hyy, is a finitely generated projective R-module, we have H'(L, Hg,,(2)) =
Hgy, ®p HY(L, R*(2)) for any i € Z, where R acts on Hgy, via R — A. By the exact

sequence
0 — H'(Gal(L/Qy), H*(L, Ha(2))) — H'(Qp, Hans(2)) — H' (L, Haup(2))

and by HO(L, Hy,(2)) = Hau, @p HO(L, R¥(2 )) = 0, it is sufficient to prove that on the
A-torsion part of H'(L, Hy,(2)), (c) acts by a?. We have

Hl(Lv Hsub(Z)) = Hsup @R Hl(La Ru@)) = Hop Qr mHl(L(Cp")a Zp(z))a

n

H(2))
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and the action of (¢) on these modules coincide with the action of 1 ® o, on the last
module, where o, € Gal(L(Gye)/L), 04(Gr) = (pu. Note lim H'(L(Gr), Zy(2)) =
liLnn(L(Cpn)X)A(l), where (—)”" denotes the p-adic completion. By local ITwasawa theory,

(the R-torsion of lim(L(Gm)*)" (1)) = Zy(2)

n
on which the action of o, coincides with the action of a®. This proves (3). [

3.3.7. Let HL(Y1(Np"))o be the part of HL(Y;(Np")) generated by [u : v], (u,v €
Z/Np'Z, (u,v) = (1)) satisfying u # 0, v # 0. It coincides with the part of HJ (Y1(Np"))
consisting of all elements whose boundaries at 0-cusps are zero.

All Hecke operators T*(n) preserve this part (this is seen by 1.3.5). In particu-
lar, the ordinary part H'(Y;(Np"))qd of H'(Yi(Np"))o is defined. Note that T*(p) on
H} (Y1 (Np")) commutes with the identity maps on O-cusps via the boundary map (this is
seen from 1.3.5).

For r > 1, we have a commutative diagram

H;tmuvlpr“))(m % Zp[{o-cusps}]:ZP[EZ/NpTHZV/{ﬂ}]
HLY(Np)(1) 2 Z[{0-cusps}] = Z,[(Z/Np'Z)* /{=1}],

where the 0-cusp associated to coys(a, 0) (a € (Z/MZ)*) for M = Np", Np" ! corresponds
to the class of the group element [a] of Z,[(Z/MZ)*]. Hence we can take

Hy = lim H, (Vi (Np"))g™.

Lemma 3.3.8. As a A-module, Hy(1) is generated by the elements ([p"'u : v]2%),51,

where u and v range over integers such that (u,v,N) =1, p fv, and u % 0 mod Np.
Proof. This is a variant of Lemma 3.2.5, and is proved in the same way. ]

Theorem 3.3.9. There is a unique $-homomorphism
e+ Ho(1) — H'(Z[L/Np], H(2)) ©2 Q(A)

having the following properties (i)-(iii).

(i) For any element = in the image of Zjﬁvpoo and for any integer ¢ such that ¢ =
1 mod Np, p~£02 — (¢))z belongs to the image of the canonical map H'(Z[1/Np|, H(2)) —
HY(Z[1/Npl, H(2)) @1 Q(A).

That is, the above map is in fact a map into
HY(Z[1/Np], H(2)) @x Ap~",

where
p=p((1+Np)*—(1+ Np)) € A.
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(i) For anyr > 1, in H'(Z[1/Np|, Hy,(Y1(Np"))(2))®z,Q,, the image (1—T*(p))z§i\]poo (7)
coincides with the image of z1 npr pee (7).

(iii) For each r > 1, the following diagram is commutative.

Ay HY(Z[L/Np), H(2)) 95 A
! !

/
EB(CL,b)GPNpr Zp - 69(0"17)61)Npr Hl (Z[l/Np7 CNPTL Zp(l)) ®Zp Qp‘

Here Py is as in 1.5.1, f is the map explained in 3.3.10 below, and the vertical arrows
are induced from

H(1) — Hy(Y (Np")(1) — H'(Z[L/Np, Cuprllla ™ N)la 1), Z,(1)) — Z,

associated to conyr(a,b). The last arrow here is the boundary map which sends the Kum-
mer class of ¢*/NP" to 1, and f is as below.

3.3.10. The map f in the diagram in the above theorem is as follows.

For integers x, B such that B > 1, let (=, moa 5($) be the partial Riemann zeta function
which is given as Y -, mea ™ ° When Re(s) > 1 and which is extended to C as a
meromorphic function holomorphic except at s = 1. Note that (=, moq 5(r) € Q for any
integer r < 0.

Then f is the homomorphism which sends 1 at con,r(a,b) (o € Z/Np"Z,b € (Z/Np"Z)*)
to

57 ({1~ Gy © G a(=1) at oy (a, by)

.y
where A is the positive divisor of Np" such that a is Np"/A times a unit of Z/Np"Z, x
ranges over all elements of Z/AZ, and y ranges over all invertible elements of (Z/Np"Z)/(ax).

Lemma 3.3.11. Let u,v € Z/Np"Z, (u,v) = (1). Let R (resp. S) be the positive divisor
of Np" such that (u) = (R) (resp. (v) = (S)) in Z/Np"Z. Then, the boundary of [u : v,
1S given by ) )
NTp . v’,u') . OONpT(NTp . ull7/U/l)’
where ', v’ v v" denote elements of Z/Np"Z such that (u/R)u’ =1 mod Np" /R, vv' =
1 mod R, wu” =1mod S, (v/S)v” =1 mod Np"/S.

00N (

Lemma 3.3.12. At the cusp of Y1(Np")@0Q({npr) associated to conyr(a,b), the boundary
of z1.npr 1 (1, v) coincides with {1 — (Y} ® (zav mod npr (—1) if au = 0, with {1 — (¥} @
C=au mod Npr(—1) if av = 0, and with 0 otherwise.

Proof. Take ¢,d € Z such that bc —ad = 1. Then the boundary in problem coincides with
the boundary at oo of

c d\*
a b Zl,NpT,l(ua'U) = {gau/NpT,bu/Np’”agav/NpT,bv/NpT}-

The lemma follows from this by explicit computation of this boundary. [l
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3.3.13. Proof of Theorem 3.3.9.
The uniqueness follows from the exact sequence

0 — H'(Z[1/Np], H(2)) — H'(Z[1/Npl, H(2)) — H'(Z[1/Np], (H/H)(2))

and the fact that the kernel of 1—T"(p) on H'(Z[1/Np], H(2)) is contained in the A-torsion
of HY(Z[1/Np], H(2)).

We prove the existence of the homomorphism. By Lemmas 3.3.11, 3.3.12, we are re-
duced to showing the following. For any v € Hy(1), we can find z € H'(Z[1/Np|, H(2))®x
A p~! such that for any r > 1, if x, and y, denote the images of x and z1 ypr p=(7) in
HY(Z[1/Npl], Hi (Y (Np"))(2)) ®z, Qp, respectively, then

Yr = (1 - T*(p))xr

By Lemma 3.3.8, it is sufficient to check this for v = ([p"u : v],.), where (u,v, N) =1,
(v,p) =1, and u #Z 0 mod Np. Taking ¢ =d =1+ Np, z, in this case is given by

Ty = (cazinpr 1 (P u,0) @ (& — 1) Hd? = (d) ™),

Proposition 3.3.14. The map Z?Vpoo of Theorem 3.8.9 sends H (1) into H'(Z[1/Npl, H(2))®x
Apt

This follows from (iii) in Theorem 3.3.9.
From the proof of Theorem 3.3.9, we obtain the following proposition.

Proposition 3.3.15. The map z?vpoo of Theorem 3.3.9 is compatible with a homomor-
phism
Hg(YA(Np"))o — H'(Z[1/Np], Hy(Y1(Np"))(2)) ®2, Q,

which sends [u : v], to —z1 npra(u,v) and sends . q[u : v]1 npr to —caz1 Npra (U, v).

Remark 3.3.16. It may be possible that the map
modular symbol — Beilinson element

in this section can be obtained also from the work of Goncharov [14] on motivic coho-
mology. In this section, we proved that this map commutes with the actions of Hecke
operators by using the relations between Beilinson elements and zeta values. (This com-
mutativity will be the key for the proof of Conjecture 5.8 in [51] given in section 5.2.) It
may be possible that the commutativity is proved also by a motivic method of [14].

4 p-adic L-functions in two variables

There are two kinds of p-adic L-functions in two variables for modular forms. One is
the L-function in two variables of Mazur-Kitagawa ([30], [24]). The other is related to
Beilinson elements ([12], [37]) and has the shape of a product of two A-adic Eisenstein
series ([12], [43]). Both play important roles in this paper. We review and study these
two, and describe (Theorem 4.4.3) the relation between them.
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4.1 Classical p-adic zeta functions

4.1.1. We review the classical theory of p-adic zeta functions. See [59] for example.

Let N > 1 be an integer which is prime to p, and let A = lim_ Zp|(Z/Np"Z)*| =
Lp||Zy < (LINZ)*]].

Then for an integer ¢ < 0, there is a unique element

' ="y (resp. EF = i{fva) € Q(A)

satisfying the following condition. Let r > 0 and let ¢ : (Z/Np"Z)* — Q* be a ho-
momorphism. Then ‘¢ (resp. ‘€*) belongs to the local ring A, of A at the prime ideal
p=Ker(¢ : A — Q,) and the image of ‘¢ (resp. ¢*) under ¥ : A, — Q, coincides
with the complex zeta value Lnp)(i,97") (resp. L(ny)(i,%)). Here Liny)(s, —) denotes
the Dirichlet L-function without FEuler factors at the prime divisors of Np.

Furthermore, for i < 0, ‘€ coincides with the i-th Tate twist of ¢ and “€* coincides with
the transpose of ‘€. That is, °¢ coincides with the image of °¢ under the ring isomorphism

AS A [(a,b)] — di(a,b)] (a € Ly, be (Z/NZ)*), and “¢* coincides with the image of
i¢ under the ring isomorphism A = A ; [d] — [¢7!] (c € 7y x (L/NZ)*).

For any integer 1, let ‘¢ € Q(A) be the i-th Tate twist of °¢, and let ‘¢* € Q(A) be the
transpose of €.

4.1.2. The ¢ in Introduction of this paper is as follows. Let A = Z,[[Z}]] and A~ be as in

Introduction. Then A~ = [I; A where ¢ ranges over all odd elements of Z/(p — 1)Z and
Ay = A /(w(a)] —w(a)'; a € (Z/pZ)*). Here w is the Teichmiiller lifting. The image of
%¢ € Q(A) in Q(A(;)) belongs to Ay unless i # 1, and the image of °¢ in Q(A(y)) has the
shape f/g where f is an invertible element of Ay and g is a generator of the kernel of
the ring homomorphism Ker (A1) — Z,) induced from A — Z, ; [a] = a (a € Z)).

In Introduction, § denotes an element of A~ whose image in A;) for an odd element 4
of Z/(p — 1)Z is the image of °¢ if i # 1, and is an invertible element of Ay if i = 1. (We
can choose this invertible element freely.)

4.1.3. In sections 6-11, & will denote the image of ~'¢ in a certain quotient of Q(A) (see
6.1.6).

4.2 Coleman power series

4.2.1. Let T be a pro-p abelian group endowed with a continuous unramified action of
Gal(Q,/Q,). Let D(T) be as in 1.7.4.
We discuss the homomorphism of Iwasawa-Coates-Wiles-Coleman
Col : lim H'(Q,(G), T(1)) — STHD(T)([Z,]])

p
n

for a certain multiplicative subset S of Z,[[Z}]] consisting of non-zero-divisors, and its
variant

Col’ : HY(Q,, T(1)) — D(T).
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4.2.2. First we consider Col’. Let L be the completion of the maximal unramified ex-
tension Q¥ C Q, of @,. The valuation ring Oy, of L is W(F,). We have the exact
sequence 0 — HY(F,, H°(L,T(1)) — HYQ,,T(1)) — H°(F,, H(L,T(1)) — 0, and
HO(L, T(1)) = T®H®(L,Z,(1)) = 0, HY(L,T(1)) = T®H(L,Z,(1)) & T®L*. Hence
HY(Q,, T(1)) & (T®L*)»=1. We have L* = p” @ Of. The homomorphism

ly: (O1)" = O ; > p ' log(a®/Fry(x))
induces an isomorphism lim O /(Oj )P" = Op. Thus we have an isomorphism
HY(Q,, T(1)) = (T&(Z & Or))"™= =T~ & D(T).

We define Col” : H'(Q,,T(1)) — D(T) to be the second component of this isomorphism.
Thus Col” is surjective and the kernel is isomorphic to TF»=1,

4.2.3. Let ¢ : D(T) — D(T) be as in 1.7.4.
We have

D(T)/(1 = )D(T) = D(T/(1 = Frp)T) =T/(1 = Fry)T.
Proposition 4.2.4. The composition

H'(Q,, T(1)) “% D(T) — D(T)/(1 ~ ¢)D(T) = T/(1 ~ Fr,)T

coincides with the composition
U(1 —p Hlog(k) : H(Q,, T(1)) — H*(Q,, T (1)) =T/(1 — Fr,)T.

Here r is the cyclotomic character Gal(Q,/Q,) — Z, (1 — p~')log(k) is the compo-
sition of k and (1 — p~!)log : L, — Ly, and U denotes the cup product.

Proof. Replacing T by T/(1— Fr,)T, we are reduced to the case the action of Gal(Q,/Q,)
on T is trivial. Hence we are reduced to the case T' = Z, with the trivial action of
Gal(Q,/Q,). In this case, it is sufficient to prove that [, : Q) — Z, (this sends p to 0
and coincides with (1—p~')log on Z%) is induced by U(1 —p~")log(x) : H(Qp, Zy(1)) —
H?*(Q,,Z,(1)) = Z,. This is checked easily. O

4.2.5. Next we consider Col.
Let

P = @HI(QP(Cpn)a T(1)),

n

and let U C P be the kernel of

P — lim B (L(Gn), T(1)) — T lim L(Gn)* /p" — T

n n

where the last arrow is induced by the valuation L((n)* — Z.
We have a canonical homomorphism

Col : U — D(T)|[[Z)]]

p
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defined as follows. It is the composition

U — (Tolim Or[G]*) ™" — (T@0L[[Z,]))"~" = D(T)[[Z,]]

where the second arrow is induced from the usual homomorphism of Iwasawa-Coates-
Wiles-Coleman

(1) @OL[Cp"]X - OLHZ;H

with respect to (Gpn)n>1. We recall the last map (1). Let u = (up)n>1 € lim Op[Gm]*.
Then there is a unique element of g(t) € Op[[t — 1]]* (called the Coleman power series
associated to u) such that F'r,™(g)((m) = u, for all n > 1. Here Fr,"(g) is defined by
applying F'r," to the coefficients of g. The image i € O[[Z]] of u is characterized by
the property ut = p~ti,(g(t)) where l,(g(t)) = log(g(t)?/EFry(g)(t?)). Here ut is defined
by the natural O[[Z)]]-module structure of O[[t] for which the group element [a] of
O[[Z2]] for a € Z} sends f(t) € O[[t]] to f(t%).
We extend Col : U — D(T)[[Z]] to
Col : P — S~Y(D(D)[[ZX])

p

where S is the multiplicative subset of Z,[[Z)]] consisting of all elements of the form us"
where u € Z,[[Z]]*, n > 0, and s is an element of Z,[[Z)]] such that the kernel of the
augmentation map Z,([Zy]] — Z, ; [a] = 1 is generated by s as an ideal of Z,[[Z)]]. The
extended map is defined by

z +— s 'Col(s)

for such s.
Note that D(T)[[Z)]] — S~'(D(T)[[Z}]]) is injective. This is because (S™'Z,[[Z}]])/ Zy|[Z]]
has no p-torsion and hence is flat over Z,.

4.2.6. In the case T"»=! = 0, we have

Col: P — D(T)[[Z]]

p

without S~1, since P = U in this case.

Proposition 4.2.7. Assume TF»=! = (.
(1) Col” is an isomorphism H'(Q,,T(1)) = D(T).
(2) We have an ezact sequence

Col

0 — lim H(Q(¢n), T(1)) <% D(D)[[Z]] 2 D(T)/(1 — ) D(T) — 0,

n

where b(x @ [a]) = ax for v € D(T) and a € Z}.
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Proof. (1) is clear from 4.2.2.
As is well known in classical local Iwasawa theory, the homomorphism (1) in 4.2.5
induces an exact sequence

0—2,(1) =V = O[[Z;]] = 0

where V' := Ker(lim HY(L(¢n), Zy(1)) — Z,) and the map Z,(1) — V comes from the
evident embedding of Z/p"Z(1) into Z,[(»]*. By the snake lemma for the commutative
diagram

0 — T(1) - TRV — TROLZ)] — 0

l | !
0 — T(1) - TRV — TROLZ)] — 0

where the vertical arrows are 1 — F'r;,, we have an exact sequence 0 — U — D(T)[[Z;]] —
T/(1—Fr,)T. Asis easily seen, the last arrow sends x®|[a] to ax if we identify T'/(1—F'r,)T
by D(T')/(1—¢)D(T). It remains to prove that this last arrow is surjective. By replacing
T by T/(1— Fr,)T, this is reduced to the case Gal(Q,/Q,) acts on T trivially, and hence
to the case where T' is Z, with the trivial action of Gal(Q,/Q,). In the last case, the
surjectivity is known in classical Iwasawa theory (cf. [5]). O

Lemma 4.2.8. The image of the map

(1—-¢)Col: P — S_I(D(T)[[Z;]])

is contained in D(T)[[Z)]].

Proof. lim L(Gyn)* is generated by lim Op[¢»]* and the class of (1 — (pn)n. The last
element is killed by 1 — ¢. [

Proposition 4.2.9. We have a commutative diagram

(1—p~1)Col
L

P D(T)[[Z)]]
! b !
HY(Q, T(1)) <4 D(T).

Here the vertical arrows are the natural projections.

Proof. Let w € U and let g € T®O[[t — 1]]* be the element such that u, = ((1 ®
Fr=™)(g))(¢pn) in HY(L(¢n), T(1)) = TRL(¢pn)* for any n > 1. Then if uy denotes
the image of u in T®(Or)* under the canonical projection, we have uy = ¢(1)(1 ®
Fr 1) (g)(1)~" where we denote the group law of the right hand side multiplicatively.
Hence

Col”(ug) = (L@ L) (uo) = (1 = 1@ Fr, ) (1 @ L,)(9)(1)) = (1 — ¢~ ")Col(u)o

where Col(u)o denotes the image of Col(u) under the projection D(T)[[Z)]] — D(T).
The proposition follows from this and the fact that T®(1—(yn )y, is killed by 1-1®@ Fr, !
and projects to T ® p which is killed by 1 ® [,. O
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4.2.10. Relation of Col and exp* ([21] Chap. II, section 2, [44].) Assume that 7" is
finitely generated as a Z,-module. Let z € lim HY(Q,(¢n), T(1)), let S; be the image
of S under Z,[[Z)]] =, Z,\2Y)) ; la] — ala] (a € Z)Y), and let p € S (D(T)[[ZX]])
be the image of Col(x) € S~ (D(T)[[Z)]]) under the isomorphism S~'(D(T)[[Z)]]) —
STHDOMIZY]) 5 2@ [a] = az®[a] (z € D(T), a € Z)). Let ¢ : ZX — Z* be a
continuous homomorphism with finite image, and let u(v)) € D(T)®Z, be the image of
i by 1. Let n be the smallest integer > 0 such that ¢ factors through (Z/p"Z)*, let
z, be the image of x in H'(Q,((,»),T) under the composition lim HYQu(¢n), T(1)) =
lim HY(Qy(¢pn), T) — H'(Qp(Gpr), T), and let exp*(x,) € D(T) @z, Qp(¢pn) be the image
of z,, under the dual exponential map

exp” : H'(Qy(¢pn), T ®z, Q) = Dar(Qy(Gr), T ®z, Q) = D(T) @z, Qp(Gr).
(1) Assume n > 1. Then

PR =G, Gn) e (" @ 1) Y Y(a)oa(expt(a)).

a€(Z/p"Z)*
(2) Assume n = 0 (so 1 is trivial). Then

(1—=p o Hu() = (1 — @) exp*(zo).

4.3 p-adic L-function M in two variables

4.3.1. From now, in this section 4, fix an integer N > 1 which is prime to p, and let

A = imZ,[(Z/NpZ)"].

T

As in section 1.5, let

H = lim H}, (Vi (Np") © Q. Z,)™ 5 H = lim Hy (X, (Np") © Q. Z,)™,
My the space of ordinary A-adic modular forms, and Sy, C M, the space of ordinary

A-adic cusp forms. Recall that the action of $ on M, and the action of h on S, are that
T*(n) acts as the usual T'(n).

4.3.2. Consider the maps Col and Col” for the unramified representations T = Heyo(1)

or T = Hyo(1) of Gal(Q,/Q,).
We have

Col : lim H*(Qp(Gr), Hanol2)) = S~ (D(HauoW)I[Z;])) = S (MAIZ])

p
n

(here S C Z,[[Z]] is as in section 4.2). This induces

Col : lim H(Q,(Gpr ), Hauo(2)) — D(Hauo(1))[[Z5]] = Sal[Z;]]

n
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without S~1, by the fact Hyuo(1)»=! = 0 (Proposition 3.3.3) and 4.2.6.
We have .
Col? < H(Qy, Flgul2) — D(Fgo(1)) = My
which induces

Col” - HY(Qp, Hquo(2)) — D(Hquo(1)) = Sa.
The last map is an isomorphisms by H,o(1)¥»=! = 0 (Proposition 3.3.3).

4.3.3. We define a map

"M : B — MAZ]) ® gy QAIIZT) = My 04 QUAIZ).

by
"M(y) = Col(z1,np = (7)) (7 € H).
Here 21 npeo oo (7) is defined as in Theorem 3.2.3.

For s € Z, let *M(v) be the element of My @5 Q(A[[Z}]]) obtained from *M(v) b
applying the automorphism of My @, Q(A[[Z;]]) induced by the automorphism of A[[Z]]
over A which sends [a] (a € Z¥) to a®[a]. We denote "M simply by M. We will mainly
use M and M =M.

The correspondence v — M) is characterized by zeta values as in (2) in the following
Proposition.

Proposition 4.3.4. The map M has the following properties.

(1) For any v € H and for any b,c,d such that (b,p) = 1 and (cd,6Nmp) = 1 and
¢ =d = 1mod Np, (1 —boy)(c — 0.)(d — 4{d)) M(v) belongs to the image of E :=
My @n A[[Zy]] in E @y zx QA[Z]]). (Here (a) acts on My as the usual (a)™1).

(2) Let r > 1, let v € H, and assume that the image of v in H}(Y1(Np"))g, belongs
to HY(Y1(Np")(C),Q). Let v : ZX — Q* be a continuous homomorphzsm of ﬁmte order
and of conductor p™ with n > 0. Then the image of M(y)(v) € (hm My(Np?)z,) @z, Q,

in My(Np")g, belongs to My(Np")g, and the period map
My(Np")g — H'(Yi(Np")(C),Q)* ©o C (£ =1(-1))
sends this image of M(v)(v) in My(Np")g to

G(¢7 gp")_lT*(p)_nZLNpT(wa ]-) ’ ’yi'

Here
Zl ,Np" ,QZ}7 Z,lvb

where m ranges over all integers > 1 which are prime to p, and + denotes the &-component
for the action of complex conjugation.

(3) The map v — M(vy) commutes with the action of the Hecke algebra $. (Recall
that T*(n) € 9 acts on My by the usual action of T(n).)



60

Proof. This is reduced to the properties of Beilinson elements. O]

4.3.5. In Proposition 4.3.6 below, we describe M({0,00}). Here we give some prelimi-
naries to state the result.
We prepare notation for Eisenstein series of weight 1. For x,y € Q/Z, the Eisenstein

series Eg(ﬂl) of weight 1, which is a modular form on the curve X(M)g for M > 3 such
that Mz = My = 0, is defined as in [22] section 4. It is characterized by the g-expansion
as follows. For x € Q/Z, we define

((z,s) = Z m”?, *(x,s) = Z exp(2mizm) - m”°.

meQ,m>0, m mod Z=x m=1

Then ES; = me0m>0 @mq™ Where a,, with m > 0 are given by

Z amm_s - C(a:,s)(*(y,s) - C(_‘I7S)6*(_y7s)>

meQ,m>0

and qy is as follows: ag = ((z,0) if 2 # 0, and ag = (1/2)(¢*(y,0) — (*(—y,0)) if z = 0.
For R € GL(2,Z/MZ), we have
(1) RE{)= Eﬁ?y, where (2',y') = (z,y)R.
For any integer m > 1, we have the distribution property

2 BY=mt Y EY.

m7y x 7y
mz'=x,my’ =y

For a € Z) x (Z/NZ)*, we denote the group element of A corresponding to a by [a.
For a € Z), we denote the group element of Z,[[ZX]] corresponding to a by o, (we will
identify this o, with o, € Gal(Q((p~)/Q)). In A[[Z]] which contains both rings A and
Z([Z}]] in the evident manner, the image of [a] € A (a € Z) x (Z/NZ)*) is denoted by
[a], and the image of 0, € Z,[[Z]] (a € Z,) is denoted by o,.

Proposition 4.3.6. (1) As an element of lim My(Np")q,[(Z/p"Z)*], we have
M({0,00}) =

the ordinary component of (N~ 'p™" " ( Z Eil/ggn,b/pn%) : E((]}l)/Npr)n21,r21-
x€ZL/p"L,bE(L/p™ZL)*

(2) As an element of MA[IZ3)] @4y QAIZZ]], for s € Z, we have
*M({0,00}) = the ordinary part of AB, where

where A and B are (A-adic) Eisenstein series (of weight s and 2 — s, respectively) defined
by
A:A0+2 Z O_il's—lq]\fij,

7;7]21,(17])):1
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B=DBy+2 >  ailio;i' ¢,

1,j>1,(i,Np)=1

whose constant terms Ay and By are given, respectively, as follows. Aq is the image of
the p-adic zeta function l_sﬁ';oo under [a] — o,, and By is the image of the p-adic zeta

unction 1% under [a] — [aloL.
Np a

This (2) is obtained in Fukaya [12]. The fact the system in (1) belongs to the inverse
limit is deduced from the distribution property (2) in 4.3.5. The fact the system in (1)
corresponds to the A-adic modular form in (2) is proved by using (1) in 4.3.5 and using
the g-expansion of E;(Ull), in 4.3.5.

The product AB of (2) appears also in the work Panchiskin [43] to obtain p-adic
L-function in two variables (relation with Beilinson elements are not considered in [43]).

4.3.7. Let (—)s=0 : D(Hquo(1))@aA[[Z)]] — D(Hquo(1)) be the map induced by A[[Z]] —
Ao.—c ! Forvye H, let

M—o(7) == CM(7))s=0 € Mp @ Q(A).

We will see in the next section (4.4.3) that, for v € H, M(v) € S;[[Z;]] and hence
M—o(7y) € Sp (we do not need the localization ®Q(—)).

Proposition 4.3.8. For v € H, we have
M—o(7) = Col” (2 (7))
in D(Hquo(1)).

Proof. Let z, € HY(Q,, Hyuo(2))®@aA " be the image of 2 ype p (7) under the canonical
projection. (Here p is as in 3.3.9.) We have by Propositions 1.8.1 and 4.2.9

(1= T" () Mzo(7) = (1 = 0™ ) Mo(7) = (1 — ¢~ ") (Col(21,npm = (7))s=0)

= Col’(z,) = Col"((1 = T"(p)) 2y (7)) = (1 = T"(p))Col " (2 (7)).

Use the injectivity of 1 —T%(p) on Hgy, considered in section 3.3. ]

4.4 p-adic L-function £ of Mazur-Kitagawa in two variables

We review the definition of the p-adic L-function of Mazur-Kitagawa in two variables and
prove a relation (Theorem 4.4.3) to the above p-adic L-function M in two variables.

4.4.1. By [51] Lemma 3.1, the ordinary component of [u : v], € HL(Yi(Np")) (u,v €
Z/Np"Z, (u,v) = 1) such that u mod p" # 0, v mod p" # 0 belongs to the image of the
canonical injection Hj (X;(Np"))od — HL (Y (Np"))er.
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4.4.2. Fix N > 1 which is prime to p. Mazur-Kitagawa p-adic L-function £ in two
variables is defined as

L=( Y, T® {eoa/p @)= Y T'p) 7 [Na: 1, )

a€(Z/p"Z)* a€(Z/p"Z)*

€ H([Z)]] = lim Hg, (Y1(Np")"(Z/p"Z)*].

In fact it belongs to H[[Z)]] C ﬁ[[Z;]] by 4.4.1.
(Here we consider the (—1)-Tate twist of the homology. )

Relations between the p-adic L functions M and L in two variables were studied by
Ochiai [37]. In Theorem 4.4.3 below, we give a new presentation of the relation by using
the pairing ((—, —))a defined in section 1.6.

Theorem 4.4.3. Fory € H, M(7) belongs to Sx[[Z)]], and we have

(L;y)a =01 M(v)
in Sal[Z)]).

Proof. 1t is sufficient to prove that for any non-trivial continuous homomorphism ¢ :
Zy; — Qp with finite image, we have

(1) (£@),7) =¢(=DM(y)(¥) in Si @z, Qp

Let p© be the conductor of 1b. We work on X;(Np") (r > 1). Let L(¢)) € H'(X;(Np")(C),Q)®q
Q be the image of 37, 7 /pez)x 100, ¢/ }yvi(vpry @ P(a) € H (Y1(Np")(C), Q) ®q Q under
the Drinfeld-Manin splitting H'(Y;(Np")(C), Q)®oQ — H' (X1 (Np")(C),Q)®¢Q (1.9.3).
Consider the pairing (—, —) : H'(X;(Np")(C),Q) x H'(X;(Np")(C),Q) — Q of Poincaré
duality. Let f=>""_, an(f)¢™ € So(Np")c and consider per(f) € Hl(Xl( p")(C),C).

Claim 1. (L(s),per(f)) = G(, Ge) L(f, ¥4, 1). Heve L(f, L, 5) = X2, an (£ (m)m—

where m ranges over all integers > 1 which are prime to p.

Proof of Claim 1. This is standard.
Claim 2. > 7 (L(),T(n)per(f))q" = G, (pe)Zr(~1,1)f. Here Zp(y~t,s) =

> T(m)(m)m=* where m ranges over all integers > 1 which are prime to p.

Proof of Claim 2. The right hand side of Claim 1 is G(¢, (yc)a1(Zr (¢4, 1) f). Replac-
ing f by T'(n)f, we have

(L(¥), T(n)pex(f)) = (L(¥), per(T(n)f)) = G(¥, Ge)ar (Zr(¥~", DT (n) f)

= G(% Cpc)an(ZT(wila 1)f)
This proves Claim 2.

Claim 3. For any v € H'(X;(Np")(C),Q), the period map Ms(Np")g — H*(X1(Np")(C), Q)*®q
C sends Yo7 (L(¥), T(n)y)q"™ to G(¢, Cpe) Zr(1p™1, 1)7E. Here + = o(—1).
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Proof of Claim 3. Since the map v — (L(1),) factors through ~ — ~*, this follows
from Claim 2.

Now the formula (1) at the beginning of this proof of Theorem 4.4.3 is deduced from
Claim 3 and (2) of Proposition 4.3.4. (/(—1) appears because G(¢, (e )G (W™, e )p™¢ =
w(-1). O

Remark 4.4.4. The p-adic L-function £ in two variables of Mazur-Kitagawa still works
for modular forms which need not be ordinary. But it loses the integrality, for 7%(p)~"
which appears in its definition is not integral any more.

However, the p-adic L-function M in two variables works integrally even for modular
forms which need not be ordinary, as is shown in a forthcoming paper of T. Fukaya. It
will be shown that we can construct M : lim_ Hg (X1 (Np")) — (A-adic cusp forms)[[Z]],
M :lim H &(Y1(Np")) — (A-adic modular forms)[[ZX]] without taking the ordinary com-
ponents.

4.5 Relations with p-adic L-functions of cusp forms

We compare the relation of £ to the p-adic L-function of each cusp form with that of M.

4.5.1. We review the p-adic L-function of a cusp form ([1], [31], [58]).

Let f =3 a,¢" € Sp(Np")c (r > 1) be a normalized Hecke-eigen p-stabilized
newform of weight & > 2, of level Np", and of character ¢ : (Z/Np'Z)* — Q*. So
T(n)f = anf (a, € Q) for n > 1, {¢)f = e(c)f for any ¢ € (Z/Np'Z)*, and a; = 1.
Assume f is T'(p)-ordinary, that is, a, is a p-adic unit in Qp. We review the p-adic L
function of f.

We have f € Sp(Np")g. Let

F=Qa,;n>1)CQ, L=Qya,;n>1)CQ,

Then F'is a finite extension of Q and L is a finite extension of @Q,,.
Consider the canonical perfect paring

(5 ) Ve(Xa(Np"))g(k — 1) x Vie(Xi(Np"))o — Q.

This pairing commutes with the action of the complex conjugation. We denote the induced
pairing Vi (X1 (Np"))c X Vi(X1(Np"))c — C also by (, ).

We say that a pair Q = (QF,Q7) of non-zero complex numbers is a period of f if F =
(2mi)?* (6%, per(f)) for the above pairing (—, —) and for some 0+ € Vi (X (Np"))g(k—1)*.
(The last (—)* denotes the part on which the complex conjugation acts by +1). Periods
of f fulfill an F'* x F*-orbit in C* x C*.

Let Q = (2%,Q7) be a period of f. Then the p-adic L-function L,qo(f) of f with
respect to (2 is the unique element of OL[[Z)]] ®z, Q, having the following relations (i)
and (ii) with the complex L-functions

= Z ayn”®,  L(f,,s) Z ah(n
n=1
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(Here ¢(n) means 0 if n is divisible by p and v is non-trivial.) Let r € Z, 1 <r <k — 1.
For a homomorphism v : (Z/p"Z)* — Q*, let L,o(f,v,7) € Q, be the image of L,q
under the ring homomorphism &1 : OL|[Z}]] ®z, Qp — @, which sends the group
element [a] for a € Z to a" "¢ (a). In the case v is trivial, we denote L,qo(f,¢,7) by

Lpﬂ(fv T)'

Let a := a,,.

(i) Let n > 1 and let ¢ : (Z/p"Z)* — Q* be a homomorphism which does not factor
through (Z/p"~'Z)*. Then

LP,Q(f7 wﬂ T) = (T - 1)‘ ’ pn(ril)ain : G(wv CP") ’ <_27Ti)1771 ’ é : L<f7¢7 T)

(both sides belong to Q). Here £ = (—1)""%)(—1), and G(¢),(n) is the Gauss sum
Zbe(Z/an)x ¢(b)<£"

(i)
Lyalfr) = (=Dl (L= ™) (1= o™ - (<2mi)' "+ o ()

(both sides belong to Q). Here + = (—1)""1,

4.5.2. Define the F-vector space V(f)r (resp. S(f)r) to be the quotient of Vi (X1 (Np"))r
(resp. Sk(Np")r) divided by the F-subspace generated by the images of the operators
T(n)—a, (n>1)on Vi(X1(Np"))r (resp. Sp(Np")r). Then V(f)r is a two dimensional
F-vector space and S(f)r is a one dimensional F-vector space. The natural action of
Gal(C/R) on Vi(X;(Np"))g induces an action of Gal(C/R) on V(f)r. Let V(f)} (resp.
V(f)r) be the part of V(f)r on which the complex conjugation acts as 1 (resp. —1).
Then dimp(V(f)F) = dimp(V(f)z) = 1.
The period map in 1.5.6 induces the period map

per : S(f)ec = V(f)c
which is injective, where S(f)c = S(f)r @r C, V(f)c =V (f)r ®@r C.
4.5.3. Let f be as in 4.5.2. Let

n

where a,, denotes the complex conjugate of a,,. Then f* € Si(Np")c and f* is a normalized
Hecke-eigen p-stabilized new form. So T'(n) f* = a, f* for n > 1. We have also T"*(n) f* =
an f* for n > 1. Hence f* is T%(p)-ordinary. We have F' = Q(a,, ; n > 1).

The F-vector space V(f*)r (resp. S(f*)r) coincides with the quotient of Vi (X1 (M))r
(resp. Sk(M)r) by the F-subspace generated by the images of T*(n) — a,, (n > 1). The
map (—,per(f)) : V(X1 (Np"))r(k — 1) — C factors through V(f*)r(k —1).

4.5.4. Take non-zero elements 6% of V(f*)(k — 1)%, let QF = (27)>7%(6F, per(f)), and
let

Lo(f) = Loa(F)*5* + Lya(f) 5 € V(/)r(k — 1) @0, O4[Z:])
Then L,(f) is independent of the choice of 9.
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Proposition 4.5.5. (/30], [24].) Let
V(f*)r. We have

s be the projection from lilnr Vi(X1(Np"))z, to

7Tk(£)

5o =Ly(f)

in V(f*)r @or OLl[Z;]] -

4.5.6. We define L, ,(f) € S(f*)r ®o, OL[[Z}]] for v € V(f*)r. In the case v € V(f*)r
and v* # 0, it is defined as follows. Take a non-zero element w of S(f*)r and write
per(w) = Qv + Q7= where a € {+} is the sign of (—=1)¥. (We can take for example,
w = wnpr(f).) Then Q = (Q7,Q7) is a period of f. Define L, ,(f) = L, o(f)w. Then this
is independent of the choice of w. For general v € V/(f), writing v = ). a;y; with a; € L
and y; € V(f*)r such that 7;° # 0, define L, (f) = Y., aiL,~,(f). This is independent
of the choice of such presentation of ~.

Lemma 4.5.7. ((Ly(f), 7))rk = 0-1+ Lypy(f) tn Sp(f*) @0, OL[[Z;]]. Here the pairing
((—, —))k,r s as in 1.6.8.

Proof. This can be deduced from the relations of both sides to complex L-values. m

Proposition 4.5.8. Let

#+ be the projection from Sk to S(f*).. We have
(Mg = Lpy(f)

in S(f*)r @o, OLl[Z;]]-
Proof. This follows from Theorem 4.4.3, Lemma 4.5.7 and Proposition 1.6.10. O

5 The map @

In this section, we define the map w from the modular symbol side to the ideal class
group side. We prove Conjecture 5.8 in [51] of Sharifi.
We illustrate the outline of section 5. In section 3, we constructed the correspondence

(1) modular symbol — Beilinson element.
In section 5.1, we will construct the correspondence
(2) Beilinson element — cyclotomic symbol

by taking the value of a Beilinson element at the co-cusp. Here cyclotomic symbol means
the cup product of two cyclotomic units in Galois cohomology. Composing these (1) and
(2), we obtain in section 5.2 and section 5.3 the correspondence

(3) modular symbol — cyclotomic symbol.

The correspondence (3) is constructed by Sharifi [51], Proposition 5.7 (see 5.2.1-5.2.3
of this paper), but the relation of his correspondence with Hecke operators is stated by
him as Conjecture 5.8 in [51] which we review in 5.2.2. By using our construction of
the correspondence (3) outlined above, we can prove his conjecture by the fact that the
map (1) respects Hecke operators (Theorem 3.3.9) and the map (2) also respects Hecke
operators (Theorem 5.1.9 (2)). We point our that in our proof of Theorem 3.3.9 and hence
in our proof of this conjecture, the relation of Beilinson elements to zeta values play an
essential role.
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5.1 From Beilinson elements to cyclotomic symbols

5.1.1. Let M > 1 and assume p|M. For a,b € Z/MZ such that (a,b) = (1), we define in
5.1.3 below a homomorphism

H*(Yi(M) ® Z[1/M], Z,(2)) — H*(Z[1/M, Cu), Z,(2))
called the evaluation at coys(a,b). The restriction of this homomorphism to H?(X;(M)®
Z[1/M]) is just the pull back by the morphism Spec(Z[1/M, (], Z,(2)) — Xi(M) ®
Z[1/M] induced by ocops(a,b) (1.3.4).
5.1.2. Let R be a Noetherian regular ring. We extend the homomorphism of K-groups

to a homomorphism
Ky(R[[T)[T7]) — Ki(R)

as follows. By the localization theory in K-theory, we have an isomorphism
Ki(R([T])) & Ki 1(R) = K:(RT[T]) 5 (2,9) = =+ {y, T}.

Using this isomorphism, we define the above homomorphism as the composition
Ky(R[[T)[T™)) = Ki(R[[T)]) © Ki-1(R) — Ki(R[[T]]) — Ki(R)

where the former arrow is the first projection and the latter arrow is 7" +— 0.
We have a similar homomorphism

H'(R[[T)[T™], Z/p"Z(r)) — H'(R,Z/p"Z(r))

for the étale cohomology group, for a prime number p which is invertible in R and for
1,7 € Z. This is obtained similarly from the isomorphism

HY(R([T)), Z/p"Z(r))®H "R, Z/p"Z(r—1)) = H'(R(TN[T), Z/p"Z(r)) ; (x,y) — v+{y, T}

where {—, T'} is the cup product with the Kummer class of T in H'(R[[T)][T '], Z/p"Z(1)).
In what follows, we use the case i = 2 of these homomorphisms

Ey(R[[TNT™) — Ka(R), H*(R[TNT,Z/p"Z(2)) — H*(R,Z/p"Z(2)).
The following diagram is commutative.

Ks(RI[TT) — K (R)

l |
H*(R([T]|[T], Z/p"Z(2)) — H*(R,Z/p"Z(2))

Here the vertical arrows are the Chern class maps.
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5.1.3. The value at cops(a,b). Let M > 1 and assume p|M. Let a,b € Z/MZ and assume
(a,b) = (1). We have a commutative diagram

Ky ezi/M) M k2 /M, ()
l }
H2(Yi(M) @ Z[1/M], Z,(2)) "% HX(Z[1/M, ), Z,(2)
in which the horizontal arrows are the compositions
K>(Yi(M)) = Ko(Z[1/M, Culllg"[a™"]) — Ka(Z[1/M, Cur)),

H*(Y\(M), Z,(2)) — H*(Z[L/M, Cullla"™M])la '), Z5(2)) — H*(Z[1/M, Cur). Zy(2)),

respectively. Here the first arrows are the pull back by cops(a,b) and second arrows are
the maps in 5.1.2 for the case R = Z[1/M, (y;] and T = ¢/*. We denote the horizontal
arrows by x +— x(oops(a, b)) and call them the value at ooy, (a,b).

The value at 0oy, (0, 1) is called the value at co. We use mainly the value at co. But to
understand the relation of the value at co with dual Hecke operators, we have to consider
the values at other oo (a,b).

Remark. The value at oops(a,b) depends on the pair (a,b), not only on the cusp
determined by ooys(a,b). That is, even if b = ¥ mod a, the value at cops(a,b) and the
value at coys(a,t’) can differ.

Proposition 5.1.4. (1) For a,b € Z/MZ such that (a,b) = (1), and for ¢ € (Z/MZ)*,
and for any element x of Ko(Y1(M)QZ[1/M]) or of H*(Y1(M)QZ[1/M],Z,(2)), we have

((c)x)(conr(a, b)) = x(ocon(ca, cb)).
(2) Forc € (Z/MZ)* and for any element x of Ko(Y1(M)®Z[1/M]) or of H*(Y1(M)®
Z[1/M),Z,(2)), we have
((e))(00) = oc(2(00)).

(Here 0. € Gal(Q(Cay)/Q) is as in 2.4.3.)
Proof. The composition
Spec(Z[1/M, ullla]la™]) “2S" v (1) @ Z{1/M] L v (M) @ Z[1/M]
coincides with 0oy (ca, cb). Hence we have (1). (2) follows from (1) and
(001 (0,¢)) = 0o(2(0)).
]

The following 5.1.5 (resp. 5.1.6 (1), resp. 5.1.6 (2)) is obtained from the diagram (1)
(resp. (3), resp. (2)) in 1.3.5.

Proposition 5.1.5. Let ¢ be a prime number which does not divide M. Then for any
r € H*(Y1(M) ® Z[1/M],Z,(2)), we have

(L =T7(0) + ()" 0) 2)(00) = 0.
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Lemma 5.1.6. Let { be a prime divisor of M. Let x € H*(Y1(M) ® Z[1/M],Z,(2)). Let
(a,b) € (Z/MZ)? and assume (a,b) = (1). Let R > 1 be the positive divisor of M such
that (a) = (R) as an ideal of Z/MZ.

(1) Assume (|R. Then
(T*(O)z)(conr(a,b) = Y a(oou(a’,b)

o' €Z/MZLa'=a

where a' ranges over all elements of Z/MZ such that la' = a

(2) Assume £ JR. Assume b= LV for some b/ € Z/MZ. Then we have
(T*()x) (00 (a, b)) = £ - z(con(a, V).
Proposition 5.1.7. Let x € H*(Y,(M)®Z[1/M],Z,(2)) and assume that x(cop(a, b)) +
x(oon(a, —b)) =0 for any a,b € Z/MZ such that (a,b) = (1) and such that a # 0.

(1) We have y(oo) = 0 for any y € Iz C H*(Y1(M) ® Z[1/M|,Z,(2)) where I is the
Eisenstein ideal of $(M)z,.

(2) Let x°*% be the ordinary component of x. Then 2°*¢(o0) = z(00).

Proof. (1) follows from 5.1.5 and 5.1.6. In fact, what we obtain is y(co (0, 1))+y(cop (0, —1)) =
0. But y(ocon(0,—1)) = ({(—1)y)(00) = y(o0) for (—1) acts trivially on Y;(M).

(2) By (1), we have (T*(p)")z)(c0) = x(o0) for any n > 0 since T*(p)" = 1 mod I.
Hence 2°'4(00) = (lim,, T*(p)™'x)(00) = x(00). O
Proposition 5.1.8. The following diagram is commutative.

H(V,(Np™) @ ZIUNpL.Zy(2)) " HHZL/Np, ], Zy(2)
l l
H*(Yi(Np") ® Z[1/Np, Z,(2))  —  H*(Z[1/Np,(ny], Zy(2))

Here the vertical arrows are the trace maps, the lower horizontal arrow is x — x(o0), and
the upper horizontal arrow is x — (T*(p)z)(00).

Proof. We have a commutative diagram

¥p

SpeC(Z[l/Np,izvpm][[q]][q1]) — Yl(NlpM) — Y(l,szT“(p)) — Yl(Nlpr“)
Spec(Z[1/Np, G llallla™))  — Y(LNP' () = Y(L,Np(p) 2 Yi(Np)

in which the upper middle arrow is the canonical projection, the left upper horizontal
arrow is induced by ocopn,r+1(0, 1), the left lower horizontal arrow is the unique morphism
which makes the left diagram commutative (for the moduli interpretation of Y (1, Np"(p))
in 1.2.3, it is defined by the triple (E,, (y,r, C) where C' is the subgroup of E, gener-
ated by the section (y,r+1 of E,), and the squares except the middle one are cartesian.
Let x € H*(Y1(Np™™),Z,(2)) and let y be the trace of z in H*(Y1(Np"),Z,(2)). Let
A € H*(Z[1/Np,Cnp+1]llg)]lg "], Z,(2)) be the pull back of T*(p)x under ooy, (0,1),
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and let the element B (resp. C) of H*(Z[1/Np,npr)llal)la™], Z,(2)) be the pull back of

¥ (y) (resp. y) under the left lower horizontal arrow (resp. under ooy, (0,1)). Write by Tr

the trace maps H*(Z[L/Np, Cnpra](lall[a7'), Zp(2)) — H*(Z[1/Np, Cvprlllallla™"], Zy(2))

and H'(Z[1/Np,(np+1], Zy(1)) — H'(Z[1/Np,npr], Zy(i)) (i = 1,2). Then the above
commutative diagram shows that Tr(A) = B. Write A = ay + {a1,q} with a; €
HY(Z[1/Np, (npr+1], Zy(1)), and write B = bo+{by, q}, C = cat+{c1, ¢} (bi, c; € H(Z[1/Np,Cnpr], Zy(7))-
Then by Tr(A) = B, we have Tr(a;) = b;. On the other hand, the composition

Spec(Z[1/Np, Cnprlldlllg™]) — Y (1, Np™(p)) — Yi(Np") of the left lower horizontal ar-

row and the canonical projection is the morphism induced by oo, (0, 1). This shows that

by = co and by = pey. Since (T*(p)z)(00) = ag and y(0o0) = ¢, we have Tr((T™(p)z)(c0)) =

y(o0). O

Let M > 1 and assume p|M.
Theorem 5.1.9. (1) The value of . q2z1,m1(u,v) at 0o is
u \(c—c? 1_€u ¢ v —d? 1_Cv o
O G S )
M M
(2) The value of any element of I - .qz1m1(u,v) at 0o is zero.

(3) The value of the ordinary component .qz1 a1 (u, v)™ of caz1ar1(u,v) €
HY(Z[1/Np|, H,(Y1(Np"))(2)) at oo coincides with the value of .qz1a1(u,v) (described

in (1)).

Proof. By the ¢-expansion of a Siegel unit introduced in 2.1.1, we have the following
multiplicative congruence for any r, s € Z such that (r,s) # (0,0) mod M:

rasnr = 4MU(r,s) mod 1+ ' ™MZ[L/M, Cul[la"™M]][a ]
where 7 € Z and
U(r,s) = (=Ci) ™1 = G /(1 = ¢f7) in the case M]r,
Ulr,s) = (=) ™M) unless M|r

for some integer t(r/M,c) which depends only on /M € Q/Z and ¢ € Z. (1) follows
from the case M|r of this.

In the case M does not divide r, U(r,—s) = U(r,s)"'. Hence by (1) of Proposition
5.1.7 (resp. (2) of Proposition 5.1.7), (2) (resp. (3)) is reduced to the following lemma. [

Lemma 5.1.10. Unless a = 0, we have
eaz1,m1(u,v)(00n(a, b)) + caz1m(u, v) (oo (a, —b)) = 0.
Proof. This follows from the above computation on Siegel units by the following argument.

Let a,b € Z and assume (a,b) = 1. Take z,y € Z such that (i %) € SL(2,Z).

Then the pull back of {.go.u/ar ag0/ar} in K2(Z[1/M, Car)[lg*™]][g71]) under oop(a,b)
coincides with the usual g-expansion of

T
{CQO,U/MadQO,v/M} (a Zé) = {cgau/M,bu/M7dgav/M,bv/M}-
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5.2 From modular symbols to cyclotomic symbols

Let N > 1 and assume N is prime to p. Let

A = limZ,[(Z/Np'Z)].

We will apply section 5.1 by taking M = Np" with » > 1.

5.2.1. We introduce Conjecture 5.8 of Sharifi [51]. Recall that [u : v], (u,v € Z/Np"Z,
(u,v,Np) = 1, u # 0, v # 0) generate Hj (Y1(Np"))o(1). Here HZ (Y1(Np"))o is as in
3.3.7. By Sharifi [51], Proposition 5.7, we have a homomorphism

1

@y« Hy (Yi(Np"))o(1) — HQ(Z[N—p

s, Cvpr ] Zp(2))
which sends [u : v], (u,v € Z/Np"Z, (u,v, Np) =1, u # 0, v # 0) to
{1—Cprs 1= G}
and which factors through the projection
Hg (Yi(Np"))o(1) — Hg (Yi(Np"))o(1)* = Hg(Yi(Np"))g (1)

X

This homomorphism commutes with the actions of Z,[(Z/Np"Z)*] where the group
element [a] of Z,[(Z/Np"Z)*] for a € (Z/Np"Z)* acts on Helt(Yl(Np ))o(1) as the diamond
operator (a) and acts on H*(Z[1/Np,nyr], Z,(2)) as 0, € Gal(Q(Cnpr)/Q) (2.4.3).

5.2.2. [51], Conjecture 5.8. The restriction of @, to Hj, (X (Np"))(1) kills THZ, (X1 (Np"))(1).
Here I is the Eisenstein ideal of h(Np")z, .

The following Theorem 5.2.3 (1) implies that this conjecture is true.

Theorem 5.2.3. (1) The homomorphism w, kills TH,(Y1(Np"))o(1). Here I is the
Eisenstein ideal of H(Np")z,,.

(2) The following diagram is commutative for any r > 1.

Hét(E(Nf’”“))o(l) = HQ(Z[l/NnCinHl]aZp(?))*
Hg(Yi(Np))o(1) = HXZ[1/Np, Cnpr], Z,(2)) "

Here the vertical arrows are the trace maps. Consequently, we have a A-homomorphism

@ : Ho(1)/1Ho(1) — lim H*(Z[1/Np, (npr], Zp(2))

T

which sends (), to (w,(z,)),. (Here A acts on the left hand side via diamond operators
and on the right as the completed group ring of the Galois group.)

We prove this theorem in this section 5.2.
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Lemma 5.2.4. (1) Forx € HL(Y,(Np")), the images of v and z°¢ in HL(Y1(Np"))/THL(Y,(Np"))
coincide.

(2) We have an isomorphism
HL(Vi(Np")™ [TH(Yi(Np)* = Hy(Y(Np") [ THL(YA(ND')).
Proof. (1) is easily seen. (2) follows from (1) (the inverse map is given by z s 2°4). [

Lemma 5.2.5. Let M > 1 and assume p|M. Then we have a canonical isomorphism

H*(Y1(M) @ Z[1/Mm, G, Zp(2))°¢ 2 HY(Z[1/Mm, ], Hy(Y1(M))(2)).
Proof. By the spectral sequence
Ey’ = H'(Z[1/Mm, Gn), H},(Yi(M))(2)) = H™ (Y1(M) @ Z[1/Mm, Gnl, Z,(2))

and the fact HZ (Y;(M)) = 0if j > 2 for Y1(M) ® Q is an affine curve, we have an exact
sequence

0 — HA(Z[L/Mm, ], Z,(2)) — HA(Yi(M) ® Z[1/Mm, ], Z,(2))

— HY(Z[1/Mm, Gn], Hy (Yi(M))(2)) — 0.

Since T*(p) acts on the part H?(Z[1/Mm,(y),Z,(2)) as the multiplication by p, the
ordinary component of this part vanishes. [l

5.2.6. Let
8 = lmn IZ(Z[1/Np, ], Z,(2))
Here (+) denotes the (+)-part for the complex conjugation. We regard S as a A-module
where A is identified with Z,[[Gal(Q(Cnp=)/Q)]].
Then S is a free Z,-module of finite rank by Ferrero-Washington [7].

5.2.7. Let p = p((1 4+ Np)? — (1 + Np)) € A as in 3.3.9. Consider the composition of
A-homomorphisms ) )

Hy(1) — H'Y(Z[1/Np],H(2)) @ Ap~"
H

(1
2(Yi(ND), Zy(2)™ @a A — S@n Ap!

= lim
s
where:
we regard A as the ring of diamond operators acting on H, except that the last A
denotes the cyclotomic Iwasawa algebra of Gal(Q((np=)/Q),
the first arrow is by Theorem 3.3.9,
the = is by Lemma 5.2.5,
the last arrow is (x,), — ((T*(p)"z,)(0)), (Proposition 5.1.8).

By Theorem 5.1.9 (2) (3), if (z,), € Ho(1) is sent to (y,), € lim H2(Y1(Np ), Zp(2))" @
A 7!, then the above composite map sends (z,.), to (y,(oo ))T

Lemma 5.2.8. (1) The map ji: S ®z, Q, — S ®z, Q, is bijective.
(2)The canonical homomorphism S ®z, Qp — S @ Apt ®z, Qp is an isomorphism.
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Proof. It is sufficient to prove A /(1) ®x S ®z, Q, = 0. We have

A /() ®n S @z, Qp = H*(Z[1/Np,(np), Q)"

The vanishing of the last cohomology group is a consequence of Leopoldt conjecture for
abelian fields over Q proved by Brumer [3] which we apply to the field Q((np). [

5.2.9. By composing the map Hy(1) — S @4 Ap~! in 5.2.7 and the map S @, Apu~! —
S ®z, Q, given by 5.2.8, we obtain a homomorphism

ﬁfo(l) — S ®ZP Qp'
Proposition 5.2.10. (1) The homomorphism in 5.2.9 kills I - Hy(1), where I is the

FEisenstein ideal of $.

(2) The image of the homomorphism in 5.2.9 is contained in S.

Proof. (1) follows from Theorem 5.1.9 (2), (3). We prove (2).

Claim 1. Let u,v € Z, (u,v,N) = 1, (v,p) = 1, u # 0mod Np. Then for any
s > 1, the homomorphism in 5.2.9 sends ([p"*u : v],),> € lim _ H'(Yi(Np")(C), Z)(1)
to ({1 = Cper 1 — (R} )rzs € S ([51], Lemma 3.2). -

Proof. Take ¢,d € Z such that (¢d,6Np) =1 and ¢ = 1,d = 1 mod Np°. Then
calp " Pu s v], = (2 = 1)(d* = (d)[p"*u 0],

This goes to —cqz1,npr1 (P *u,v) and goes to (¢ — 1)(d* — 0q)({1 — CRpss L = Clrpr } T )rzs-
Hence if = denotes the image of ([p"*u : v],), in S ®z, Q,, (¢ — 1)(d* — o)z = (* —
1)(d* = 04)({1 = Cjpss 1 = CRrpr } T )rms. By the above 5.2.7 and 5.2.8, we have 2 = ({1 —
C]1<‘fp37 1 - CX]pT}+)T25'
By Claim 1 and Lemma 3.3.8, the image of Hy(1) — S ®7, Q, is contained in S.
O

5.2.11. By Proposition 5.2.10, we obtained a homomorphism Hy(1) — S. By the case
k = 2 of Proposition 1.5.8, for each r > 1, this induces a homomorphism

(5.1) He (Yi(Np"))o(1) — H*(Z[1/Np, Cvpr |, Zp(2)) "

Claim 1 in the proof of Proposition 5.2.10 tells that this map sends [u : v], to {1 =R, 1—
CRrpry - Since [u : v], generate Hj(Y1(Np"))o (by 2.4.1), this shows that the map (5.1)
coincides with the map w, of Sharifi in 5.2.1.

It kills 1 - HL (Y1 (Np"))gd(1) by Proposition 5.2.10 (1).

Thus Theorem 5.2.3 is proved.

Proposition 5.2.12. The map Hy(1) — S sends Mazur-Kitagawa L-function £ € HI[[Z)]]

to
Co=( 3 {1-¢l— vy} la) € SIZ]

a€(Z/p"L)*
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Furthermore, for any divisor M > 1 of N, it sends the modified Mazur-Kitagawa
L-function

=0 ) T"(p)~"15 = My - [j])

1<j<Np",(5,M)=1
€ Hol|Z, x Z/NZ])/Hy
(Ho — Ho[|Z, x Z/NZ]| is x — x - [0]) in Sharifi [51] section 6.1, to
Chor i =( ) {1 =y 1= e} - )] € Sl[Z, x Z/NZ]]/S
1<j<Npr,(j,M)=1
Proof. This is seen easily. O]

5.2.13. Recall that Hy — S is the composition Hy — HY(Z[1/Np|, H(2)) @y Ap~' — S.
The first arrow (the homomorphism z?vpoo) sends £ € H[[Z}]] to

(Y T "=y aNa, 1) [a]), € HY(Z[L/Np], H2))Z)] @2 Ap”!

a€(Z/p"L)*

and the second arrow sends the last element to C. The fact (3 ,c(z/rz« T7(p) " 21,81 (Na, 1)°rd.

[a]),- belongs to the inverse limit also follows from Proposition 2.2.5.

5.3 From modular symbols to tame symbols

5.3.1. We will show (Theorem 5.3.3) that in the correspondence
modular symbol — cyclotomic symbol

in Theorem 5.2.3, the following (1) determines the following (2):
(1) The boundary of the modular symbol at cusps.

(2) The boundary (= the tame symbol) of the corresponding cyclotomic symbol at-
prime divisors ¢ of N.

It is interesting that the geometric boundary in (1) determines the arithmetic boundary
in (2).
Let N > 1, r > 1, and assume N is prime to p.

5.3.2. Let ¢ be a prime divisor of N, let A be a place of Q((n,) lying over ¢, and let k()
be the residue field of A.
We define a homomorphism

@ Badebyyr Lp — H(QCve)x, Zp(2)) = H' (5(N), Zy(1)) = £(N)* ® Zy,

where Py, is as in 1.3.1. For (a,b) € Py, the image of 1 € Z, at (a,b) under @
is as follows. It is defined to be zero unless a = a'¢* for some a' € (Z/Np"Z)*. Here
0 < s < e where e is the f-adic order of N. In the last case, it is defined to be the image

of (1— ]1\,/,‘;;46)6875 € k(A\)* where N’ is the prime to (-part of N and C}V//gfe is the unique

N'p"-th root of 1 whose a'¢°-th power coincides with (nvpr.
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Theorem 5.3.3. Let ¢ be a prime divisor of N, let r > 1, and let A be a place of the field
Q(Cnypr) lying over £. Then the following diagram is commutative.

HL(YA(Np"))o(1) = H2Z[L/Np, Cnpr), Z,(2))
l l
Blaperyy Ly = HAQUlnpr)r Zp(2))

Here HL(Y1(Np"))o is as in 3.53.7, and the (a,b)-component of the left vertical arrow is
the boundary map at the cusp associated to ooy, (a,b).

Proof. Tt is enough to check the commutativity for the generators [u : v] of HL (Y1 (Np"))o
(here u,v € Z/Np"Z,u # 0,v # 0, (u,v) = 1).
We have a commutative diagram

Kz(Q(prr)A) - K(i)x
H*(Q(Cnpr)n Zp(2)) = HY(K(N), Zy(1))

where k() is the residue field of A and 0 is the tame symbol. We compute the tame
symbol of {1 — (-, 1 — (R,r} at A As is well known, 1 — (% is a A-adic unit unless
the order of (y,- is a power of £. Hence the tame symbol is trivial unless one of (-
and (R, is of order a power of (. If u/Np" = «'/{°~* mod Z with v’ € Z, (v',f) = 1 and
0 < s <, then v is prime to p and hence (y;,» can not be of order a power of . Hence
the tame symbol is the (7*-th power of the residue class 1 — (y,,» which is the residue

class of 1 — }i,/,f; Here N’ is the prime to ¢-part of N and C}V/,f; is the unique ¢°-th root

of (v, which is a N'p"-th root of 1.
On the other hand, the boundary of [u : v], is as in Lemma 3.3.11.
Theorem 5.3.3 follows from these. O

5.3.4. Note that the map

lim F(Z[1/p, Gy ), Z(2)) — lim H*(Z[1/Np, G|, Z,(2))

is injective.
Theorem 5.3.5. (1) Under the homomorphism w in Theorem 5.2.3, the image of H(1)

in lim | H?*(Z[1/Np,npr], Z,(2))" is contained in the image of the injection in 5.3.4, and
consequently, we have a A-homomorphism

@ 1 H(1)/TH(1) — lim H*(Z[1/p, Cuyr) Zp(2))

Here I denotes the Fisenstein ideal of §.

(2) For each r > 1, there exists a unique homomorphism
@, + Hy(Xi(Np)(1)/TH (X2 (Np)(1) — H*(Z[1/p, Cnpr], Zp(2)) T

which commutes with the homomorphism in (1). This map is compatible with the map w,

i 5.2.1 of Sharifi.
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Proof. The uniqueness in Theorem 5.3.5 follows from the surjectivity of the projection
H — HL(X;(Np))°d (the case k = 2 of Proposition 1.5.8). By Theorem 5.3.3 and by
the exact sequence

H*(Z[1/p, Cnpr ], Zp(2)) — H*(Z[1/Np, Crpr], Z(2)) — @3 H*(Q(Cnpr))n, Zp(2))

where A ranges over all prime divisors of N in Q((y,r), we have Theorem 5.3.5 (1).
Theorem 5.3.5 (2) follows from (1) by [40] Proposition 2.3.5. O

6 The map T

In this section, we define the map T from the ideal class group side to the modular symbol
side.

6.1 Formulation from here

In the rest (sections 6-11) of this paper, we use the following notation, and make the
following Assumptions 1 — 4.

6.1.1. We fix an integer N > 1 which is prime to p.
Assumption 1. p(N) (i.e. the order of (Z/NZ)*) is prime to p.
6.1.2. Let
A= Z,[[Z; x (Z/NZ)"]] = lim Z,[(Z/Np"Z)*].

T

The group element of A corresponding to ¢ € Z x (Z/NZ)* is denoted by |[c].
Let

K = Q(Cvp=) = UrQ(Crvpr)-
The isomorphism
Zy x (Z/NZ)* = Gal(K/Q) ; ¢+ 0. (2.4.3)
induces a canonical isomorphism
A= Z,[[Gal(K/Q)]].
We have also a canonical homomorphism
A= [ ()

6.1.3. For a character ¢ : (Z/NpZ)* — @;, let Oy be the subring of Q, generated over
Z,, by the image of ¥. Note that O, is the valuation ring of some finite extension of Q,.
For a A-module M and for a character ¢ : (Z/NpZ)* — @;, define the 1-component
My of M by
My = M @z,(z/npz)x] O,
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where Z,[(Z/NpZ)*] — O, is the homomorphism induced by v, and Z,[(Z/NpZ)*| acts
on M via the ring homomorphism Z,[(Z/NpZ)*] — A which is defined by identifying
(Z/NpZ)* with the torsion part of Z> x (Z/NZ)* in the canonical way.

Then as a topological ring over O, the 1-component Ay of A is isomorphic to the
ring Oy[[T]] of formal power series in one variable over Oy.

6.1.4. From now on, in the rest of this paper, we fix an even character
0:(Z/NpZ)* = (Z/pZ)* x (Z/NZ)* — @;
Let
X =0w": (Z/NpZ)* — Q.

Here
w: (Z/NpZ)* — Z,

is the Teichmiiller character (that is, the composition (Z/NpZ)* — (Z/pZ)* — 7} where
the first arrow is the projection and the second arrow is the canonical lifting). So, x is an
odd character.

We make the following Assumption 2 — Assumption 4.

Assumption 2. # is primitive.

Assumption 3. If the restriction of x to (Z/pZ)* C (Z/NpZ)* is trivial, then the
restriction x|z nzyx of x to (Z/NZ)* C (Z/NpZ)* satisfies x|z/nz)x (p) # 1.

Assumption 4. In the case N = 1, (x,0) # (w,w?).

6.1.5. Thus in the case N = 1, Assumptions 1-4 are just that § # 1,w?. These excluded
cases are in fact “trivial” cases, for in the case N =1, b, /I, = 0 for ¢ = 1,w?.

6.1.6. From now, we denote simply by
§€ g
the image of ~'¢ € Q(A) (4.1.1) in Q(A)y (which belongs to Ay).

6.1.7. As in Ohta [41] Corollary A.2.4 (see also Mazur-Wiles [32]), the inclusion map
Ay — by (6.1.2) induces an isomorphism

Ao /(&) = bo/Ip.

6.1.8. Some authors adopt different formulations of the #-component of the p-adic Hecke
algebra. We hope the following comment helps the reader to see our formulation. Assume
N = 1. If k > 2 is an even integer, the condition p|¢(1 — k) (which is equivalent to
Xy # 0 for x = w'™*) is equivalent in our formulation to the condition by/Iy # 0 for
0 = w?~*. Thus the fact 691|C(—11) tells that in the case p = 691, by /Iy # 0 for § = w10,
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6.2 Drinfeld-Manin modification
6.2.1. For an $H-module M, let

MDM =M ®5§ b
We consder the cases
M = H, My, Hy(Yi(Np"))™, My(Np")Z*  (r > 1).

(In the latter two cases, (—)puy coincides with ®g(yprerah(Np")d by 1.5.5.) We use
the notation DM for this operation (—)py; and call it the Drinfeld-Manin modification
because it is closely related to Drinfeld-Manin splitting 1.9.3 as in 6.2.3 below.

6.2.2. Let Hpyyr (resp. My pay, resp. Hy (Yi(Np™ )24, Ma(Np")5 ) be the image of
H (vesp. My, resp. HY (Yi(Np")™, resp. My(Np')z,) in H®x Q(A) (resp. Sy @a Q(A),
resp. H} (X1(Np")) @z, Qp, resp. So(Np")g,) under the Drinfeld-Manin splitting.

Lemma 6.2.3. The canonical maps Mpyop — Mpar g for M = H, My, HL(Y (Npr))erd,
Mg(Np")%SDM are isomorphisms.

Here (—)g,z denotes the Eisenstein component (1.9.2) of the §-component. The part
of this Lemma for H is given in Lemma 4.1 in [51]. The proof of 6.2.3 is given in 6.2.8
below.

In this subsection 6.2, we present basic facts about Drinfeld-Manin modification and
prove the following Proposition 6.2.4, whose Corollary 6.2.10 will play in section 6.3 an
important role in the proof of Proposition 6.3.9..

Proposition 6.2.4. fIDMﬂ,E is a free Ng-module.
The proof of this 6.2.4 is given in 6.2.9 below.

6.2.5. As in Ohta [41] Theorem 1.5.5, we have exact sequences
0— Hpp— Hpp — Ng—0, 0— Sxop— Mrgp — Ag— 0.

Here ,FIQ’E — Ay is the boundary map at 0-cusps (3.3.7), and My g g — Ay is the constant
term y o anq" — ag.

6.2.6. Let Hi (Yi(Np"))o C HE(Yi(Np)) (r > 1) and Ho = lim HJ (Yi(Np"))g™® C H be
as in 3.3.7. Then by 6.2.5, the canonical injections Hj (X1(Np"))gs — H&(Yi(Np"))gs &

and Hp p — Hyg p are isomorphisms (Ohta [41] Proposition 3.1.2).
Since [u : v], with u,v € Z/Np"Z—{0} such that (u,v) = (1) belongs to H} (Y1(Np"))o,

[t : v],0,p is regarded as an element of H} (X1(Np"))§s.

6.2.7. As $H-modules, _F_l@’E/H&E and My g, /Sap  are isomorphic to 99/1q9, where I
is the Eisenstein ideal of $ (1.9.1). From this, we obtain

Hpnor/Hor = 0o/lg = Mg /(€), Mapror/Saor = be/lo = Ny /(€).
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Similarly we have
Hy(Y\(NP")Bire.p/ He(Xi (NP5 = DN )z,0.8/1 = Aro /(€),

(My(Np")ED) paro./ S2(ND )z, 08 = D(ND )z, 0.8/ = Avg /(6).

Here I denotes the Eisenstein ideal, A, = Z,[(Z/Np"Z)*], and we denote the image of £
in A, ¢ by the same letter .

6.2.8. We prove Lemma 6.2.3.
Consider the A-adic Eisenstein series E/(\Q) of weight 2 defined as

VoY Y e

n=1d|n,(d,Np)=1

We have YJE/(\Q) = AE/(XQ) since [ kills E](\Q)7 and we have My pyrop = Maor/ Ao E/(\Q()g
From this, we obtain My pas gE/SAgE = Ay /(&). Comparing this with Mx pare.r/Sae.E =
Ay /() (6.2.7), we obtain Mx pare.e 5 My pmr g p- We similarly obtain (Mg(Np’")Ord)DMgE —
(Mz(NpT)Ord)DM/,e,E-

By Ohta [41] section 3.4, the exact sequences of $-modules 0 — Hyypgp — ﬁg’E —
Hyopp — 0 and 0 — HE (X1 (Np")oi g o — HE(Yi(Np"))gs — HE(Yi(Np")ed 55 — 0
split. Hence DM = DM’ for f[gE and H} (Yi(Np" ))Ord are reduced to those for My g g
and My (Np")g's by the relations My = D(Hyyo) and My(Np")od = D(HL (Y1 (Np))2d).

quo

6.2.9. We prove Proposition 6.2.4. Since the maximal ideal of the two dimensional regular

local ring Ay is generated by f := 1 — (1 + Np) € Ay and p, it is sufficient to prove
that f : HDM(;E — HDM(;E is 1nJect1ve and HDMgE/fHDMgE is a free module over
Ao /(f) = Op. Since f is a non-zero-divisor of Ay and Hpyop = HDM/’ 0.6 is a Agp-

submodule of Hyp g ®5, Q(Ag), we have the injectivity of f. Next, by the case k = 2
of 1.5.8 and by 6.2. 3 HDMGE/.fHDMOE = Hl (K(Np>)%%49E = Hlt(le(Np))%%,ﬁ7E.
Hence it is a finitely generated Oy-submodule of H (Y1 (N p))gr% ®z, Q, and hence is a
free Op-module.

Note that by 6.2.7, in ]:IDM@E, ¢ -{0,00} belongs to Hy p.

Corollary 6.2.10. In IETDM,(;,E, the element £ - {0,00} of Hp g is a part of a Ng-basis of
Hyp.

This follows from Proposition 6.2.4 and ﬁDM’QyE/HQLE =~ Ay /~(§).
We describe the kernel of the canonical surjection Hyp — Hparg e by using special
Siegel units.

Lemma 6.2.11. Let ¢ be an integer such that (c,6Np) = 1. Then, (cgo1/np)r>1 €
lim O(Y1(NDP")zji/np))*, where the transition maps of the inverse system are norm maps.

Proof. This can be proved by using the distribution property of Siegel units (2.1.2).
O
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6.2.12. By the exact sequences 0 — Z/p"Z(1) — G, 2 G — 0 (Kummer theory) on
the étale site of Y1 (Np")zp/np), we have

({cgoa/npr Pz € H(L).

We can define ({go,1/npr})r>1 € Hy(1) without c. In fact .go1/npr = (¢ — (€))go1/nprs
and on the f-component Hy(1), we have ¢*—(c) = ¢*—0(c). The last operator is invertible
for some c.

Lemma 6.2.13. The image of (go,1/npr)r under Hg(l) — ]Z[97E<1)/H97E(1) =~ Ag isé.
This is well known and is checked easily by using the g-expansions of Siegel units.
Lemma 6.2.14. The kernel of ﬁ97E(1) — ﬁDM’g,E‘<1) coincides with Ao -{go.1/np=}-

Proof. Let U C Hy (1) be the image of lim O(Y1(Np")g)* ®zZ/p"Z under Kummer the-
ory. Then U is an $)-submodule of F[9,~E(1). Furthermore U injects into Hyp(1)/Hg p(1).
Hence U is contained in the kernel of Hy g(1) — Hpae,e(1). Hence Ag -{go,1/np=} is con-
tained in this kernel. By 6.2.7, the canonical map from this kernel to FI97E(1)/H97E(1) = Ay
is injective and the image coincides with () C Ay. Hence by 6.2.13, this kernel coincides

with Ag '{gO,l/Npoo}' ]

6.3 Structure of Hy/IlyHy

The purpose of this section 6.3 is to introduce the results 6.3.2 and 6.3.4 on Hy/IyHy,
related results 6.3.5 and 6.3.6, and their proofs. These are known results (Mazur-Wiles
[32], Ohta [39], [40], Sharifi [51]). The reasons why we explain the proofs of the known
results are: (1) The Galois action on Hy/IgHy is described in [39], [40] for the model
X{(M), not for the model X;(M) which we use, so to avoid confusion, it seems good to
explain well what happens for our model. (2) We carefully define a canonical basis of
H; /IH, as an hy/Ip-module (6.3.18) and how to choose the base is related to the proofs
of these results.

6.3.1. Define the subquotients P and Q of Hy and a subquotient R of Q(Ag) ®a, Hy as
follows.
Let
P:Hg/IQH; C H@/I@H@, Q: (Hg/IgHg)/P
So, Q is canonically isomorphic to H, /IpH, .
Let .
R =Hpmor/Hor.

Here (—)pas denotes the Drinfeld-Manin modification as in section 6.2. Recall that R =

ho/Io = Ag /(€) (6.2.7).

Proposition 6.3.2. In Hy/IpHy, P is stable under the action of Gal(Q/Q). The action
of o € Gal(Q/Q) on P and that on R are given by r(c)~" where r is the cyclotomic
character, and the action of o on Q is given by (o)~*. Here (o) is as in 1.7.14.
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Remark 6.3.3. (1) If we use the other model X{(Np") (r > 1) and define P, Q, R in the
same way as above, ¢ € Gal(Q/Q) acts on Q trivially and acts on P and R by k(o) {o).
This is seen from 1.4.5 (1).

(2) The stability of Q@ under the action of Gal(Q/Q) follows from [51], Theorem 4.3.
The proof of this stability given below is simpler.

) Regall that we have an exact sequence 0 — Hop, — H — Hquo — 0 and 0 — Hgyp, —
H — Hgyo — 0 of representations of Gal(Q,/Q,) (1.7.10).

Proposition 6.3.4. For any prime divisor £ of Np, the sequence 0 — P — Hy/IgHy —
Q — 0 splits uniquely as an ezxact sequence of representations of Gal(Qy/Qy).

Proposition 6.3.5. Let (—)g be the Eisenstein components. The canonical maps

H;E — lquo,b,E, HQ_’E — Ilquo,b,E, Hsub,G,E - HG,E/H;E
are bijective.

Corollary 6.3.6. Concerning the Eisenstein component Hy g of Hy, we have:

(1) As a module over Yo g, Hy p is free of rank 1.
(2) As a module over Yo g, H, 1, is a dualizing module.
This follows from 6.3.5 and 1.7.13.

6.3.7. On R(1), Gal(Q/Q) acts trivially.

Proof. This follows from the fact R(1) is generated by the classes of 0-cusps (Ohta [41])
on which the Galois action is trivial. O

6.3.8. We construct a canonical Ag-homomorphism Hy/IgHy — Ay /(§) by a method in
[51] section 4 to use the A-adic pairing of Ohta

(—,—)a: Hyg X Hy — Ay
in 1.6.3. By 6.2.7, we have {{0,00}pno.r € Hypp. Hence we have a homomorphism
Hy — Ny 5 v (2,6{0,00} parg,p)A-
For a € Iy,
(ax,&{0,00}pare.e)a = (,a§{0, 00} pare.e)a = E(7,a{0,00} parg.p)a
(note 1p{0,00}g.pmr C Hyp g by 6.2.7). Hence we have a homomorphism
(=, &{0, 00} paro.e)a - Hof/IgHyg — Mg /().
Proposition 6.3.9. The map (—,&{0,00}prror)a : Ho/IgHy — N /(€) is surjective.

Proof. By Corollary 6.2.10, there is a basis (€i)1<i<r of Hy g as a free Agp-module such that
€1 = g{0,00}DMﬁ’E in HDM’Q’E. Since the pairing (—, _)A . HQ,E X H97E — Ag is perfect
(1.6.4,1.6.5), there is x € Hy such that (z,e;) = 1. O
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6.3.10. Let P = Ker (Hy/IgHy — Mg /(§)), and let Q" = (Hy/IyHy)/P'. (We will prove
soon that P =P.)

6.3.11. In Hy/IgHy, P’ is stable under the action of Gal(Q/Q). On Q’, ¢ € Gal(Q/Q)
acts as (o). (Here, (o) is as in 1.7.14.)

Proof. This follows from 6.3.7 and 1.6.4 (3). O

6.3.12. Following Ohta [41] section 3.4, we give a splitting of the exact sequence 0 —
Hoawor — Hop — Hguoor — 0 of hp-modules, where (—)p denotes the Eisenstein
component (1.9.2).

We use the following (1)—(3) (1.7.14, 1.8.1).

(1) The action of Gal(Q,/Q,) on Hy(1) is unramified.

(2) The arithmetic Frobenius F'r, acts on Hquo (1) as T*(p).

(3) Hauo @5 Q(h) is a free Q(h)-module of rank 1. For o € Gal(Q/Q), the determinant
of the action of ¢ on the free Q(h)-module Q(h) ®y H of rank 2 is k(c)"*{c)~!, where
k: Gal(Q/Q) — Z) is the cyclotomic character and (o) is as in 1.7.14.

We define an element 7 € Gal(@p /Q,), elements f, g € b, and an h-submodule S of H
as follows.

Case 1. First, assume that the restriction of y to (Z/pZ)* is not trivial. Let 7 be
an element of the inertia subgroup of Gal(Q,/Q,) whose image in Gal(Q,((,)/Q,) is a
generator of the last group. Let

f=r(r)"eZich, g=(r)"€b.

Case 2. Next, assume that the restriction of x to (Z/pZ)* is trivial. Let 7 be an
element of Gal(Q,/Q,) whose restriction to unramified extensions of Q, are the arithmetic
Frobenius F'r, and whose restrictions to Q,((,») (n > 0) are trivial. Let

f=Tp)eb, g=T*(p) (r)""eb.

In the case 1 (resp. 2), by the above (1) and (3) (resp. (2) and (3)), we see that the
action of 7 on Hgy, (resp. Hgyp) coincides with the action of f (resp. g).
In both cases 1, 2, define

S={x€eH|rtx= fx}.

We prove that
Hyp = Hapor ® Sok-

We may and do assume that the Eisenstein component by p of by is not the zero ring.
Then by g is a local ring (this follows from by/lp = Ay /(€) (6.1.7)). It is sufficient to
prove that the classes of f and g in the residue field of by g are different.

Let a be the element of Z) x (Z/NZ)* such that 7({np) = (§,r for all 7 > 0. First
consider the case 1. In this case, a has the shape (b, 1) € Z; x (Z/NZ)* where b mod p is
a generator of (Z/pZ)*, and the class of f (resp. g) in the residue field of by g is equal to
the class of b=! (resp. 6|(z/pz)x (b)~"). Since the restriction of x to (Z/pZ)* is non-trivial,



82

the restriction of 6 to (Z/pZ)* is not w, and hence the classes of 0((z/,z)x (b)~" and b~ in
the residue field of hy g are different. Hence the residue classes of f and g are different.
Next consider the case 2. In this case, a has the shape (1,p). The class of g in the residue
field of by, g is equal to O(z/nz)x (p), a root of 1 which is not 1 and whose order is prime
to p. On the other hand, f = T%(p) is congruent to 1 modulo the maximal ideal of hg g.
Hence the residue classes of f and g are different.

6.3.13. We prove that the composition Hgypg/lgHsuwg — Ho/IgHy — Q' is an isomor-
phism. Let 7 € Gal(Q,/Q,) and f,g € h be as in 6.3.12.

By 6.3.11, 7 acts on Q' by g¢. Since we have a natural surjection from Huo.0/loHquo0
to the cokernel of this composition which is compatible with the action of Gal(Q,/Q,)
and since 7 acts on Hy,op by f, the action of 7 on the cokernel is given by f. Hence
the cokernel is zero. Thus Hgub o/ loHsuno — Q = hy/Iy is a surjective hy-homomorphism
between free hy/Ilp-modules of rank 1, and hence it is an isomorphism.

6.3.14. It follows that the canonical map P’ — Hguo0/loHquos is an isomorphism. Hence
on P’, 7 acts by f. Hence we have

7)/ = 59/1959 in Hg/[gHg.

6.3.15. We prove that the action of Gal(Q/Q) on P’ is given by x~! where x is the
cyclotomic character.
For o € Gal(Q/Q), let

a(o) € Hom y, , (Hsub0,6, Heuwoe), b(0) € Homy, . (Hsub 0,5, 50,5),

C(U) € Hom ho. & (SQ’E, Hsub,O,E)y d(O’) € Hom f)a,E<S9,E7 Sg,E)

be the components of o: HQ,E — HQ’E. Since SQ7E/IQSQ’E = S@/I@S@ is stable in Hg/[gH@
under the action of Gal(Q/Q), we have c¢(0) = 0mod Iyp. Since Hypor is free of
rank 1 over hy g, we have a(o) € by . Since Spp is a dualizing module of hy g (this is
because Spp = Hquop,e), We have d(o) € by p. We have that Q(he,g) ®p, , Sp,p is a free
Q(bg,p)-module of rank 1, and det(c) of o : Q(bg,r) ®v, , Ho.g — Q(bo,r) Qu, » Hop is
k(o) o)7L That is, a(o)d(c) —c(o)b(c) = r(c) " (o)~ . Here note that c¢(c)b(c) € hg g
Since ¢(0)b(o) = 0 mod I i, we have a(o)d(c) = k(o) (o) mod Iy p. Since a(o) =
(o)~ mod Iy g, we have d(c) = k(o)™ mod I .

6.3.16. By 6.3.15, the action of the complex conjugation on P’ is —1. Since the complex
conjugation acts on Q' trivially by 6.3.11, this proves P’ = (Hy/IgHy)~ = P.
This completes the proofs of Propositions 6.3.2 and 6.3.5.

6.3.17. We prove Proposition 6.3.4. The case ¢ = p follows from 6.3.5. Assume ¢|N. For
an element o of the inertia subgroup of Gal(Q,/Qy), o acts on Q by 6({c))~! and acts on
P trivially. Since the restriction of 6 to (Z/NZ)* is primitive, we have 6.3.4.

6.3.18. As a consequence of this section 6.3, we have isomorphisms
HY [ IeHf — Q — Ay /(€)= bo/Iy

where the second isomorphism is given by (—,£{0,00}pror)a. We call the by/Ip-bases
of H /IyH, and Q corresponding to 1 € by/Ip, the canonical bases.
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6.4 From cyclotomic symbols to modular symbols

6.4.1. Let
Xpe 1= lim CUQ(Cnpr)) (P}

It is regarded as a A-module via the canonical isomorphism A = Z,[[Gal(K/Q)]] where

K = Q(CNP‘X’)'
We regard, via class field theory,

(1) Xnpe = Gal(L/K)
where L is the largest unramified pro-p abelian extension of K.

6.4.2. As in [51] Lemma 4.11, we have canonical A,-isomorphisms
Xnvgee = im H*(Z[L/p, Q] Zyp(1)y = lim HHZIL/Np, (], Zy(1))
and a Ag-isomorphism
XNp"O,x(l) = Sy
where § is as in 5.2.6.

6.4.3. We define the reciprocity map
T: XNpoo’X — P = HJ/IQH;

Consider the action of Gal(Q/K) on Hy/IyHy. It acts trivially on P and on Q (6.3.2).
Hence we have a homomorphism

Gal(Q/K) — Hom,(Q,P) ; 0 — (z mod P +— (0 — 1)z) (v € Hy/IoHy).

This action is unramified at prime numbers which do not divide Np, for the action of
Gal(Q/Q) on H is unramified at all primes which do not divide Np. By Propositions 6.3.2
and 6.3.4, the action of Gal(Q/K) on Hy/IyHy is unramified also at all prime divisors of
Np.
By 6.4.1 (1), this defines a homomorphism Gal(L/K) — Homy,(Q,P) = P, where
the last = uses the canonical basis of Q as an hy/Iy-module (6.3.18). That is, we obtain
a homomorphism

T: Xnpe = P=H,/IjH,;, Y(0)=o0ep—ep

where ep is a lifting of the canonicalj)g/lg—basis of Q to Hy/IgHy.
By considering the action of Gal(Q/Q) on P and Q given in Proposition 6.3.2, we see
that the above homomorphism Y induces Xype~ , — H, /IgH, .

6.4.4. Note that in section 5, we obtained a homomophism w : (H, /IgH, )(1) — Sp (cf.
5.2.3). We denote the induced homomorphism H, /IpH, — Xype also by w. The two
homomorphisms

w . H;/IQH; — XNPOO,XJ T: XNPOO,X — ;/IQH;

will be our main subjects in the next section 7.
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7 Conjectures of Sharifi

7.1 The conjectures

In this section 7.1, we introduce several conjectures of Sharifi and explain the relations
between these conjectures. In fact, we make some of these conjectures slightly stronger
(see 7.1.14).

Let the situation be as in section 6.1.

Conjecture 7.1.1. (1) The composition
_ _ w T _ _
Hy /IgHy = Xype,, — Hy [19H,

18 the identity map.
(2) The composition

T oL _
Xnvpoe, = Hy [ToHy = Xnpoo
15 the identity map.

Since X yp~ is a torsion free Z,-module by Ferrero-Washington [7], the map @ induces
a homomorphism w : (H, /IpH, )/(tor) — Xnp~, where (tor) is the p-primary torsion.
Consider also the homomorphism Y : Xnp~ , — (H, /IgH, )/(tor) induced by Y.
Conjecture 7.1.1 has a slightly weaker version.

Conjecture 7.1.2. (1) The composition Yow : (H, [IgHy )/(tor) — Xnpe — (Hy /IgHy )/(tor)
1s the identity map.

(2) The maps w : (Hy [IgH, )/(tor) — Xnpee and Y : Xnpeo o — (Hy [IgH, )/ (tor)
are 1somorphisms.

7.1.3. Conjecture 7.1.2 (1) implies Conjecture 7.1.1 (2) and Conjecture 7.1.2 (2).

This is shown as follows. The following arguments by using Fitting ideals and char-
acteristic ideals are standard in Iwasawa theory.

For a commutative ring R and for an R-module M of finite presentation, the (0-th)

Fitting ideal Fittg(M) of M is defined as follows. Take a presentation R™ LR M
0 (exact) of M. Then Fittg(M) is the ideal of R generated by all (n,n)-minors of f (i.e.
the determinants of the (n,n)-matrices which appear as parts of the matrix f). Then
Fittg(M) is independent of the choice of the presentation of M. (See for example, [36].)
As is easily seen, we have

(1) If R — R’ is a homomorphism of commutative rings and M’ = R'®@g M, Fittg (M’)
coincides with the ideal of R’ generated by the image of Fittg(M).

We apply (1) to the case R = bhyg, M = H,, and R' = Q(R) (1.5.3). In this case,
M’ = R’ as an R’-module and hence Fittz (M) = 0. Hence by (1), we have

(2) Fitty, (H; ) = 0.
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We next apply (1) to the case R = by, M = H, , and R' = hy/Iy. By (1) and (2), we
have Fitty, 1, (H,y /IgH, ) = 0. Since Ag /(§) = by/1p (6.1.7), we have

(3) Fitta, /() (Hy /1gHy ) = 0.

By applying (1) to the case R = Ay, M = H, /IgH, and R’ = Ay /(£), and by using
(3), we have

(4) Fitta, (Hy /IpHy) C (£).

For a finitely generated torsion Ag-module M, the characteristic ideal Chary, (M) of
M is defined to be Hp p°® where p ranges over all prime ideals of Ay of height one and
e(p) denotes the length of the localization M, as a Ay-module. (See for example, [59].)
The relation with Fitty, (M) is that Chary,(M) is the unique principal ideal of Ay such
that Fitty, (M) C Charp, (M) and such that the quotient Chary, (M) /Fitta, (M) is finite.
By (4) and by Chary,((H, /IpH, )/(tor)) = Chary,(H, /IpH, ), we have

(5) Char, ((Hy /IgHy )/ (tor)) C (£).

Assume that Conjecture 7.1.2 (1) is true. Let P be the kernel of T : Xpypeo, —
(Hy /IgH, )/(tor). Then Xnpe, = (H, /IgH, )/(tor) @& P as a Ap-modules. (Here we
regard Xnp~, as a Ap-module via the isomorphism Ay = A, given by the (—1) Tate
twist.) Hence we have Chary,(Xnp~ ) = Charp,((H, /IpH, )/(tor)) - Chary,(P). By
Iwasawa Main conjecture proved by Mazur-Wiles, we have Chary, (Xnp= ) = (§). Hence
by (5), we have (§) C (§)Chary,(P). This proves Chary,(P) = (1), that is, P is finite.
Since X npe ,, has no p-torsion (Ferrero-Washington [7]), we have P = 0. Hence Conjecture
7.1.1 (2) and Conjecture 7.1.2 (2) are true.

Remark 7.1.4. By Ohta [42] Theorem II, if the Eisenstein component (1.9.2) 4 g of the
Hecke algebra $)y is Gorenstein, then Y : Xy, — H, /IgH, is an isomorphism.

Remark 7.1.5. H, /IyH, is p-torsion free if the Eisenstein component hy g of hy or the
Eisenstein component of £y is Gorenstein.

In fact, if the Eisenstein component of by is Gorenstein, then since Hgyop is the du-
alizing module of by, the Eisenstein component Hgup g is a free module of rank 1 over
Bo.5, and hence Hyuo0/lgHquop is a free by /Ip-module of rank 1. By this and by 6.3.5 and
6.1.7, we have

Hy [ToHy = Hauon/loHauoo = ho/lo = N /(€).
Since Ay /(€) has no p-torsion (Ferrero-Washington [7]), H, /IoH, has no p-torsion.
Next, if )¢ is Gorenstein, then H, /IgH, = Xnp~, by 7.1.4, and by the fact Xy, ,
is p-torsion free (Ferrero-Washington [7]), H, /IgH, is p-torsion free.

Conjecture 7.1.6.

T(Cy) =L, mod Il
where Cy, € Xypee ([[Z]] is the x-component of the cyclotomic symbol element C in 5.2.12
and Ly, € Hy[[Z)]] is the component of the p-adic L-function L € H[[Z}]] of Mazur-

Kitagawa in two wvariables. Furthermore, T(CX/,M,X) = ER}TM’G mod Iy for any divisor
M >1of N. (See 5.2.12).
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7.1.7. Conjecture 7.1.1 (1) implies Conjecture 7.1.6. Conjecture 7.1.2 (1) implies Con-
jecture 7.1.6 modulo p-primary torsion.
This is because w sends Ly, to Cx, , by Proposition 5.2.12.

Conjecture 7.1.8. (Conjecture of McCallum-Sharifi; See [34], [51].) For r > 1, as
an abelian group, H*(Z[1/Np,(npr], Zy(2))g is generated by elements of the form {1 —
Chprs L= CRepr b (w0 € Z/NP'Z — {0}, (u,v, Np) = 1).

7.1.9. Since we have isomorphisms
H*(Z[1/Np, Cprl, Zp(2))o/p" H*(Z[1/Np, Cnpr], Z(2))o

> H*(Z[1/Np, Cnpr], (Z/DZ2)(2))s
= H*(Z[1/Np, Cnprs (Z/p"Z)(1))x = (CUQ(Cnpr)) /P" CUQ(CN)))x

Conjecture 7.1.8 is rewritten as a conjecture on ideal class groups: For any r» > 1,

(CHQ(¢npr)) /P CHQ(Cnpr)))y i generated by the images of {1 — (R r, 1 — (R b (u,v €
Z/Np"Z — {0}, (u,v, Np) = 1).

7.1.10. Conjecture 7.1.2 (2) implies Conjecture 7.1.8. In fact, since the canonical pro-
jection 8 — H*(Z[1/Np,Cnpr], Zy(2))g is surjective, the surjectivity of w : Hy /IgH; —
Xnpo, 2 Sp in Conjecture 7.1.2 shows that w, : HY (X (Np")gd — Sp ;5 [u: v], —
{1 = CRprr 1 = CRpr } (w,v € (Z/Np'Z) — {0}) is surjective. This shows that Conjecture
7.1.8 is true.

7.1.11. In [51] 1.2, Sharifi presents a conjecture which is a consequence of his conjecture
7.1.6.

Let f =), a,g" be a normalized Hecke-eigen p-stabilized newform of weight k > 2
of level Np" (r > 1) and of character e. We assume that when regard (Z/NpZ)* as a
torsion part of Zx x (Z/NZ)*, 0 coincides with the character of (Z/NpZ)* induced by
w? *e~1 on this torsion part.

Let F = Q(a,;n>1), L=Qy(a,; n>1),and f* =5 " a,¢" be as in section 4.5.
We define the Eisenstein ideal I(f) of Oy, associated to f to be the ideal generated by
1 — ay + ¥~ 1e(¢) for all prime numbers ¢ # p, and by 1 — a,,.

Let V(f*)o, be the image of V(X1 (Np"))o, — V(f*)r. Then V(f*)o, is a Gal(Q/Q)-
stable Op-lattice in V' (f*)r. Let

V() =V [ IHV (o,
This is a free O /I(f)-module of rank 2, and V(f*)* and V(f*)~ are free Op/I(f)-

modules of rank 1. We have a commutative diagram of exact sequences

0 — P®gz,O0L — Hp/IlHy®z;,0, — Q®z, O, — 0
l ! l

0 — V()™ - V(f) - V)T =0

Here the middle vertical arrow is induced from the map H — Vj(X1(Np"))z, in 1.5.7. The
vertical arrows are surjective. It follows that the lower horizontal sequence is stable under
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the action of Gal(Q/Q). The canonical basis of Q as an by/Iy-module (6.3.18) defines
a basis of V(f*)* as an Op/I(f)-module. Hence from the lower horizontal sequence, we
obtain the f*-version

Xnpe — V(7)™

of T. As is checked easily this maps factors as

XNP‘”,X - HZ(Z[I/Np, CNpT]aZp@))@ - V(f*)_‘
We denote this second arrow by T .

Conjecture 7.1.12. Let ¢ : Z; — Q* be a character with finite image. Let r be an
integer such that 1 <1 <k —1 and such that (=1)"(=1) = —1. Let Ly be the subfield
of Q, generated over L by the image of . Then

T ( Z P(a)a" 1 — ¢4l — Cupr}) = Ly(fo 0, 7)  mod I(f)

a€(Z/NprZ)*
in V(f*) ®o, Or,. Here Ly(f,¥,r) is a value of L,(f) € V(f*)o,l[Z)]] as in 4.5.1.
Conjecture 7.1.12 follows from Conjecture 7.1.6 by 4.5.5.

7.1.13. Here we explain that the conjectures in Introduction are contained in the con-
jectures here. In Introduction, we considered the case N = 1. In this case, the (0 = w')-
component of h/I for i # 0,2 is treated in the conjectures in this section 7.1. The
w'-components of h/I for i = 0,2 are zero and yield no problem.

7.1.14. We made modifications of the formulations of the conjectures of Sharifi concerning
the following points 1-3.

1. The map w, (5.2.1) is defined by Sharifi in [51] for each r, but the inverse limit w
of w, is not given in [51] and he does not present a conjecture in the style using w. Our
Conjecture 7.1.1 is a version by using w of Remark at the end of [51] section 5 in which
he uses w,.

2. As in section 6.4, we define the homomorphism T by taking a special basis of
H; /IyH, over by/Iy. The original versions of Conjectures 7.1.1 and 7.1.6 in the paper
[51] are that for some basis e of HJ /IpH, over by/Iy, if we define the map T : Xype , —
H, /IoH, as 0 — oe—e by using e, then the statements of the conjectures hold. However,
we learned from Sharifi that when he wrote [51], he was also planing to formulate the
conjectures by using the same special basis e as in this paper.

3. In the original version of Conjecture 7.1.12 in [51], congruences are considered mod
a maximal ideal containing I(f).

7.2 Our results

Let the situation be as in section 6.1. We state our results 7.2.3, 7.2.6 and 7.2.8 on the
conjectures of Sharifi.
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7.2.1. Derivation in the Iwasawa algebra.

Let R be the valuation ring of a finite extension of QQ,. Let I" be a topological group
which is isomorphic to the additive topological group Z,. For f € R[[[']] and for a
generator ¢ of I', we define df /dt € R[[I']] by identifying R[[I']] with the ring of formal
power series R[[t — 1]]. If s is another generator of I', we have

tdf /dt = csdf /ds

where c is the element of Z, such that s = ¢°.

7.2.2. We define the derivative & € Agof £ € Ay (6.1.6). We take I' = Gal(Q(Cnpee ) /Q(Cnp))-
We take the generator ¢ of I such that (1 — p~!)log(x(t)) = 1. Here & is the cyclotomic
character. By identifying Ay with Og[[I]] via the canonical isomorphism Og[[I] = Ag, we
define

¢ =td¢/dt.

Theorem 7.2.3. (1) The map Yow : Hy [IgH,; ®z, Q, — H, [IyH, ®z, Q, satisfies
EYow=¢.
(2) Leta € Hy /IgH, be the class of (1=T"(p)){0,00}e 5 and let b = ({p,1—Cnpr })r €
Xnpoox- Then
w(a)=b, Y(b)=a.

7.2.4. The relations of the elements a and b in Theorem 7.2.3 (2) are studied by Sharifi
in [49]. We will deduce Theorem 7.2.3 (2) from his theory in [49] and Theorem 9.6.3 in
this paper.

7.2.5. We will consider the following conditions.

C(¢): ¢ has no multiple zero. That is, we have no multiple factor in the prime
decomposition of £ in Ag.

C(bh): As a module over hy ®z, Q,, H, /IyH, ®z, Q, is generated by one element.

C(T*(p)): As a module over hy ®z, Q,, H, /IgH,; ®z, Q, is generated by the class of
(1=T"(p)){0, 00}.

Of course, C'(h) is satisfied if C'(T™(p)) is satisfied.
From Theorem 7.2.3, we will deduce the following Theorems 7.2.6 and 7.2.8.

Theorem 7.2.6. Assume that one of the conditions C(§) and C(T*(p)) is satisfied. Then:

(1) Conjecture 7.1.1 (2) and Congecture 7.1.2 are true. Thus the compositions X npeo RN

Hy [IgHy 5 Xnpeo o and (Hy [IgHy )/ (tor) = Xnpeo RN (H, /1pH, )/(tor) are the iden-

tity maps.
(2) The conjecture 7.1.6 for the L-function in two wvariables is true modulo the p-

primary torsion of Hy [IgH, . The conjecture 7.1.12 on the ratio of L-values is true if
Hy /IoH, has no p-torsion.

By this theorem and by 7.1.5, we have
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Corollary 7.2.7. All conjectures in section 7.1 are true if the following conditions (i)
and (i) are satisfied.
(i) Either C(§) or C(T*(p)) is satisfied.

(ii) Either Yo g or $g g is Gorenstein.

Theorem 7.2.8. Assume that one of the conditions C(€) and C(b) is satisfied. Then:
(1) Congecture 7.1.2 (2) is true. That is, the maps w : (H, [IgHy )/(tor) — Xnpee y
and Y : Xnpeo,, — (Hy [19H, )/ (tor) are isomorphisms.
(2) The conjecture 7.1.8 of McCallum-Sharifi is true.

Remark 7.2.9. (1) As far as the authors know, there is no known example of multiple
zero of €.

(2) In the case N = 1, the A-invariant rankp, (A /(£)) is 0 or 1 in all known examples
(see the sentences after 3.1 of Greenberg [15]).

7.2.10. The following conditions (i)—(iii) are equivalent.

(i) C(h)
(ii) Hy /IgH, ®z, Q) is a free by /Iy ®z, Q,-module of rank 1.

(iii) For any prime ideal p of by of height one such that Iy C p, the local ring by is
Gorenstein.

The equivalence is seen as follows. (ii) implies (i) clearly. Note that for a prime ideal
p of hy of height one which contains Iy, Hy, is a dualizing module over b, (6.3.6). Hence
for such p, by is Gorenstein if and only if Hy, is a free by p-module of rank 1. If (i) is
satisfied, then for such p by Nakayama’s lemma, the by -module Hy, is generated by one
element. Since the last module is a faithful module, the last module is free of rank 1 and
hence (iii) is satisfied. If (iii) is satisfied, then for any such p, H, is free of rank 1 as an
ho -module and hence (H, /IgH, ), is free of rank 1 as an (hy/Ighg),-module. This shows
that the condition (ii) is satisfied.

7.2.11. If a conjecture of Greenberg [15] Conjecture 3.4 is true, X, ®z, Q, is generated
by one element as a A, ®z,Q,-module. Hence it is natural to believe that the condition
C(h) is always satisfied.

7.2.12. The following conditions (i)—(iii) are equivalent.
(i) H, /IpH, is generated by one element as a module over bj.

(i) H, /1pH, is a free hy/Iy-module of rank 1.
(iii) The Eisenstein component of by is Gorenstein.
This is proved by the arguments as in 7.2.10.
7.2.13. Our result Theorem 7.2.8 (1) assuming C(h) shows that if by is Gorenstein, then

the A -module Xy~ , is generated by one element. But this is known (Harder-Pink [16],
Kurihara [26]).
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7.2.14. In the case N = 1, the theorems stated in Introduction are deduced from our
results stated above. In fact, the (§ = w')-components (i € Z/(p—1)Z) of h/I for i # 0,2
are treated above, and the w’-components of h/I for i = 0,2 are zero in the case N = 1.

Concerning (ii) in Theorem 0.15, (1—7"(p)){0, 00} € H is defined since (1—T"*(p))H C
H in the case N =1 by 3.3.7 and 4.4.1.

7.2.15. In the rest of this paper, we prove the above theorems. Here is an outline.
Identify H, /IgH, with Sy/IpSa via the canonical isomorphism (cf. 8.1.1).
In section 8, we study the p-adic L-function M in two variables and prove

M—o(y) =&~ in Hy/IgHy for v € H;.  (Theorem 8.1.2).
By studying Galois cohomology in section 9, we prove in section 10.1
Mo(y) =& - Y(w(y)) in Hy/IgHy @z, Q, for v € Hy.  (Theorem 10.1.3)

These prove Theorem 7.2.3 (1).
Our proof of Theorem 7.2.3 (2) is by the method of Sharifi in his paper [49].

As is explained in section 10, we can deduce Theorems 7.2.6 and 7.2.8 from Theorem
7.2.3.

8 Some results on p-adic L-functions in two variables

8.1 M(y) mod I for v € H-

8.1.1. By the coincidence of the Frobenius and 7%(p) on Hguop(1) (1.8.1) and by 4.2.3,
we have D(Hquo,g(1))/]9D(Hqu0,9(1)) = Hquoﬂ(l)/Iquuo’g(l).

We use the isomorphisms H, /IpH, = Hauoo/loHquon = Sae/loSae as identifica-
tions.

Let M be as in 4.3.3 and let M,_o(7y) be as in 4.3.7.

Theorem 8.1.2. For v € H, we have

(1) "M(y) = A€ - ymod I in (Hauow/loHquo0)[[Z)]] with Ao € Q(Zy[[Z)]]) and
e MNo[[Z)]) defined as follows. First, Ay is as in the case s = 0 of Proposition 4.3.6
(2). That is, Ay is the image of the p-adic zeta function 1£;oo under |a] — o,. Next, £
is the image of ~'Enpee under the composition Q(A) — Q(A[[Z)]]) — Q(Ag[[Z)]]) where
the first arrow is induced by the ring homomorphism A — A[[Z)]] ; |a] = [a]o,, and the
second arrow is the projection.

(2) Mszo(’y) = fl’y mod ]9 m Hquo,G/IGHquo,G-

Proof. We prove (1). Let (—)g be the Eisenstein component.

Take an isomorphism D(T') = T between two functors from the category of pro-p
abelian groups with unramified actions of Gal(Q,/Q,) to the category of pro-p abelian
groups (1.7.6). We have a commutative diagram

Hyp —  Huosr = D(Hgposr) = SAeE
N N N N
Hpyvor — Huopmer = D(Hqopmer) = Mapumer.
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Denote the isomorphism H, p, =2 D(H o) in this diagram by h. Since D(Hquopr) is a
dualizing by g-module, the homomorphism °M : Hy  — D(Hquoe)[[Z]] has the form
fh for some f € by p[[Z;]]. We study f mod Iy .

If we denote by hpa the isomorphism f]g MO.E 5 D(f{quo,DM,O,E) in the diagram, the
homomorphism M : FIBM@E — D(ﬁquo7DM79’E)[[Z;]] has also the form fﬁDM for the
same f.

The isomorphisms A and hpu are compatible with the isomorphisms

Hpypo/ToHy = Mg /(€) 5 {0,00} 1,

Ma pmor/Sner = Mo /(§) ; Z ang" — a.

n>0

Hence to understand f mod Ip g, it is sufficient to consider the constant term of > M ({0, 00} ).
Recall that M ({0, c0}) = the ordinary component of AB with A, B as in the case s = 0
of Proposition 4.3.6. By ¢ — 0, A is sent to Ay and B is sent to By. Since (a) €
(a € Z¥ x (Z/NZ)*) acts on M} as the multiplication by [a~'] on A[[g]], this proves (1).

We prove (2). Similarly, it is sufficient to consider the constant term of M_y({0,00})
in the Drinfeld-Manin modification 6.2.1. In the Drinfeld-Manin modification, AB is
equal to A(B — B(0)), where B(0) € My ®, Q(A) is the image of B under o, — 1.
The constant term of A(B — B(0)) is equal to Ay(By — By(0)) where By(0) is the image
of By under o, — 1. Let u be the element of 1 + pZ, such that (1 — p~!)log(u) = 1,
and let v = o0, € Z,[[Z)]]. Then Ay has the shape U/(y — 1) with U(0) = 1. We
have Ao(By — Bo(0)) = U - (Bo — Bo(0))/(y — 1). By the Ag-homomorphism Ay[[Z,]] —
Ay ; o401 (forall a € Z)), Uis sent to U(0) = 1 and (B — (0))/(y — 1) is sent to the
derivative (71¢*)" of ~1&*. Since (a) acts on M, as the multiplication by [a~!] on A[[q]],
this proves (2). O

8.2 Related results

8.2.1. Let °L € H[[Z)]] be the image of £ € H[[Z}]] under the isomorphism HI[[Z}]] —
H[ZY]] ; x®[a] — a 'z ® [a]. Let Lo € H be the image of °L under H[[Z)]] —
H; x®a] — x. Then Lo € HT.

Theorem 8.2.2. (1) Under the canonical isomorphism (H, /IoHy )[[Z]] = (Mg JENZ)]]

which we take as an identification, we have °L; mod Iy = 20_; - Ao€ where Ay and € are
as in Theorem 8.1.2 (1).

(2) Eszoﬂ mod [9 :25/ m HJ/[@H;_ gAg/(f)
Proof. We prove (1). We compute the image of °L under the map (—, {0,000} prro.g)a

Hy/IgHy — Ag /(£). Tt is the image under A — Ay [a] — [a7!] of the coefficient of ¢ in
((°L,£{0,00}pare.r))a. By Theorem 4.4.3, we have

(°L, {0, 00} pare,p)) = —0-1"M(£{0, 00} paro,p) = —0-1€ - "M({0, 00} ) prro,e
= (‘7—1 '§AB)DM,9,E
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where A and B are as in the case s = 0 of 4.3.6. In the Drinfeld-Manin modification,
o_1-§AB is equivalent to o_; - ((AB — ABE/(\Q)) € Sx ®a Q(A) where E/(\2) is the A-adic
Eisenstein series of weight 2 in 6.2.8. We take the coefficient of ¢q. Since we take mod ¢,
£AB is neglected. Since the coefficient of ¢ in E®) is 2, we obtain 20_; - AyB.

(2) is obtained from (1) just as Theorem 8.1.2 (2) was obtained by using 8.1.2 (1). O

The conditions C(§) and C(T*(p)) have the following similar interpretations. Let £,
be the image of £ under H[[Z)]] - H ;  ® [a] — .

Proposition 8.2.3. (1) C(¢) & L. generates the b @z, Q,-module Hy /IH, ®7, Q,.
(2) C(T*(p)) & Ls=1 generates the h @z, Q,-module Hy [IoH,; @7, Q,.

Proof. The equivalence (1) follows from Theorem 8.2.2 (2).
(2) is clear since L,—; = (1 — T*(p)~"){0, 0o} O

Proposition 8.2.4. Let f be as in 7.1.11. Let ¢ : Z; — Q* and let L, C Q, as before.
Let v be an integer such that 1 <r <k — 1.

(1) Assume (—1)"1(—1) = 1. Then we have:
Ly(f,b,7) =2L(1 = r,9)L(1 —k+ 7,47 "e) mod I(f)Oy,

m OLw/I<f)OLw'

(2) Ly(f,0) = 2L (1 — k,e) mod I(f)Or,. Here L, is the derivative of the p-adic
Dirichlet L-function.

Here L,(f,,r), which is originally an element of V' ( f *)5%, is regarded as an element
of O, by using an Oy, -basis of V(f*)g% whose mod I(f) comes from the canonical
bo/Ip-basis of H, /I,H, .

Proof. This follows from Theorem 8.2.2. m

8.2.5. For example, let f be the p-stabilization of A = ¢[[°2,(1 — ¢")** € S12(1)z where
p = 691. In this case, F = Q, L = Q,, I(f) = pZ,. Proposition 8.2.4 tells that for
0 <r <12, r even,

L,(A;r)=2((1—-7r)((1+r—Fk)modp for p=691.

The ratio of (r — 1)IL(A,r)/(2mi)" for r =2,4,6 is 1 : —23—2 . 525 as in Introduction of

Manin [28]. On the other hand, ¢(—1)C(=9) : C(=3)C(=T) : ((=5)? = b : o1

24.32.11 27.32.52 :
These ratios mod 691 coincide.

1
24,35,72 .

8.2.6. Note that the values L,(f,,r) of p-adic L-functions with (—1)"(—1) = 1 appear
in Proposition 8.2.4 whereas those with (—1)"¢(—1) = —1 appear in Conjecture 7.1.12.
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9 Study of Galois cohomology

In this section 9, we study the maps
_ _ w T _ _
Hy [IgHy — Xnpeo — Hy /1gH,

by using Galois cohomology theory.

In section 9.1, we give some Galois cohomological understandings of X yp~ .. In section
9.2, we give some Galois cohomological understanding of “the evaluation at co” in section
5 which was important in our study of the map w. In section 9.3, we show that the
derivative of p-adic zeta function appears in Galois cohomology. In section 9.4, we give
some Galois cohomological understandings of the map Y. In section 9.5, we relate the
derivatie of p-adic zeta function to this understanding of T. In section 9.6, we compute
the Galois cohomology class of an extension of R by Q which appears in cohomology of
modular curves.

See Sharifi [52] for results related to the results of this section.

9.1 Galois cohomology of Q(2)

9.1.1. Recall that Xpy,e, = Sp(—1) (6.4.2). In this section 9.1, we define the following
two isomorphisms

(1) HY(Z[1/Np|,Q(2)) = Sy, (2) H*(Z[1/Np], Q(2)) = S,.

9.1.2. Let A} be Ay on which Gal(Q/Q) acts as follows. For ¢ € Gal(Q/Q), o acts as the
multiplication by [a] " € A where a € Z¥ x (Z/NZ)* is determined by o({npr) = (e
(r > 1). We have

H(Z[1/Np], Aj(2)) = lim H* (Z[1/Np, G ), Z,(2))o = S

Lemma 9.1.3. H'(Z[1/Np],A(2)) = 0.
Proof. We have
HY(Z[1/Np], Aj(2)) = lim H'(Z[1/Np, (], Z,(2))o = im(Z[1/Np, (npr]* © Zy) (1)

—
T T

= @(Z[CNPT]X ® Zp)x(l) = Zp(1>x(1) =0

r

where the third 2 follows from Assumptions 2 and 3 in 6.1.4, the fourth = follows from
the fact y is odd, and the fifth = follows from the Assumptions 2 and 4 in 6.1.4. O]

9.1.4. Consider the exact sequence
3
0 — A§(2) = AG(2) — (A3/(6))(2) — 0.

By section 6.3, we have a canonical isomorphism (—,£{0,00}pargp)a : Q = A5/ () as a
representation of Gal(Q/Q) over Ay. Hence we have an exact sequence

0— Ab(2) = Ab(2) — Q(2) — 0.
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By 9.1.2, this exact sequence induces an exact sequence
HY(Z[1/Np), Ay(2)) — H'(Z[1/Np], Q(2)) = Sy = Sy — HX(Z[1/Np], Q(2)) — 0.

By classical Iwasawa theory, Sy is killed by &. Hence by Lemma 9.1.3, the last exact
sequence gives the isomorphisms (1) and (2) in 9.1.1.

9.2 Evaluation at oo and Galois cohomology
The aim of this subsection is to prove the following proposition.

Proposition 9.2.1. The evaluation at the oo-cusp

lim H*(X1(Np") @ Z[1/Np], Z,,(2)) — lim H*(Z[1/Np, Cxpr], Z(2))s

T T

coincides with the composition

lim /*(X(Np") ® Z[1/Np], Z,,(2)) — H'(Z[1/Np], Hy(2))

T

— HY(Z[1/Np], Q(2)) = lim H*(Z[1/Np, (npr], Z(2))s
Here in this composition, the second arrow is given by the projection H — Q and the last
isomorphism is 9.1.1 (2).

9.2.2. We consider the following diagram with exact rows

0 — AN2) — H.pp(2) — Hpp2) — 0
| l !
0 — AN2) S AR = ALJOER) — o

Here: The upper horizontal row is the Ag-dual of the exact sequence 0 — Hy p — }NI(;, E—
Ay — 0 (6.2.5) for the pairing (—, —)a (section 1.6). The middle vertical arrow is the
pairing (—, [g])a with [g] = the class of (go1/npr)r € ]jI97E(1) (6.2.12) for (—, —), as in
1.6.7. The right vertical arrow is the map (—,£{0, 00} pag.g)a in section 6.3, that is, the
composition Hy 5(2) — Q(2) = A* /(£)(2). The map ¢ is the multiplication by &.

Lemma 9.2.3. The above diagram in 9.2.2 is commutative and respects the action Gal(Q/Q).

Proof. The compatibility with the action of Gal(Q/Q) is checked easily. The commuta-
tivity of the left square is by 6.2.13. We consider the right square.

Let x € Hpp and let y be a lifting of = to ]:[C,H,E. Let A be the image of x in
Ap /(&) under the right vertical arrow of the diagram. What we have to prove is (y, [g])a
mod £ = .

By the boundary map Hyp — Ag, {0,00} is sent to —1 and [g] is sent to £. Hence
A =: £{0,00} + [g] belongs to Hp . Since [g] dies in the Drinfeld-Manin modification
(6.2.14), we have A = {0,000} ppr .. Hence A = (2, A)x = (y,&{0,00})a + (¥, [9])a. But
(y,£{0,00})A =0 mod &. O
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Corollary 9.2.4. The composition H'(Z[1/Np|, Hp(2)) — H'(Z[1/Np],Q(2)) = S
coincides with the connecting map H'(Z[1/Np|, Hp5(2)) — H2(Z[1/Np|,A5(2)) of the
upper exact sequence in the diagram in 9.2.2.

Hence for the proof of Proposition 9.2.1, it is sufficient to prove the following Lemma
9.2.5.

Lemma 9.2.5. The evaluation lim H?*(X1(Np")QZ[1/Np|, Z,(2)) — lim H*(Z[1/Np, Ny, Z,(2))o
at the oo-cusp coincides with the composition lim H?*(X1(Np") ® Z[1/Np|,Z,(2)) —
HY(Z[1/Np|, Hy.2(2)) — H*(Z[1/Np|, A5(2)), where the last arrow is the connecting map

of the upper exact sequence in the diagram in 9.2.2.

9.2.6. We consider the upper exact sequence in the diagram in 9.2.2. Since the Atkin-
Lehner involution, which appears in the definition of (—, —),, exchanges 0O-cusps and
oo-cusps, and since only O-cusps contribute to the exact sequence 0 — Hyp — I~{97 B —
Ay — 0, only co-cusps contribute to the dual exact sequence 0 — Ay — [j[cﬁ, g— Hyp—
0. More precisely, the last exact sequence is obtained as follows. Let F' = 7Z/p"Z(2)
on the étale site of X{(Np")g, I = i.(Z/p"Z)(2) where i is the inclusion morphism
{oo-cusps} — Xi(Np")g, F' = Ker (F' — F”). Then from the exact sequence 0 —
F' — F — F” — 0, we obtain an exact sequence 0 — T — H'(X;(Np")g, F') —
HY(X1(Np")g, Z/p"Z)(2) — 0, where T is the cokernel of H(X;(Np")g,Z/p"Z)(2) —
H°(X,(Np")g, F""). When we take the inverse limit for n and r, the inverse limit of the
(8, E)-component of T becomes A, that of HY(X1(Np")g, F') becomes H,p(2), and that
of H'(X1(Np")g, Z/p"Z)(2) becomes Hp p(2).

Lemma 9.2.7. Let Cq, Cy, C3 be abelian categories and let f : C; — Co and g : Co — C3
be left exact functors. Assume that C; and Cy have enough injective objects, and assume
that f sends injective objects of Cy to injective objects of Co. Let 0 — F' — F — F" — 0
be an exact sequence in C; and assume that (R'f)F" = 0 for all i > 0. Let S be the
kernel of (R*(gf))F — g(R*f)F and let T be the cokernel of fF — fF". Then we have

a commutative diagram

S C RGHF — RAgf)F"
|
| (R*g)fF"
|
(R'g)(R'f)F — (R?g)T.

Here the left vertical arrow is by the spectral sequence (R'g)(R’f) = R (gf) and the
lower horizontal arrow is the connecting map of the exact sequence 0 — T — (R'f)F' —
(R'f)F — 0 (which appears in the long exact sequence of R'f obtained from the exact
sequence 0 — F' — F — F" —0).

Proof. Exercise. O]

9.2.8. We prove Lemma 9.2.5.
We apply Lemma 9.2.7 by taking the following: C; is the category of abelian sheaves
on the étale site of X;(Np") ® Z[1/Np], Cy is the category of abelian sheaves on the étale
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site of Spec(Z[1/Np]), Cs is the category of abelian groups, f is the direct image functor,
g is the global section functor, F' = Z/p"Z(2) on the étale site of X;(Np") ® Z[1/Np]
for some n > 1, F" = i.(Z/p"Z)(2) where ¢ is the inclusion morphism ooy, (0,1) :
Spec(Z[1/Np,(npr]™) — X1(Np”), and F' = Ker (£ — F”). The commutative diagram
in Lemma 9.2.7 becomes

H*(X1(Np") ® Z[1/Np|, (Z/p"Z)(2)) — H*(Z[1/Np,Cnpr], (Z/p"Z)(2))*
| l
HY(Z[1/Npl, Hy, (X, (Np"))(2)  — H*(Z[1/Np],T)

(S in the diagram in 9.2.7 becomes the same as R*(gf)F = H*(X,(Np'r)QZ[1/Np|, (Z/p"Z)(2))).
In the present diagram, the upper horizontal arrow is the evaluation at the oo-cusp, T’
is the cokernel of H(X:(Np")g, Z/p"Z)(2) — H°(Z[1/Np, (np] ® Q, Z/p"Z)(2) which is
identified with the cokernel of Z/p"Z(2) — Z/p"Z[(Z/Np"Z)* /{£1}](2), and the lower
horizontal arrow is the connecting map of the exact sequence 0 — 7' — H' (X (Np")g, F') —
HY(X1(Np")g,Z/p"Z) — 0. Taking the inverse limit for  and n, we obtain Lemma 9.2.5.

Now the proof of Proposition 9.2.1 is completed.

9.3 Derivative and Galois cohomology

In this 9.3, we prove the following proposition.

Proposition 9.3.1. Consider the following two homomorphisms
a,b: H(Z[1/Np], Q(2)) — HX(Z[1/Np], Q(2)).
The homomorphism a is the composition
H'(Z[1/Np], Q(2)) = Sp = H*(Z[1/Np], Q(2))

of the isomorphisms in (1), (2) in 9.1.1. The homomorphism b is the cup product U(1 —
p ) log(k) with (1 —p~')log(k) € HY(Z[1/Npl|,Z,), where k is the cyclotomic character.
Then we have

b=¢ - a.

9.3.2. Let G be a pro-finite group and assume the following (1) and (2).

(1) For any finite abelian group 7" of p-power order endowed with a continuous action
of G, and for any i > 0, the cohomology group H'(G,T) is finite.

(2) We are given a closed normal subgroup H of G such that I := G/H is isomorphic
to Zj,.

The assumption (1) tells the following. For a pro-p abelian group A endowed with
a continuous action of G, and for any i, the continuous cohomology H*(G, A) coincides
with lim , H'(G, A/A") where A’ ranges over all open subgroups of A.

Let Z,[[T']]* be Z,[[I']] on which G acts as follows. For o0 € G, the action of ¢ on
Z,|[T]}* is the multiplication by 5!, where & denotes the image of ¢ in T
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Let f be a non-zero-divisor of Z,[[I']] and let T" be a pro-p abelian group endowed
with a continuous action of G. Let M be the cokernel of the injective homomorphism
f=f®1:Z[)fT — Z,[[I))f&T. Here ® is the topological tensor product as in
1.7.3.

Let t be a generator of I" and let

LT 57,

be the isomorphism which sends ¢ to 1. We denote the element of H'(G, Z,) corresponding
to [; by the same letter [;.

Proposition 9.3.3. Let the notation be as above. Then for each i > 0, the cup product
HY(G,M) — H*YG,M) ;x+ —l; Uz
with —l; € H'(G,Z,) coincides with the composition

Hi(G, M) % HY(G, Z,[Dfer) ‘Y g, 2, [DfeT) — H (G, M)
where:
The first arrow O is the connecting map of the exact sequence of G-modules 0 —
Z,[[D)}f&T L z,[[T)féT — M — 0.
The second arrow tdf /dt is induced by the Z,[[I']]-linear G-homomorphism tdf /dt @1 :
Z,[Tf&T — Z,[[T])!&T.

The third arrow is the canonical projection.

The proof of this proposition is given after we prove the following Lemmas 9.3.4 and
9.3.5.

Lemma 9.3.4. For any pro-p abelian group A endowed with a continuous action of G,
the map x +— —l; Uz : H(G, A) — HT (G, A) coincides with the composition

HY(G,A) — H'YG, Z,[[T]f®A) — HT(G, A)

where the first arrow is the connecting map of evact sequence 0 — Z,[[T]! @A = Z,[[[]f®A —
A— 0 witha=t®1—1 and the second map is the canonical projection.

Proof. This can be proved by explicit computations of the connecting map and the cup
product of group cohomology. Here —I;, appears because if 0 € G and if we write 61 —1 =
(t — 1)g where & is the image of o in T" and g € Z,[[[']}¥, then the image of g in Z, under
the canonical projection coincides with —;(o). ]

Lemma 9.3.5. Assume we have a commutative diagram of exact sequences of pro-p G-
modules

0 0 0
! 1 |

0O — PP - @ — R — 0
! ! !

0O - P —-— @QQ — R — 0
! 1 |

0 N p// N Q// N R// N O
! ! |
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Let j > 1. Assume H’(G,Q') — H’(G,R') is surjective and H?(G, P) — H’(G,Q) is
injective. Then the connecting map H=Y(G, R") — H’(G,P") of0 - P" - Q" — R" —
0 coincides with the minus of the connecting map of the snake lemma for
H/(G,P) — HI(G,Q) — H/(G,R) — 0
| 1 |
0 - H/(G,P) — HI(G,Q) — H(G,R)

defined by using the map H'71(G,R") — Ker(H’(G,R') — H’(G,R)) and the map
Coker(H’ (G, P') — H’(G, P)) — H’(G, P").

Proof. For a pro-p G-module A, let J(A) be the standard complex which computes the
Galois cohomology of A. We have a commutative diagram of exact sequences of complexes

0 0 0
! ! |

0 — JWP) — J@Q) — JIR) — 0
! | |

0 — JP) — J — JR) — 0
! ! l

0 — JWP') — JQ") — JIR') — 0
! ! |
0 0 0.

Let Z € H'7Y(G, R"). Let x be an element of J(R")’~! which represents 7. Lift = to
y € J(Q)’~!. Then the image of  under the connecting map H’~'(G, R") — H/(G, P")
is the class of dyyqr) € J(P")’. Call this class (1). On the other hand, the image of T
under the connecting map H’~'(G, R") — H’(G, R') is the class of dy;r) € J(R')?. By
the surjectivity of H/(G, Q') — H’(G, R'), there exist z € J(Q')’ and u € J(R')’~! such
that dz = 0 and z;py = dy, gy + du. Let @ be a lifting of u to J(Q')’~! and replace z by
z — dt. Then we have z;g) = dy ). Hence the map J(Q)? — J(R)’ sends z;q) — dy
to 0. That is, z;) — dy € J(P)’. Hence the class of z,) in H/(G, Q) is the image of
the class of z;q) — dy € J(P)? in H’(G, P). The image in H7(G, P") of this class is the
class of 2J3QM" — dyJ(Q//) = _dyJ(Q//) € J(Q”)j. Call this class (2) Then (1) = — (2) ]

9.3.6. We prove Proposition 9.3.3.
We apply Lemma 9.3.5 to the following situation: P = P' = Q = Q' = Z,[[[|f&Z,[[T])f&T,
P—-Qand PP - Q aret®1®1—1,and PP - Pand Q' — Q are 1 ® f ® 1, and

j =i+ 1. The sequences ¥ — R — R” and P" — Q" — R" are identified with

Z,|[T)ffeT EN Z,[T))f&T — M and Z,[[T]f)&M 25" Z,[[D))&M — M, respectively.

We have an isomorphism of G-modules

Zy[TIFOZ (D) = Z,[TIFOZ[[0)] s 1 @ty = i @ 7'ty (8 €T)

where G acts on the Z,[[[']] without f trivially. By this isomorphism, the sequence
HI(G,P) — H(G,Q) — H’(G, R) is identified with

ABTZ[[T]] & ABZ,[[T]] < A
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where A = HHG, Z[TPQT), b=(t@1) et -1, clr®y) =y

The map b is injective and the map c is surjective as is easily seen.

By Lemma 9.3.4 and Lemma 9.3.5, the map H'(G, M) — H"' (G, M) ; x — ;Ux
coincides with the composition H (G, M) — H™*Y(G, Z,[[[))!@M) — H™(G, M) where
the second arrow is the canonical projection and the first arrow is the connecting map of
the snake lemma for

H{(G, M)
10
0 — AGZ,|[T]] LoAGZ) S A = 0
11ef 11ef L
0 — ABZ,|[T] S OARLT] S A =0

!
H*YG, Z,[[T]f&M).

Here the map H'*(G, Z,[[T]*&T)RZ,[[T]] — H*YG, Z,[[T]*@M) is u ® v — (the pro-
jection of vu).

Let € HY(G,M) and let y = 9(x) € A. Then y lifts to y ® 1 € ARZ,[[T]]. Since
F) =0, (1o Hlye) = (1o - f1)(yo1). Wit

lof-fel=(tot! —1) inZ [z,
with g € Z,[[[]]®Z,[[T]]. Then (1® f — f ® 1)(y) = b(gy). Since the map
ZMEZ 0] = Z([T]); u@v@ h— uo e h
sends g to —tdf /dt, the image of gy under
HNG, Z,[TfFOT)QZ,[[I]] — H'(G, M) ; u® v — projection of vu
is the image of (tdf /dt)y. This proves the proposition.

9.3.7. Proposition 9.3.1 follows from Proposition 9.3.3.

9.4 The map T and Galois cohomology
Here, we give descriptions 9.4.3 and 9.4.4 of the map T by Galois cohomology theory.

9.4.1. We review the arithmetic duality in Galois cohomology theory (Poitou-Tate dual-
ity).

Let F be a finite extension of Q and let U be a dense open subscheme of Spec(Op[1/p]).

For a finite abelian group T of order a power of p endowed with a continuous action of
G:=m(U), and for i € Z, let H ("C)(U7 T') be the i-th cohomology of the following complex
Ci)(G,T): Cy(G,T) is the simple complex associated to the double complex defined to
be the “mapping fiber” of the canonical map C(G,T) — ®,¢vC(F,,T). Here C(G,T)
is the standard complex of the topological G-module T" which computes the continuous
cohomology H'(G,T) = H'(U,T), v ranges over all finite places of F' which do not belong
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to U, and C(F,,T) denotes the standard complex of the topological Gal(F,/F,)-module
T which computes the continuous cohomology H'(Gal(F,/F,),T) = H'(F,,T).
We have an evident long exact sequence

= Hiy(U,T) — H(U,T) = ®uguH'(F,, T) — HE(U,T) — ...

Via this exact sequence, H(?’C) (U, T) is isomorphic to the cokernel of H*(U, T') — ®yev H*(F,,T).
This isomorphism for T' = (Z/p"Z)(1) and the canonical isomorphisms H?(F,, (Z/p"Z)(1)) =

Z/p"Z for v ¢ U induce a canonical isomorphism H(?’C)(U7 (Z/p™Z)(1)) = Z/p"™Z. The du-

ality of Poitou-Tate formulated as in Mazur [29] says that for n > 0 such that p™ kills T,
the cup product

Hiy(U,T) x H*7(U,T" (1)) — H{y (U, (Z/p"Z)(1)) = Z/p"Z

is a perfect duality of finite abelian groups. Here (=)  denotes the Pontryagin dual.
In particular, H (U, T) is the dual of H(U, T7(1)) and hence we have a canonical
isomorphism
(1)  HL(UT)=T(-1)g (the co-invariant).

9.4.2. Let P and Q be as in 6.3.1.
Since Gal(Q/Q) acts trivially on P (1), we have by (1) in 9.4.1

H{,)(Z[1/Np], P(2)) = P(1) = P.
Proposition 9.4.3. We have a commutative diagram

H2 (Z[1/ND], Q2)) — H(Z[/Np|,Q(2)) = Xy,
l 1T
P = P.

Here the left vertical arrow is the minus of the connecting map
HE)(Z[1/Np), Q(2)) — H{,)(Z[1/Np|, P(2)) = P
of the exact sequence 0 — P(2) — (Hy/lpHp)(2) — Q(2) — 0.

(Since the upper horizontal arrow of the above diagram is surjective, this characterizes
the map T.)

Proof. Let X = Gal(M/K) where K = Q((np=) and M is the largest pro-p abelian
extension of Q(({npe) which is unramified at any primes which do not divide Np. Since
X is the Pontryagin dual of H'(Z[1/Np, (np=], Qp/Z,), Poitou-Tate duality (9.4.1) shows
that X = lim_ H(Zc)(Z[l/Np, Cnpr)s Z,y(1)). Hence

X, = X(1)g 2 Llim HE) (Z[L/Np, (], Zy(2))o 22 HE) (Z[1/Np], A5 (2)).

The composite map

Xy = Hiy(Z[1/Npl, Aj(2)) — H(Z[1/Np], (M) /()(2)) = Xnpe
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coincides with the canonical projection.
For the proof of 9.4.3, since the map X — H?C)(Z[l/Np], Q(2)) is surjective, it is suffi-
cient to prove that the composition X — H, (Z[1/Np], Q(2)) — H(\(Z[1/Np], P(2)) = P

induced by the left vertical arrow of 9.4.3 coincides with the composition X — Xppeo L p.
By Poitou-Tate duality, it is sufficient to prove that the composition

P’ = HZ[1/Np], P’ (—1)) — H'(Z[1/Np], Q" (-1))
— HYZ[1/Np, Cnp=], Q) = Hom o (X, Q") — X~

coincides with the minus of the Pontryagin dual of ¥ — X, L P. Here HY(Z[1/Np], P’ (—1)) —
H'(Z[1/Np|, Q" (—1)) is the connecting map of the exact sequence

0— Q' (~1) — (Ho/IyHp) (~1) = P'(=1) = 0

and the map Hom cpn (X, Qv) — X is defined by the evaluation at the canonical basis of
Q. The last coincidence is proved easily. O

Proposition 9.4.4. Consider the diagram

HE,(Z[1/Np], Q(2))

!
H*(Z[1/Np],P(2)) — H*(Z[1/Np|,(Hs/IpHy)(2)) — H*(Z[1/Np],Q(2)) — 0
! l !
0 — @unp H(Qr, P(2)) — @©gnp H*(Qr, (Ho/IpHy)(2)) — @gnp H*(Qr, Q(2))
!
D

in which rows are exact and compositions of vertical arrows in the column are zero. The
map Y 1 Xnpe , — P coincides with the map given by snake lemma.

Proof. We can show that the above map of the snake lemma coincidences with the minus
of the connecting map H{,) (Z[1/Np], Q(2)) — H(\(Z[1/Np],P(2)), by using the “complex
version” of 9.3.5. By this, 9.4.4 is reduced to 9.4.3. Here the “complex version” of 9.3.5 is
as follows: We replace pro-p G-modules in 9.3.5 by complexes of pro-p G-modules. This
complex version is proved in the same way as 9.3.5. O]

9.5 Derivative of p-adic Dirichlet L and Galois cohomology

Recall (7.2.2) that £’ = td¢/dt where t is the generator of Gal(Q((np~)/Q(Cnp)) such that
(1 —p~")log(k(t)) = L.

Proposition 9.5.1. We have a commutative diagram

HY(Z[1/Np|, Hy(2)) — Sy =1lim H*(Z[1/Np,(nyr], Zy(2))o

l L&
HY(Q,,P(2)) - P.
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Here the upper horizontal arrow is the evaluation at oo, the left vertical arrow is induced
by Hy — Hyuoo — Hauoo/loHquoo = P, and the lower horizontal arrow is given by the
cup product

U(1 —p~")log(k) : H'(Q,, P(2)) — H*(Qp, P(2)) = H*(Qy, Zy(1)) ®z, P = P.
Before we give the proof of 9.5.1, we prove

Lemma 9.5.2. Let ¢ be a prime divisor of N. Then for any m € Z, the canonical map
H* (Fb HO(Q&UM HQ(m))) — H' (@f; HH(m)) is bijectz"ue.

Proof. This map is injective, and the cokernel is isomorphic to H°(Fy, H'(Qy..r, Ho(m))).

The action of the absolute Galois group of Qg () on Hy is trivial. Let G be the Ga-
lois group of Q.. (Cx) over Qy . Since p does not divide ¢(N), the map H'(Qy ., Ho(m)) —
HY(Qpur(Cn), Ho(m))® is bijective. Hence it is sufficient to prove that H°(Fy, H*(Qpur(Cn), Ho(m))¢) =
0. We have HY(Qy..(Cn), Ho(m))¢ = Hy(m — 1)¢. In the finite level, the action of the
geometric Frobenius F'r; ' at £ on Hy is of weight 1 (since the restriction of § to (Z/NZ)*
is primitive, Hy is potentially good at ¢). Hence H°(F,, Hg(m — 1)¢) = 0. O

9.5.3. We prove Proposition 9.5.1.
Consider the commutative diagram

H'(Z[1/Npl|, Hy(2)) — H*(Z[1/Np], Hy(2))

! !

oy H' (Qe, Hp(2)) — @gnp H*(Qu, Hp(2))
l |

Donpy H(Qe, P(2)) —  @awp H*(Qr, P(2))
!
7)

in which all the horizontal arrows are the cup product U(1—p~1)log(k), and the vertical ar-
rows H'(Qy, Hy(2)) — H'(Qy, P(2)) for i = 1,2 are induced by Hy(2) — (Hy/IgHy)(2) —
P(2) where the last arrow is obtained from the unique splitting of the exact sequence
0—P — Hg/[gH@ — Q — (0 over Gal(@g/(@g)

Let x € HY(Z[1/Np], Ho(2)). Let y € H*(Z[1/Np], Hy(2)) and z € P be the images of
2 in this diagram.

For any prime number ¢ # p, (1 — p~1)log(k) € H'(Qy,Z,) belongs to the unramified
part H'(Fy,Z,). Hence for {|N, by the case m = 2 of Lemma 9.5.2, the cup product
U(l —pHlog(k) : H(Qy, H(2)) — H*(Qq, H(2)) is zero (use the fact H?(Fy, —) = 0).
Hence z coincides with the image of x under the composition H*(Z[1/Np], He(2)) —
H'(Q,,P) — P of Proposition 9.5.1. It remains to prove that z = & - T(u) where
u € Sy is the image of x under the evaluation at co. Let v be the image of y under
H?(Z[1/Np|, Hy(2)) — H*(Z[1/Np], Q(2)) = Sy. By Proposition 9.3.3, we have v = ¢'u.
On the other hand, Proposition 9.4.4 shows that Y(v) is the image z of y under the
composition of vertical arrows H?(Z[1/Np|, Hy(2)) — P. Hence z = Y(v) = 'Y (u).
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9.6 A cuspidal extension class in Galois cohomology

9.6.1. Let £ = [:[DM,(;,E/Ker (Hp g — Q). We try to understand the extension 0 — Q —
E—-TR—N0.

9.6.2. Because we have canonical bases of Q and R as Ay /(§)-modules, the class of
this extension is understood as an element of H'(Z[1/Np], (A% /€)(1)). From the exact

sequence 0 — A%(1) 5 A5(1) — (A% /(€))(1) — 0, we have an exact sequence

i (Z[1/Np, Cvpr]* © Zy)o — lim(Z[1/Np, (] © Z)o — H'(Z[1/Np, (A /€)(1)).

T T

The goal of this section 9.6 is to prove

Theorem 9.6.3. The class of the extension 0 — Q — & — R — 0 coincides with the im-
age of class of the family (1—Cnypr ), under the canonical homomorphism liinT(Z[l/Np, Cvpr]*®

Zy)e — H'(Z[L/Np], (Af /€)(1)).

Lemma 9.6.4. Let X be a proper smooth curve over an algebraically closed field k, and let
Y be a dense open set of X. Let n € Z and assume n is invertible in k. Let D be a divisor
on X with support in X — Y, and assume nD is a principal divisor (g). Then the map
HY(X,Z/nZ(1)) — HYY,Z/nZ(1)) sends the class of D in H*(X,Z/nZ(1)) = Jx[n] to

the Kummer class of g.

Proof. Let L = O(D) and let T be the Z/nZ(1)-torsor {u : L = Ox : u®" = g} on
the étale site of X. Then the class of T in H'(X,Z/nZ(1)) goes to the class of L in
HY(X,G,,)[n]. On Y, T is identified with the Z/nZ(1)-torsor {n-th root of g} whose
class is the Kummer class of g. This proves the lemma. O]

Lemma 9.6.5. Let X = X (Np"), Y =Y{(Np") (r > 1). By the map H;(Y )pn/HL(X) —
HY(X) ® Q/Z induced by HL(Y)py = HY(X) ®z, Qp, the class of a cuspidal divisor
D of degree 0 in HY(Y)pu/H4H(X) goes to the minus of the class of D in Jx ior =
Hy(X) ® Q/2Z.

Here HY,(Y)par be the Drinfeld -Manin modification (6.2.1) of HL(Y).

Proof. Take E € HJ(Y) whose class in H} (Y)/HZ (X) coincides with that of D. Since
the class of D is torsion, we have nD = (g) for some n # 0 and g. Hence the class
of D in HL.(Y)/H}(X) coincides with that of the Kummer class [g] of g. Hence nD =
lg] + x in HL(Y) where z € H}(X). In HA(Y)/nHL(Y), we have x = —[g]. Since
Hi(X)/nHL\(X) — HL(Y)/nHL(Y) is injective and the class of D goes to [g] by Lemma
9.6.4, we see that x = —D in H(X)/nH}(X). On the other hand, in H}(Y)pas, since
lg] vanishes there, nE = [g] + « implies that nE = x. Thus in H}(X) ®z, Q,, nE = z.
This proves the lemma. O

Note that

Lemma 9.6.6. Let J be the Jacobian variety of X1(Np") and let GJ be the generalized
Jacobian variety of X1(Np") with respect to the co-cusp of X1(Np"). Consider the exact
sequence
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(@) 0-Gp—-T—->GJ]—J—0

where T is the Weil restriction of G,, from the residue field of the co-cusp of X1(Np") to
Q, and let

(b) 0—T[log — GJIElg — J[€]sg — 0 be the exact sequence obtained by taking the
0-component of the £-torsion part (the kernel of the action of &) of the exact sequence (a).
Then via the perfect duality

Hy(Yi(Np"))o/SHA(Y1(ND"))o x GT[Elo — Qp/Zy 5 (2,y) — (wipr (2),y)

where (—, —) is the usual pairing, the Eisenstein component of the exact sequence (b) is
dual to the exact sequence

0 — Hy(Xy(Np"))o.e/EH (X1 (Np"))op —

Hy(Yi(NP"))o.p/EHe(Yi(ND"))o.5 — (Zp[(Z/NpZ)*]o/(£))(—1) — 0.

(The last exact sequence is a quotient of the exact sequence 0 — Hyp p — ]:19’E — Ny — 0

in 6.2.5.)

9.6.7. Let A = Z,[G] for a finite abelian group G. Let a € A, R = A/(a). Assume R is
finite (that is, a is a non-zero-divisor of A).

Then we have a functorial isomorphism Hom (M, R) = Hom(M,Q,/Z,) for an R-
module M.

It is defined as follows. Note that a is invertible in A ®z, Q, = Q,[G]. We define a
homomorphism f : R — Q/Z as follows. Let g : Q,[G] — Q, be the map ) __. c,0 — ¢,
(¢c; € Q). Let f: A — @, be the homomorphism defined by f(b) = g(ba~"). Then for
b € A, we have f(ab) = g(b) € Z,. Hence f induces a homomorphism f : R = A/(a) —
Qp/Zy.

This homomorphism f : R — Q,/Z, induces Hom (M, R) — Hom (M,Q,/Z,) for
any R-module M.

We prove that this homomorphism Hom z(M, R) — Hom (M,Q,/Z,) is an isomor-
phism. To prove it, we are reduced to the case M = R. That is, it is sufficient
to prove that R — Hom (R,Q,/Z,) ; = +— (y — f(zy)) is bijective. This map is
A/(a) — Hom (A/(@), Q/Z,) — Hom (A, Qp/Zy)a] = (A Gz, Qy/Z,)la] ([a] denotes the
kernel of a). The inverse of this composition is given by the connecting map of the snake
lemma for the commutative diagram of exact sequences

0 - A — A®,Q — A®z,Q/Z, — 0
la =l a la
0 - A — A®,Q — A®zQ/Z, — 0.

By Lemma 9.6.5, we have

Lemma 9.6.8. The canonical map (—,£{0,00}pmor)r : Ho — Ao /(§) (6.3.8) is de-
scribed as the inverse limit of the following maps H}(X1(Np")) — Zy((Z/Np"Z)*]a/(§)
forr>1:
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Consider the divisor D = (0) — (c0) on Xi(Np"). Let A = Z,[(Z/Np"Z)*|g. We
denote the image of & in A by the same letter . Let R = A/(§). Let J be the Jacobian
variety of X1(Np"). In Jiror = HLY(X1(Np"))or®@Q/Z, the class class(D) of D is killed
by . The 0-component of the above 9.6.7 shows that J[{]g g (which is the Pontryagin dual
of HY,(X1(Np"))o.e/EH}L(X1(Np"))or via the duality in Lemma 9.6.6) is the R-dual of
HL X1 (Np"))o/EHY(X1(Np")gp. Hence, class(D) € J[€lgx defines HY,(X1(Np"))o.x —
R.

Lemma 9.6.9. Let C be the group of divisors on X1(Np") ® Q supported on cusps. Let
(C ® Zy)g,r be the Eisenstein component of the 0-component of C ® Z, as an h(Np")z, -
module. Then we have

(1) As a module over the ring Z,[(Z/Np"Z)*|g of diamond operators, (C' @ Z,)o g is
a free module of rank 1, and any 0-cusp is a generator of this module.

(2) For any cusp x of X,(Np")®@Q which is not a 0-cusp, the image of x in (CRZy)e.5
18 zero.

Proof. This follows from Ohta [41]. (It can be deduced from 1.3.5). O

9.6.10. We prove Theorem 9.6.3.
By Lemmas 9.6.8 and 9.6.6, it is sufficient to prove the following statement (S).

(S) The image of the class of (0) — (c0) in H*(Q((nypr), J[£]6,r) under the connecting
map HY(Q(Cnpr), J[€lo.e) — H'(Q(Cnpr), T[€lo.r) of the exact sequence (b) of Lemma
9.6.6 coincides with the Kummer class of of 1 — (nypr.

Take an integer ¢ such that (¢,6Np) = 1 and such that the image of ¢ — [c] in Ay is
invertible. By the g-expansion of .go1/npr (2.1.1) and by Lemmas 6.2.13 and 9.6.9, there
is h € h(Np")z whose image in h(Np")z, ¢, is invertible and which satisfies the following
conditions (i)—(iii).

(i) h kills oo-cusps.

(1) div(eggwpr) =T+ (¢ = {c)) - £ - (0).

(lll) ng,l/NpT(Oo> = (]_ — CNpT)h(CQ*UC)-

We compute the image of the class of h- (¢? — (¢)) - ((0) — (00)) in H*(Q(Cwpr), J[E]0)
under the connecting map H(Q(Cnpr), J[€]o) — HY(Q(Cwpr), T[E]p)- Let s be an idele on
X1 (Np") ® Q satisfying the following conditions (iv) and (v).

(iv) Outside co-cusps, the divisor of s coincides with the divisor h-(c?—{c))-((0)—(00)).

(v) The components of s* (= the result of the action of £ on s) at oo-cusps are the
images of 693,1/Npr in the local fields of X;(Np") ® Q at oco-cusps.

Then by (i) and (ii), the class of s* in G'J coincides with the class of the principal
idele ngJ /npr and hence vanishes. Thus s € GJ[¢]. Furthermore, the image of s in J[¢]
coincides with i - (¢ — (c)) - ((0) — (00)). Hence the connecting map sends the class of
h-(c2—(c))-((0)—(c0)) to the class of the Galois 1-cocyle o — a(s)/s (0 € Gal(Q/Q({nypr)),
which is the Kummer class of ng’l npr(00) = (1=¢ Npr)€*=7¢) This proves the statement

(S).
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10 Proofs of our results on Sharifi conjectures

In section, we complete the proofs of our results stated in section 7.2.

10.1 Study of ¢ - Tw

The goal of this subsection is to prove Theorem 7.2.3 (1).

10.1.1. We regard H, /IpH, = Hauoo/loHquoo = D(Hquoo(1))/IgD(Hquop(1)) via the
canonical isomorphisms (6.3.5, 8.1.1).

Let v € H, and consider M,_o(7y) € D(Hquos(1)). By the above fact, we can regard
MS:()(’}/) mod Iy € Hquo,@/[Hquo,G = H;/IQH;

Proposition 10.1.2. The composition

HY(Z[1/Np|, Hy(2)) % D(Hoon(1)) — Hy [IoH;

(the first arrow is Col® and the second arrow is the canonical projection) coincides with
the composition

H(Z[L/Np|. Hy(2) = 8 = Hy [1oHy
(the first arrow is the evaluation at oo and the second arrow is & -T).
Proof. This follows from Proposition 9.5.1 and Proposition 4.2.4. m
Theorem 10.1.3. Let v € H, . Then

MSZ()(’)/) = 5/ : TW(’}/) mod Ig m (H;/I@H;) ®Zp Qp.

Proof. The first composite map of 10.1.2 sends Zproo (v) € HY(Z[1/p], Hy(2)) @ A~
(y € Hy, u = p((1 + Np)? — (1 + Np)) € A as in Theorem 3.3.9) to M _o(y) mod Iy
by 4.3.8. On the other hand, the second composite map of 10.1.2 sends u - ngpoo () to
p&' - Yw(vy). Note that p is invertible in bg/Iy ®z, Q, by 5.2.8. Hence by Theorem 10.1.2,
we obtain Theorem 10.1.3. O

10.1.4. Recall that for v € H, , we have
Mso(y) =€ -ymod Iy in H, /IjH,

by Theorem 8.1.2 (2). By comparing this with Theorem 10.1.3, we obtain Theorem 7.2.3

(1).
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10.2 Proofs related to the conditions C(£) and C(h)

10.2.1. We prove Theorems 7.2.6 and 7.2.8 assuming C(§).
Assume C(§). Then the ring Ay /(£) ®z, Q, is a finite product of fields, and £’ is an
invertible element of it. Hence the action of £’ on any module over this ring is invertible.
Hence by Theorem 7.2.3 (1), we have (1) of Conjecture 7.1.2. The rest of Theorems
7.2.6 and 7.2.8 are deduced from it as is explained in section 7.1.

The following lemma is used in 10.2.3 below.
Lemma 10.2.2. I[fz € Ay /(§) ®z, Q, and if {'z =0, then x is nilpotent.

Proof. The ring Ay /(§) ®z, Q, is a finite product of rings of the form R/m™ where R is a
discrete valuation ring, m is the maximal ideal of R, and n > 1. The image of ¢’ in R/m"
generates the ideal m"~!/m™. Hence if 'z = 0, the image of z in R/m" is contained in
m/m". Hence x is nilpotent.

[]

10.2.3. We prove Theorem 7.2.8 assuming C(h). Assume C(h).
Let P = (H, /IgH,)/(tor). Then as in 7.2.10, P ®z, Q, = Ay /(§) ®z, Q, as a module

over Ag /(&) ®z, Qp.

We first prove that the composition f : P = Sy Lp (= T o w mod torsion) is
an isomorphism. It is sufficient to prove that 1 — f is nilpotent. By Theorem 7.2.3,
§-(1—f)=0. Hence 1 — f is nilpotent on P ®z, Q, by Lemma 10.2.2. This shows that
1 — f is nilpotent on P.

From this, by the arguments in 7.1.3, we see that P — Sy and Sy — P are isomor-
phisms. This proves Theorem 7.2.8 assuming C(h).

10.3 Proofs related to (1 —77(p)){0,00} and {p,1 — (np}
We prove Theorem 7.2.3 (2).
Lemma 10.3.1. @ sends (1 — T*(p)1){0,00} to ({p,1 — Cnpr })s-

Proof. The element (1 —T*(p)~"){0,00} of H = lim H{ (X1(Np"))* coincides with the
inverse system (T(p) ™" X_,cz/przy< 1a/P"s 00} )1 = (T*(p) ™" D oc@ypray<[Na + 1)1,
and hence it is sent by @ to the inverse system {}_.c/zx{l — (i1 — Cvpr})r =
({p;1 = Cnpr})r of S = lim_ H2*(Z[1/Np, (npr ), Zyp(2))F

[l

10.3.2. In the following 10.3.3-10.3.11, we prove that YT sends ({p,1 — (npr})r to (1 —
7 () 1){0,00}.

Let £ = Hpmpp/Ker (Hpp — Q) as in 9.6.1, so we have an exact sequence 0 — Q —
E—R —0. Let F = ﬁDM,e,E/fe,EHe,E- We have an exact sequence 0 — Hy/IlgHy —
F—R —0.

By using the isomorphism H'(Z[1/Np],R(2)) = R(1) ®z, H'(Z[1/Np],Z,(1)), we
have an element of H'(Z[1/Np|, R(2)), which we denote by p, defined as the product of
the class of {0,00} in R(1) and the Kummer class of p in H*(Z[1/Np], Z,(1)).
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Lemma 10.3.3. The connecting map H'(Z[1/Np|,R(2)) — H?*(Z[1/Np|, Q(2)) of the
ezact sequence 0 — Q(2) — £(2) — R(2) — 0 sends the element p to ({p,1 — Cnpr })r-

Proof. This is reduced to the fact (Theorem 9.6.3) that the connecting map H°(Z[1/Np], R(1)) —
HY(Z[1/Np], Q(1)) of the exact sequence 0 — Q(1) — £(1) — R(1) — 0 sends 1 to
(1 — Cnpr ) [

10.3.4. Let x € H?(Z[1/Npl, (Hg/IoHp)(2)) be the image of p € H'(Z[1/Np], R(2)) under
the connecting map of the exact sequence 0 — (Hy/lpHy)(2) — F(2) — R(2) — 0. By
Lemma 10.3.3, ({p, 1 —Cnpr })r € H*(Z[1/Np], Q(2)) is the image of x under the canonical
projection.

By Proposition 9.4.4, Y(({p,1 — (npr})r) is described as follows. For a prime divisor
¢ of Np, let z; be the image of z in H*(Qy, (Hp/IgHy)(2)). Let yo € H*(Qq, Ps(2)) be
the image of z, under the unique splitting (Hy/IgHy)(2) — P(2) of the inclusion map
P(2) — (Hy/IgHy)(2) which is compatible with the action of Gal(Q,/Qy) (6.3.4). Let
2 € Hy /IgH, be the image of y, under the canonical isomorphism H?(Q,, P(2)) X P =

H; /I;H . Then T(({p. 1 — Cuyr ) = Sy 20

Lemma 10.3.5. Let ¢ be a prime divisor of Np. Let s, : @ — Hy/IgHy be the unique split-
ting of the projection Ho/IgHy — Q which is compatible with the action of Gal(@g/(@g>.
Let Vi := F/s4(Q). (Note we have an exact sequence 0 — P — V; — R — 0.)

(1) V, = Hy/IgHy as a representation of Gal(Q,/Q,).

(2) For a prime divisor { of N, as a representation of Gal(Q,/Qy), V; is unramified.

Proof. (1) is clear.

We prove (2). Let I, be the inertia subgroup of Gal(Q,/Q,). Then the action on
I, on V; defines a homomorphism h : I, — Homz, (R,P), which sends o € I, to the
homomorphism  mod P — o(x) —z (¢ € V). Since the target is a pro-p group, h
factors through a quotient of I, which is canonically isomorphic to Z,(1). The resulting
homomorphism h : Z,(1) — Homz (R, P) is compatible with the actions of Gal(F/F,)
which acts trivially on Homz, (R,P). Hence h factors through the quotient Z,(1)/(1 —
0)Z,(1) of Z,(1). But 1 -/ is a p-adic unit by our assumption p fo(N). Hence h =0. O

10.3.6. Note that y, coincides with the image of p € H'(Q,, R(2)) under the connecting
map of the exact sequence 0 — P(2) — V;(2) - R(2) — 0.

Lemma 10.3.7. Let the notation be as in 10.5.4. Then y, = 0 for { # p.

Proof. Since p € H'(Qy, R(2)) belongs to the image H'(F,, R(2)) — HY(Q, R(2)),
and since Vj is unramified, y, belongs to the image of the composition H!(F,, R(2)) —
H?(Fy, P(2)) — H?*(Qg, P(2)), where the first arrow is the connecting map of the exact
sequence 0 — P(2) — V;(2) — R(2) — 0. But H*(F,, —) = 0. O

10.3.8. Let 2/ € HY(Z[1/Np], (Hy/IgHy)(1)) be the image of the class of {0,000} in
H°(Z[1/Np],R(1)) under the connecting map of the exact sequence 0 — (Hy/IgHy)(1) —
F(1) = R(1) — 0. Then x = {2', p} where {—, —} denotes the cup product. Let x;, be the
image of ' in H'(Q,, (Hg/IyHy)(1)) and let i, € H'(Z[1/Np].P(1)) be the image of ], un-
der the unique splitting (Hy/IgHp)(1) — P(1) of the inclusion map P (1) — (Hy/IgHp)(1)
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which is compatible with the action of Gal(Q,/Q,). Then we have x, = {},,p} and hence
Yp = {Yp: P}

Furthermore, y) coincides with the image of the class of {0,000} in H°(Q,, R(1)) under
the connecting map of the exact sequence 0 — P(1) — V,(1) — R(1) — 0.

Lemma 10.3.9. Let v € HY(Q,,Z,) = Hom .,n,,(Gal(Q,/Q,),Z,) be the unique unrami-
fied element such that v(Fr,) = 1. Then y,, is the product v - (1 —T*(p)){0,00} of v and

(1= T*(p){0,00} € H*(Q,, P(1)),

Proof. This follows from the fact that V), is a quotient of Hgyo (1) and hence F'r, acts on
V, as T*(p) by 1.8.1. O

Lemma 10.3.10. z, coincides with the class of (1 —T*(p)){0, c0}.

Proof. By 10.3.9, y, = {y;,p} € H*(Q,,P(2)) is the product {v,p} - (1 — T*(p)){0, 00}
of {v,p} € H*(Q,,Z,(1)) and (1 —T*(p)){0,00} € H*(Q,,P(1)). The canonical isomor-
phism H?(Q,,Z,(1)) = Z, sends {v,p} to 1. Hence we have the result. O

10.3.11. Now we prove that T sends ({p, 1 — (npr}), to the class of (1 — T7(p)){0, oo}
By 10.3.4, we have T(({p, 1 — Cnpr })r) = D gy 2¢- By Lemma 10.3.7, 2 = 0 if £ # p. By
Lemma 10.3.10, z, coincides with the class of (1 —7™(p)){0, co}.

10.3.12. We prove Theorem 7.2.6 and Theorem 7.2.8 assuming C(T™(p)).

Recall that the composition H, /IpH, — Sy — H, /IoH, sends the class § of (1 —
T*(p)){0, 00} to 3. Hence under the condition C(T™(p)), the composition H, /IyH, ®z,
Qy — Sy®2,Q, — H, [IyH, ®7,Q, is the identity map. This proves Conjecture 7.1.2 (2).
As is explained in section 7.1, this proves Theorems 7.2.6 and 7.2.8 assuming C(7™*(p)).

11 Some relation to Iwasawa theory of modular forms

We expect that interesting relations exist between conjectures of Sharifi and the Eisenstein
component of the Iwasawa theory of modular forms. Such direction is studied in Sharifi
[49] section 6. We continue his study here. See also a recent paper [52] of Sharifi for
results in this direction.

In this section, we assume N = 1.

11.1 Results related Iwasawa theory of modular forms

11.1.1. To the knowledge of the authors, in all known examples, the following (a) and
(b) are satisfied:

(a) As an by/Ip-module, H, /IgH, is generated by (1 —T™(p)){0, oo}

(b) rank o, (A /(€)) < 1. In this subsection, we relate these conditions to some Iwa-
sawa theoretic conditions.

The following Theorem 11.1.2 was proved by Sharifi [49] under a slightly stronger
assumption.
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Theorem 11.1.2. (Recall that we assume N = 1.) Let the condition (a) be as above. We
also consider the following conditions:

(a)” ({p, 1 — Gpr })r generates Xpoo \ as a Ay-module.
(a)” H*(Z[1/p], Hpy(2)s,5) = 0.
(1) We have implications (a) = (a)” = (a)’.

(2) Assume either the Eisenstein component ho g of by or the Eisenstein component
$9o.5 of He is Gorenstein. Then all the conditions (a), (a), (a)"” are equivalent.

The proof will be given in section 11.3.

11.1.3. Consider the Selmer groups of Greenberg type
Sel := Ker (HI(Z[l/p, Cpoc]v Hv) - HI(QP(CP‘X’)? Hsvub>>

Here ( )v = Hom cont( , Qp/Zyp), Z[1/p, (pee] = UnZ[1/p, Gpn] and Qp((pee) = UnQyp(Gpn)-

Consider the dual Selmer group
X := Hom (Sel, Q,/Z,)

which we regard as an b[[Z,]]-module on which the group element [a] (a € Z)) acts as
the element o, € Gal(Q((y~)/Q). By [22], X is a torsion h[[Z]]-module, that is,

x Opiiz]] Q(h[[Z;H) =0.

We have b[[Z)]] = [l;cz/1y2 D[[Z, ]} (), Where [a] for a € (Z/pZ)* C Z, is sent to
w'(a) in the i-th component. For any h[[Z;]]-module M, let M = D,;/(, 1)z M) be
the corresponding decomposition.

11.1.4. Let H = H(1)®z, 11y Zp[[Z)]], where —1 in {£1} acts on H(1) by the complex
conjugation and acts on Z,[[ZX]] by [—-1]. We have H, = H(1)*[[Z)]](), where & =
(~1).

We regard the p-adic L-function £ of Mazur and Kitagawa in two variables as an
element of H. Let

(£) = bllZ;]]£ C H.
The quotient H/(L) is a torsion h[[Z]]-module.

Theorem 11.1.5. (Recall that we assume N = 1.) Assume that (a) is satisfied. Then
we have an isomorphism of H[[Z)]]¢ g, w-1)-modules

%e,E,(ml) = (H/(ﬁ))e,ﬂ(w*l)'
The proof will be given in section 11.3.

Remark 11.1.6. By Theorem 8.2.2 (2), (H/(£))g,p,w-1) = 0 if and only if £’ is invertible
in Ag /(£). This shows that if the conditions (a) and (b) are satisfied (as in all known
examples), we have H*(Z[1/p], Hpap,e(2)) = 0 and Xy g -1y = 0.
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11.2 Relation with the main conjecture for modular forms

11.2.1. The Iwasawa main conjecture for modular forms is proved by Skinner-Urban [55]
under some mild assumption. See Ochiai [37] for an earlier work on the study of the
Iwasawa main conjecture for Hida family.

Since b is not necessarily a regular ring, it is not evident how to formulate the Iwasawa
main conjecture for the Galois representation H over . We introduce an Iwasawa main
conjecture 11.2.9 for a component b,, of h which is Gorenstein, which is implied by the
Iwasawa main conjecture in [13]. Theorem 11.1.5 is closely related to Conjecture 11.2.9
(see Corollary 11.3.10).

11.2.2. Let R be a local ring and let M be an R-module such that M ®z Q(R) = 0, and
assume that M has a finite resolution by free R-modules of finite rank. Then we have the
class

[M] € Q(R)"/R"

defined as follows. Take a resolution
0O—-L,— L, 14— -+—Ly— M—0,
where L; are free R-modules of finite rank. We have an exact sequence
0— L, ®r Q(R) = Lyp1 ®r Q(R) — -+ — Ly ®r Q(R) — 0.

Let K; be the kernel of L; g Q(R) — L;_1 ®g Q(R), and take a splitting L; @z Q(R) =
K; ® K;_; of the exact sequence 0 — K; — L; g Q(R) — K; — 0. These splittings give

isomorphisms
@ L ®r Q(R) = @Ki = @ L; ®r Q(R).

1:0dd i
Take an R-basis (e;); of @;.0aaL; and an R-basis (f;); of @i.evenLi, and let A € GL,(Q(R))
(n =7, oqqtank L; = > . rank ;) be the matrix which expresses the images of e; in
GievenLi ®r Q(R) by (fj). Then [M] is defined to be det(4) € Q(R)*/R*. This is
independent of the choices of the resolutions and the splittings. If we have an exact
sequence 0 — M’ — M — M" — 0 of such R-modules, then [M]| = [M'|][M"]. For
example, [R/aR] = a mod R* for a non-zero-divisor a € R.

i:even

11.2.3. Define the Selmer complex ([35]) Sc to be the mapping cone of C(Z[1/p, (], H') —

C(Qp(Gpe), (Haun) '), where C(Z[1/p, (o], H') (vesp. C(Qp(Gpee), (Hsup) ")) denotes the
standard complex to compute the continuous cohomology of the profinite group 7 (Spec(Z[1/p, (p])

(resp. Gal(Q,/Q,((y~))) with coefficients in H~ (resp. (Hyp) ). We have a long exact
sequence

\%

o HVSE) = HYZILp, G, HY) = (@G (Ha)”) — HI(S0) = ...
By Poitou-Tate duality (9.4.1), we have a long exact sequence

-+ — Hom (H*'(Sc), Qp/Z,) — lim H'(Z[1/p, Ge], H(1)) — lim H'(Qp(Gpr), Hauo(1))

n n

— Hom (H'*(Sc),Q,/Z,) — .. ..
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Lemma 11.2.4. The canonical map lim H'(Z[1/p, ], H(1)) — lim H'(Qy(Cpn ), Hauo(1))
18 1njective.

Proof. This follows from 3.1.3 and 3.1.4. [
11.2.5. Fix a prime ideal p of h[[Z)]].

Lemma 11.2.6. (1) H(Sc) =0 if i # 0, —1.
(2) If Hom (H(Z[1/p, (<], H ), Q,/Zy), = 0, then H~(Sc), = 0.
(3) If Hom (HO(@p((pw)a (Hsub)v>a Qp/Zp)p = 0, then Hom (HO(SC)7 Qp/Zyp)y = X,.

Proof. (1) follows from the second long exact sequence in 11.2.3 and from Lemma 11.2.4.
(2) and (3) follow from the first long exact sequence in 11.2.3. O

11.2.7. It can be shown that the assumption of (2) and the assumption of (3) in Lemma
11.2.6 are satisfied if the prime ideal p is of height one.

Lemma 11.2.8. Assume that there is a mazimal ideal m of b such that hNp C m and
such that by is Gorenstein, and assume that the assumptions of (2) and (3) in Lemma
11.2.6 are satisfied. Then the [[Z)]],-module X, is of finite projective dimension.

Proof. By the Gorenstein property, Hy, is free of rank 2 over b,. From this ([13] Proposi-
tion 1.6.5), we have that RHom (Sc, Q,/Z,),, is a perfect complex (that is, it is represented
by a bounded complex of finitely generated free modules) over h[[Z]],. By Lemma 11.2.6,
RHom (Sc, Q,/Z,), = X, in the derived category. O

Conjecture 11.2.9. Assume that the assumptions in Lemma 11.2.8 are satisfied. Then
we have

%] = [(H/(£))y]
in QOI[Z,1]) /(b2 1)

Remark 11.2.10. By the assumption of Gorenstein property, H, is free of rank 1 over

bl[Z;]]p- If h denotes an isomorphism H, = bl[Z;]]p of b[[Z)]]y-modules, then [(H/(L)),]
is nothing but the class of h(L) € Q(h[[Z,]])* modulo (h[[Z]],)*.

11.2.11. We expect that Conjecture 11.2.9 can be proved by using the theory of Skinner-
Urban in [55]. For the Eisenstein component of this conjecture, one problem may be that
in [55], the residue Galois representation is assumed to be irreducible, but this is not
satisfied for the Eisenstein component.

11.2.12. We explain that the conjecture 11.2.9 is a consequence of the Iwasawa main
conjecture in [13].

Assume that there is a maximal ideal m of h such that h Np C m and such that b,
is Gorenstein. Let 4= be a basis of the of the free h-module HE of rank 1, and let v =
7" +77. Let w be a basis of the free hy-module Sy of rank 1. Then M(7y)/w € hu[[Z)]]
is the p-adic L-function associated to the pair (Hgup,m, Hm) of the representation Hyybm
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of Gal(Q,/Q,) and the representation Hy, of Gal(Q/Q) over by, (defined with respect to
(v*,w)). The Iwasawa main conjecture in section 4 of [13] is that

(1) [RHom (Sc¢,Qp/Zp)w] = [(SAllZ; 1]/ (M(7))m] i Q(bm)™ /b
Here [RHom (Sc, Q,/Z,)w] is the class of the perfect complex RHom (Sc, Q,/Z,)w whose
cohomology groups are torsion modules over hy[[Zx]], and (M(7)) := [[ZS]]M(y) C
SallZy]]. By 4.4.3 and 1.6.6 (3), ((—,7))a induces an isomorphism H = S, such that the
induced isomorphism HI[[Z I Al[Z)]] sends L to M(7).

If the assumptions of (2) and (3) in Lemma 11.2.6 are satisfied, then [RHom (Sc, Q,/Z,),| =
[X,]. Hence the above conjecture (1) implies 11.2.9.

11.3 Proofs of Theorem 11.1.2 and Theorem 11.1.5

11.3.1. We prove (1) of Theorem 11.1.2.
If (a) is satisfied, then by Theorem 7.2.3 (2) and by Theorem 7.2.8 (1), (a)’ is satisfied.
The exact sequence 0 — Q(2) — £(2) — P(2) — 0 induces an exact sequence

HY(Z[1/p), R(2)) — H*(Z[1/p], Q(2)) — H*(Z[1/p], £(2)) — H*(Z[1/p], R(2)) — 0.
We have H?(Z[1/p], R(2)) = 0 by 6.3.7, and we have an isomorphism H?(Z[1/p], Q(2)) =

Sp (9.1.1 (2)). By 10.3.3, the connecting map 0 : hy/Iy = H(Z[1/p], R(2)) — H*(Z[1/p], Q(2)) =
Sy is the hy-homomorphism

bo/lo — So ;3 1= ({p, 1= Gpr})r
Hence H?*(Z[1/p],£(2)) = 0 if and only if the condition (a)’ is satisfied. If the condition
(a)” is satisfied, then H?*(Z[1/p],£(2)) = 0 and hence (a)’ is satisfied.

Assume (a) is satisfied. Then by Nakayama’s lemma, the Eisenstein component of
H, is generated by (1 — 7%(p)){0,00} as an hy-module. Hence HDM,Q/IgﬁDMﬁ ~ £,
and hence H?(Z[1/p], £(2)) = H*(Z[1/p], Hpre(2))/IoeH*(Z[1/p], Hpare(2)). Since (a) is
satisfied, (a)’ is also satisfied as we have seen above, and hence H*(Z[1/p],£(2)) = 0. By
Nakayama’s lemma, we have H(Z[1/p], Hpro.2(2)) = 0.

11.3.2. We prove (2) of Theorem 11.1.2. It is sufficient to prove (a)’ = (a).
Assume first by g is Gorenstein. Then H, /IpH, is generated by one element as an hy-

module (7.2.12). Since the composition X, , X o /IoH™ = X, sends the generator
({p,1 — (pr}), to itself by Theorem 7.2.3 (2), we have that H, /IgH, = A @ B where
A = Image(Y) and B = Ker (w). Since H, /IgH, is generated by one element, we have
B = 0 and hence Y is surjective. Hence by Theorem 7.2.3 (2), the condition (a) is satisfied.

Assume next 9y p is Gorenstein. Then by Ohta [42], the map T : X, — Hy /IpH,
is an isomorphism. Hence by Theorem 7.2.3 (2), we see that the condition (a) is satisfied.

We give some preliminary lemmas for the proof of Theorem 11.1.5.
Lemma 11.3.3. Leti € Z/(p — 1)Z.
(1) Hom (H®(Qp({pe ), Hsvub>,Qp/Zp)97E,(wi) is zero if 0 # w™".

(2) Hom (H°(Z[1/p, Cpoo])7Hv)7@p/Zp)97E’(wi) is zero if 0 #w™" and if T @ Xpeo ,, —
H, /IoH, is surjective.
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Proof. (1) follows from 1.7.14 (4).

We prove (2). Let G = Gal(Q/Q({y~)). Consider the exact sequence 0 — P —
Hy/IyHy — Q — 0. By Proposition 6.3.2, we have (Q¢) ) = 0if § # w™". Here (—)¢
denotes the G-coinvariant. By the surjectivity of T, the image of P in (Hy/IgHy)c is zero.
Hence ((Hp/IpHp)c)(wi) = 0 if § # w™". By Nakayama’s lemma, this proves (Hg) (i) = 0
it 4w 0

Lemma 11.3.4. H'(Z[1/p], Hy(2)) has no A-torsion.

Proof. This follows from Proposition 3.3.6 by Assumption 4 (section 6.1). O
Let 5 be the element (1 —7%(p)){0,00} of H, .
Lemma 11.3.5. In H'(Z[1/p], Hs(2)) @4, Q(Ag), zgoo(ﬁ) belongs to H(Z[1/p|, Hy(2)).

Proof. Recall that

Ge(@ = 3 T0) " {goaspr G0 Dr
a€(zZ/p"Z)*
For integers ¢, d such that (¢,6Np) = (d,6Np) = 1, we have

Z {cgo,a/prydg(),l/lf} = (CQ - 1)(d2 - <d>) Z {go,zz/pﬁgo,l/pr}-

a€(Z/p"Z)* a€(Z/p"Z)*

Since p > 3, ¢*> — 1 is a p-adic unit for some c. Since § # w? by Assumption 4 (section
6.1), d> — 0(d) is a p-adic unit for some d. This proves Lemma 11.3.5. O

Lemma 11.3.6. The image of z1 = p({0,00}) € lim  HY(Z[1/p, (0], Hp(2)) in H'(Z[1/p], Ho(2))

coincides with zf,oo (B).

Proof. By Proposition 2.2.2, the image of 21y poo () in H'(Z[1/p], Hp(2)) coincides with
(1-T* (p))zgoo (B). This shows that the image of 21 ye 100 ({0, 00}) and zf,oo(ﬁ) become the

same after we apply 1 —7*(p). By Lemma 11.3.4, they coincide already before we apply
1 —T*(p). O

Let F, be the unique subextension of Q in Q((,») of degree p*, let F\, = U, [F},, and
let I' = Gal(F,/Q). So I' = Z,.

Lemma 11.3.7. Assume (a) in 11.1.1.
(1) We have H'(Z[1/p], Hp,r(2)) = Hl(Z[l/p]vﬁDM,e,E(Q))-
(2) As an h-module, H (Z[1/p], Ho £(2)) is generated by zgoo (B).

(3) 21,p p= ({0,00}) generates lim HY(Op, /5 Hpaop(2)) as an b[[T]]-module.
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Proof. By the assumption (a), the h-module F[BM,G, £(2) is free of rank 1 and generated
by {0,00}. Hence we have a spectral sequence
Ey = Tor™,(H’(Z[1/p], Hpao(2)), be/Is) = H(Z[1/pl, (Hpare/IoHpare)(2))-
We have 3 )
Hpwao/loHpag = €.
In the exact sequence
0 — HY(Z[1/p], Q(2)) — H'(Z[1/p],£(2)) — H'(Z[1/p], R(2)) — H*(Z[1/p], Q(2)),
the map H'(Z[1/p], R(2)) — H*(Z[1/p], Q(2)) is bijective because it is
Ag /(5) - Xp_°° ; 1= ({p, 1- Cpr})r'

Hence N

HY(Z[1/p), Q(2)) — H'(Z[1/p],£(2)).
Since the image of zf)oo(ﬁ) e HYZ[1/p],Q(2)) = Spis ({p,1 — {yr})r, this shows that
the image of zﬁoo (B) generates H'(Z[1/p], £(2)). By Nakayama’s lemma, Lemma 11.3.7 is

proved.
(3) follows from (1) and (2) by Nakayama’s lemma and by Lemma 11.3.6. O

Lemma 11.3.8. We have an isomorphism

Col : lim HY(Q,Fy, Hpar(2)) — M pa[[I].
Proof. (1) By 4.2.7, it is sufficient to prove f[gg’;& = 0. We have ffquo,DM C Hquo @
Q(A) and (Hyuo ®a Q(A))F»=1 =0 by 3.3.3.
]

11.3.9. We prove Theorem 11.1.5. Define a variant X’ of X and a variant Sc’ of Sc by
using Hpy instead of H in the definitions. We obtain long exact sequences as in 11.2.3
for Sc’ replacing H in 11.2.3 by Hpu.

By Lemma 11.3.3 (1) and by the Sc¢’-version of the long exact sequences in 11.2.3, we
have an exact sequence

lln Hl (OFn [1/29], gDM,67E(2)) - lln Hl (Qme f{quo,DM,G,E<2)) - %:Q’E7(w—1)(1)

n

— lim H*(Og, [1/p], Hparep(2)).

By Theorem 11.1.2 and by Nakayama’s lemma, we have lim H?(Op,[1/p], Hparop(2)) =
0. Hence by (3) of Lemma 11.3.7, this exact sequence shows that

liLn Hl (QpFna ﬁquo,DM,97E(2))/(Z) = xCG,Ea(wfl)(l)’

where (2) denotes the h[[T']]-submodule of lim H*(Q, [, Hquoo.6(2)) generated by 21 e o ({0, 00}).
By simple comparison, we have %'(w,l) = X (use H(Op,[1/p],Q,/Zy,) = 0 for
i=1,2.) By (2) of Lemma 11.3.8,
lim H'(QyFr, Hawo,8(2))/ (2) 2 My o,6[[I]]/(M({0, 00})) 2 (H/(£))o,5.(-1)-

n
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Corollary 11.3.10. Assume that the condition (a) in section 11.1 is satisfied. Then for
any prime ideal p of H[[Z)]] which is the inverse image of a prime ideal of Y[[Z]]s, 5,1,
the assumptions of Lemma 11.2.8 are satisfied and Conjecture 11.2.9 is true.

Proof. The condition (a) tells that 9y r and hg p are Gorenstein. Hence by 7.1.4, T :

X

poo

x — Hy/IpHy is surjective. By this and by Lemma 11.3.3, the assumptions of Lemma

11.2.8 is satisfied. Hence Theorem 11.1.5 tells that Conjecture 11.2.9 is true in this case.

]
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List of notation

Numbers

p a prime number > 5, 0.26

Cn, 0.26

N an integer > 1 which is prime to p, 1.5.1, 6.1.1

Special field
K =U,Q({nypr), 6.1.2

Important homomorphisms
T, 6.4.3
w, Theorem 5.2.3

Iwasawa modules
Xnpee, 6.4.1
S,52.6

Operators

Hecke operator T'(n), dual Hecke operator 7%(n), 1.2.3, 1.2.4
diamond operators, (a) 1.2.9, (o) 1.2.9 (2)

wyr (Atkin-Lehner operator), 1.4.2 |, 1.4.4, 1.5.9

¢ (Frobenius operator), 1.7.5

‘H upper half plane, 1.1.5

Modular curves

X(m, M), Y(m,M), X1(M), Y1(M), 1.1
X{(M), 14

Yy (a morphism), 1.2.3

Cohomology of modular curves

HZ(C) for a scheme C over Q, 1.2.8

H, H,1.5.1

Hpy, 6.2.1

H,, 18

Haw, Hovo, Hono, 1.7.2

(—)°rd, 1.2.10

(—)e (Eisenstein component), 1.9.2, 6.2.3

P, O, R, 6.3.1

{o, B} (a, B € PY(Q)), 2.3.3
[u: 0], 2.4.1

Spaces of modular forms
So(M), My(M), 1.1.7,  Sp(M), My(M), 1.5.6
Sh, My, 1.5.11

Pairings
( ) )a ( ) )Aa (( 5 ))A, section 1.6

p-adic L-functions in two variables
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M, 43, M, 43 (M=M), L 44
Moo 4.3.7, Ly, 8.2.1

Characters
w, 1.8.2,
K, 1.2.9, (2)
X, 6.1.4
0,6.1.4

Rings

Hecke algebras

H(M)z, H(M)z, 1.2.6

b = lim h(Npr)d, 1.5.1

The version of § for the Hecke algebra of modular forms is §, 1.5.1
A =7,([Z; x (Z/NZ)*]] = lim | Zp|(Z/Np"Z)*], 3.1.1

Q(R), 1.5.3

Ay, Oy for a character ¢ of (Z/NpZ)*, 6.1.3

I Eisenstein ideal, 1.9.1

Elements in Galois groups
Frobenius automorphism Fr,, Fr,, 1.7.4, 1.2.9 (1)
Oa, 2.4.3

Other important notation
®, 1.7.3
D(T), 1.7.4
T. Fukaya, K. Kato:
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