Reciprocity maps with restricted ramification

Romyar Sharifi

UCLA

January 6, 2016
Let be an p odd prime and f a newform of level N.
Suppose that f is ordinary at p, i.e., its pth Fourier coefficient is a unit at p.
Let \mathcal{O} be a finite \mathbb{Z}_p-algebra containing the coefficients and T_p-eigenvalues of f.

Notation (Galois representation attached to f)

1. V twist of the Galois representation attached to f by its inverse determinant
2. T a Galois stable \mathcal{O}-lattice in V
3. T_{quo} image of T in the 1-dimensional unramified quotient of V

Definition (Selmer group of f)

$\text{Sel}(\mathbb{Q}_\infty, T \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)$ is the subgroup of classes in $H^1(\mathbb{Q}_\infty, T \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)$ that are trivial in $H^1(\mathbb{Q}_\infty, p, T_{\text{quo}} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)$ and unramified at all other places, for \mathbb{Q}_∞ the cyclotomic \mathbb{Z}_p-extension of \mathbb{Q}.
The main conjecture for modular forms

Notation \((p\text{-adic } L\text{-function of } f)\)

\(L_f \in \mathcal{O}[X]\) is the “usual” power series interpolating special values of \(L\)-functions of twists of \(f\)

Conjecture (Iwasawa Main Conjecture for Modular Forms)

The characteristic ideal of the Pontryagin dual \(\text{Sel}(\mathbb{Q}_\infty, T_f \otimes_{\mathbb{Z}_p} \mathbb{Q}_p / \mathbb{Z}_p)\) of the Selmer group in \(\mathcal{O}[X] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p\) is generated by \(L_f\), and the same is true in \(\mathcal{O}[T]\) if \(V\) is residually irreducible.

Under various hypotheses including good reduction \((p \nmid N)\), trivial Nebentypus, weight congruent to 2 modulo \(p - 1\), and residual irreducibility, the conjecture has been proven by Skinner and Urban, after work of Kato proving one divisibility.
Suppose that $p \geq 5$ and $p \nmid N\varphi(N)$.

Notation

$\Lambda = \mathbb{Z}_p[\mathbb{Z}_{p,N}^\times / \langle -1 \rangle]$, where $\mathbb{Z}_{p,N} = \varprojlim_r \mathbb{Z}/Np^r \mathbb{Z}$

Notation

1. \mathfrak{h} denotes Hida’s ordinary cuspidal \mathbb{Z}_p-Hecke algebra of tame level N, which is a finite projective module over Λ via diamond operators
2. S denotes the \mathfrak{h}-module of Λ-adic cusp forms

$S \cong \text{Hom}_\Lambda(\mathfrak{h}, \Lambda)$, and \mathfrak{h} is Gorenstein if and only if $S \cong \mathfrak{h}$.
The lattice from cohomology

Notation
Let \mathcal{T} denote the ordinary part of the inverse limit of the $H^1_{et}(X_1(Np^r)_{/\overline{Q}}, \mathbb{Z}_p(1))$ under trace maps. This is an \mathfrak{h}-module via the adjoint action of Hecke operators.

Any ordinary newform f gives rise to a maximal ideal m of \mathfrak{h}, which depends only on f modulo a prime over p, and \mathcal{T}_m has T_f as a quotient.

Fact (Ordinariness of \mathcal{T})
As $\mathfrak{h}[G_{Q_p}]$-modules, we have an exact sequence

$$0 \to \mathcal{T}_{\text{sub}} \to \mathcal{T} \to \mathcal{T}_{\text{quo}} \to 0,$$

where $\mathcal{T}_{\text{sub}} \cong \mathfrak{h}$ and $\mathcal{T}_{\text{quo}} \cong S$ as \mathfrak{h}-modules, and \mathcal{T}_{quo} is unramified.
Ohta’s pairing

Theorem (Ohta)

There is a perfect pairing

\[T \times T \to S(1) \]

of \(\mathfrak{h} \)-modules that is equivariant for the \(G_\mathbb{Q} \)-action on \(S \) for which a Galois element \(\sigma \) acts by the diamond operator \(\langle \bar{\sigma} \rangle \), where \(\bar{\sigma} \) is the image of \(\sigma \) in \(\mathbb{Z}^\times_{p,N} \).

Ohta’s pairing and Poitou-Tate duality allow one to relate the Selmer group of \(T \otimes_{\mathfrak{h}} S^\vee \) to the Selmer group of \(T^\vee \). We will focus on the latter.

Notation

Let \(K = \mathbb{Q}(\mu_{Np^\infty}) \), and note that \(\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}^\times_{p,N} \).

Definition (Selmer group)

The Selmer group \(\text{Sel}(K, T^\vee) \) is the subgroup of classes in \(H^1(K, T^\vee) \) that are trivial in \(H^1(K_v, T^\vee_{\text{sub}}) \) for all \(v \mid p \) and unramified at all other places.
Characters

Notation

Let R be the \mathbb{Z}_p-algebra generated by the values of characters of $(\mathbb{Z}/Np\mathbb{Z})^\times$. We require two characters $(\mathbb{Z}/Np\mathbb{Z})^\times \to R^\times$:

1. for diamond operators: θ primitive, even, and such that $\chi = \theta \omega^{-1}$ satisfies $\chi|_{(\mathbb{Z}/p\mathbb{Z})^\times} \neq 1$ or $\chi|_{(\mathbb{Z}/N\mathbb{Z})^\times} (p) \neq 1$, where ω is projection to $\mu_{p-1}(R)$
2. for Galois elements: ϵ. Define \pm by $\epsilon(-1) = \pm 1$.

Notation

1. $\mathfrak{h}_\theta = \mathfrak{h} \otimes_{\mathbb{Z}_p[\mathbb{Z}/Np\mathbb{Z}^\times]} R$ with the map to R induced by θ and the map to \mathfrak{h} be given by inverse diamond operators
2. $\Lambda_\epsilon = R[X]$ viewed as a quotient of $\Lambda \otimes_{\mathbb{Z}_p} R$ via ϵ, where $X = [1 + p] - 1$

We also use superscripts to denote $(\mathbb{Z}/Np\mathbb{Z})^\times$-eigenspaces of modules over \mathfrak{h} and Λ.
Conjecture (Two-variable main conjecture)

The class of the dual Selmer group \((\text{Sel}(K, T^\vee_\theta)^\vee_\epsilon)\) in the Grothendieck group of the quotient of the category of finitely generated (torsion) \(\Lambda\hat{\otimes}_R \mathfrak{h}\)-modules by the category of pseudo-null (i.e., codimension 2) modules is equal to that of

\[
\frac{\Lambda_\epsilon \hat{\otimes}_R T^{\mp}_\theta}{(\Lambda_\epsilon \hat{\otimes}_R \mathfrak{h}_\theta) L_{\theta, \epsilon}},
\]

where \(T^{\mp}_\theta\) denotes the \((\mp1)\)-eigenspace under complex conjugation and \(L_{\theta, \epsilon}\) is a modified Mazur-Kitagawa two-variable \(p\)-adic \(L\)-function.

If \(\mathfrak{h}_\theta\) is Gorenstein or \(\epsilon\) is even, then \(T^{\mp}_\theta\) is free of rank 1 over \(\mathfrak{h}_\theta\), so we may view \(L_{\theta, \epsilon}\) as an element of \(\mathfrak{h}_\theta[\![X]\!]\) up to unit. The above conjecture says that \(L_{\theta, \epsilon}\) is a characteristic element for \((\text{Sel}(K, T^\vee_\theta)^\vee_\epsilon)\).
We can (and do) replace \mathfrak{h}, S, and \mathcal{T} with their localizations at a maximal ideal \mathfrak{m} of \mathfrak{h} arising from a newform f of tame level N. As direct summands of the original objects, the main conjecture respects this.

1. Under hypotheses that include $\epsilon = \theta = 1$ and f is residually irreducible, then the main conjecture should follow from the work of Kato and Skinner-Urban after a duality argument.

2. Our interest is in the setting in which f is congruent to an Eisenstein series, in which case $\mathcal{T}/\mathfrak{m}\mathcal{T}$ is reducible. We are particularly interested in the residual representation itself. For even ϵ, this has been studied by Greenberg-Vatsal in the one-variable setting.
Definition (Eisenstein ideal)

Let I be the Eisenstein ideal of \mathfrak{h} is generated by $T_\ell - 1 - \ell \langle \ell \rangle$ (resp., $U_\ell - 1$) for primes $\ell \nmid Np$ (resp., $\ell \mid Np$).

Suppose $I\mathfrak{h}_\theta \neq \mathfrak{h}_\theta$, and let m be the maximal ideal of \mathfrak{h}_θ containing I.

Notation

Set $T = \mathcal{T}_\theta / I\mathcal{T}_\theta$, $P = \mathcal{T}_\theta^+ / I\mathcal{T}_\theta^+$, and $Q = \mathcal{T}_\theta^- / I\mathcal{T}_\theta^-$.

Facts

1. There is an exact sequence of global Galois modules

$$0 \to P \to T \to Q \to 0$$

that is canonically locally split at places over Np. In particular, the maps $\mathcal{T}_{\text{sub}} / I\mathcal{T}_{\text{sub}} \to Q$ and $P \to \mathcal{T}_{\text{quo}} / I\mathcal{T}_{\text{quo}}$ are isomorphisms.

2. Q is canonically isomorphic to \mathfrak{h}/I as an \mathfrak{h}-module.
Question

What can we say about $\mathcal{G} = \text{Sel}(K, T^\vee)^\vee$?

Terminology

Let S denote the set of primes over p in K.

1. \textit{S-ramified}: unramified outside of the primes in S
2. \textit{S-split}: unramified and completely split at all primes in S
3. By an Iwasawa module over K with a given property, we mean the Galois group of the maximal abelian, pro-p extension of K with that property.

Notation

1. $G_{K,S}$ Galois group of the maximal S-ramified extension of K
2. \mathcal{U} norm compatible seq. in p-completions of p-units of number fields in K
3. \mathcal{X} S-ramified Iwasawa module over K
4. Y S-split Iwasawa module over K
Iwasawa cohomology

Definition (Iwasawa cohomology)

For a compact S-ramified Galois module M, $H^i_{Iw}(K, M)$ is the inverse limit of ith S-ramified continuous cohomology groups of M under corestriction.

Terminology (Compactly-supported cohomology)

Compactly supported Iwasawa cohomology groups of M fit in an exact sequence

$$
\cdots \rightarrow H^i_{c,Iw}(K, M) \rightarrow H^i_{Iw}(K, M) \rightarrow H^i_{p,Iw}(K, M) \rightarrow \cdots,
$$

for $H^i_{p,Iw}(K, M)$ the direct sum of local Iwasawa cohomology groups at primes over p. By Poitou-Tate duality, they satisfy

$$
H^i_{c,Iw}(K, M) \cong H^{2-i}(G_{K,S}, M^\vee(1))^\vee.
$$

Examples

1. $H^1_{Iw}(K, \mathbb{Z}_p(1)) \cong \mathcal{U}$, and there is an exact sequence

$$
0 \rightarrow Y \rightarrow H^2_{Iw}(K, \mathbb{Z}_p(1)) \rightarrow \bigoplus_{v \in S} \mathbb{Z}_p \rightarrow \mathbb{Z}_p \rightarrow 0
$$

2. $H^2_{c,Iw}(K, \mathbb{Z}_p(1)) \cong \mathcal{X}$ and $H^3_{c,Iw}(K, \mathbb{Z}_p(1)) \cong \mathbb{Z}_p$
Using the local splittings $P \to T$ and restriction, we may define a cone with cohomology groups $H^i_{f,Iw}(K, T(1))$ fitting in long exact sequences

\[\cdots \to H^i_{f,Iw}(K, T(1)) \to H^i_{Iw}(K, T(1)) \to H^i_{p,Iw}(K, P(1)) \to \cdots \]
\[\cdots \to H^i_{f,Iw}(K, T(1)) \to H^i_{Iw}(K, Q(1)) \to H^{i+1}_{c,Iw}(K, P(1)) \to \cdots . \]

The second sequence reduces to

\[
0 \to H^1_{f,Iw}(K, T(1)) \to \mathcal{U} \otimes_{\mathbb{Z}_p} Q \xrightarrow{\kappa} \mathcal{X} \otimes_{\mathbb{Z}_p} P \to H^2_{f,Iw}(K, T(1))
\]
\[
\to H^2_{Iw}(K, \mathbb{Z}_p(1)) \otimes_{\mathbb{Z}_p} Q \to P \to H^3_{f,Iw}(K, T(1)) \to 0.
\]

Lemma (Comparison with Selmer)

There is a canonical exact sequence

\[
0 \to \text{coker } \kappa \to \mathcal{S} \to Y \otimes_{\mathbb{Z}_p} Q \to P.
\]

Question

What is the cokernel of $\kappa : \mathcal{U} \otimes_{\mathbb{Z}_p} Q \to \mathcal{X} \otimes_{\mathbb{Z}_p} P$ on ϵ-eigenspaces?
The case of even parity

Fact

P has trivial G_Q-action, but $Q = Q_{\chi^{-1}}$. It follows that

$$(U \otimes_{\mathbb{Z}_p} Q)_\epsilon \cong U_{\chi \epsilon} \otimes_R Q \quad \text{and} \quad (X \otimes_{\mathbb{Z}_p} P)_\epsilon \cong X_{\epsilon} \otimes_R P.$$

If ϵ is even, then $U_{\chi \epsilon}$ is trivial unless $\chi \epsilon = \omega$, in which case it is $R(1)$.

This implies the following 2-variable analogue of a result of Greenberg-Vatsal.

Corollary

If ϵ is even with $\epsilon \neq 1$ and $\chi \epsilon \neq \omega$, then there is a canonical exact sequence

$$0 \to X_{\epsilon} \otimes_R P \to \mathcal{G}_\epsilon \to Y_{\chi \epsilon} \otimes_R Q \to 0.$$

The $R[[X]]$-characteristic ideals of X_{ϵ} and $Y_{\chi \epsilon}$ are generated by Kubota-Leopoldt p-adic L-functions by the classical Iwasawa main conjecture.
The case of odd parity

Suppose from now on that \(\epsilon \) is odd.

Conjecture (Greenberg)

\(Y^+ \) is finite, i.e., \(Y_\rho \) is finite for every even character \(\rho \).

Facts

1. If \(Y_{\chi\epsilon} \) is finite, then \(U_{\chi\epsilon} \) is generated by sequences of cyclotomic \(p \)-units.
2. There is a canonical homomorphism

 \[
 \Phi_\epsilon : \mathcal{X}_\epsilon \rightarrow \Lambda_\epsilon
 \]

 determined by the action of \(\mathcal{X} \) on cyclotomic \(p \)-units with the property that if \(Y_{\omega\epsilon-1} \) is finite, then \(\Phi_\epsilon \) is injective with finite cokernel \((Y_{\omega\epsilon-1})^\vee(1) \).

The cocycle \(G_Q \rightarrow \text{Hom}_\Gamma(Q, P) \) attached to the exact sequence gives rise to a homomorphism \(\Upsilon_\theta : Y_\chi \rightarrow P \) (conjecturally an isomorphism) by composition with evaluation at the canonical generator of \(Q \).
The S-reciprocity map

Definition (S-reciprocity map)

Let \mathcal{X} be the quotient of $\mathbb{Z}_p[\mathcal{X}]$ by the square of its augmentation ideal. The S-reciprocity map

$$\Psi : \mathcal{U} \rightarrow H^2_{Iw}(K, \mathbb{Z}_p(1)) \otimes_{\mathbb{Z}_p} \mathcal{X}.$$

is the first connecting map in the Iwasawa cohomology of the Tate twist of

$$0 \rightarrow \mathcal{X} \xrightarrow{\sigma \mapsto \sigma^{-1}} \mathcal{X} \xrightarrow{\tau \mapsto 1} \mathbb{Z}_p \rightarrow 0.$$

The analogous exact sequence for Y in place of \mathcal{X} is locally split at p. In place of usual cohomology, we again use that of a Selmer complex from Iwasawa cohomology to compactly-supported Iwasawa cohomology with connecting maps

$$\Theta : \mathcal{U} \rightarrow \mathcal{X} \otimes_{\mathbb{Z}_p} Y \quad \text{and} \quad q : H^2_{Iw}(K, \mathbb{Z}_p(1)) \rightarrow Y.$$

Theorem (S.)

The map q splits the canonical injection, and $(q \otimes 1) \circ \Psi$ and $-\Theta$ are equal after switching the order of the tensor product.
Variant of a conjecture regarding cup products

Notation

1. $\Psi_{\epsilon,\chi} : U_{\chi \epsilon} \to \mathcal{X}_\epsilon \otimes Y_\chi$ is the map induced by Ψ via commutativity of the tensor product

2. $u_{\chi \epsilon} \in U_{\chi \epsilon}$ is the image of the norm compatible system $1 - \zeta_{fpr}$ of elements $\mathbb{Q}(\mu_{Np^r})$, where f is the tame conductor of $\chi \epsilon$.

Conjecture (S.)

For odd ϵ, the $\Lambda_{\epsilon} \otimes_R (\mathfrak{h}/I)_\theta$ submodules of $\Lambda_{\epsilon} \otimes_R P$ generated by the image $\bar{L}_{\epsilon,\theta}$ of $L_{\epsilon,\theta}$ and $(\Phi_\epsilon \otimes \Upsilon_\theta)(\Psi_{\epsilon,\chi}(u_{\chi \epsilon}))$ are equal.

In fact, we expect that $(\Phi_\epsilon \otimes \Upsilon_\theta)(\Psi_{\epsilon,\chi}(u_{\chi \epsilon})) = \bar{L}_{\epsilon,\theta}$.

Theorem (Wake-Wang Erickson, Fukaya-Kato)

The conjecture holds if Y_θ and $Y_{\omega^2 \theta - 1}$ are finite and P is p-torsion free.

These hypotheses are actually stronger than needed.
The proof of the following lemma uses the earlier theorem relating Θ and Ψ.

Lemma

The first connecting homomorphism

\[
\kappa_\epsilon : U_{\chi\epsilon} \otimes_R Q \rightarrow \mathcal{X}_\epsilon \otimes_R P
\]

in the sequence for $H^1_{f, Iw}(K, T(1))_\epsilon$ is equal to the composition

\[
U_{\chi\epsilon} \otimes_R Q \xrightarrow{-\Psi_{\epsilon, \chi} \otimes 1} \mathcal{X}_\epsilon \otimes_R Y_\chi \otimes_R Q \xrightarrow{1 \otimes \Upsilon_\theta \otimes 1} \mathcal{X}_\epsilon \otimes_R P \otimes_R Q \\
\rightarrow \mathcal{X}_\epsilon \otimes_R P \otimes_{\Lambda_\theta} Q \xrightarrow{\sim} \mathcal{X}_\epsilon \otimes_R P.
\]

Theorem (S.)

Let ϵ be odd. Suppose that Y_θ, $Y_{\omega \chi^{-1}}$, $Y_{\chi \epsilon}$, and $Y_{\omega \epsilon^{-1}}$ are finite and that P is p-torsion free. Then \mathcal{G}_ϵ and

\[
\frac{\Lambda_\epsilon \otimes_R P}{(\Lambda_\epsilon \otimes_R (\mathfrak{h}/I)_\theta) \cdot \tilde{L}_{\epsilon, \theta}}.
\]

are pseudo-isomorphic $\Lambda_\epsilon \otimes (\mathfrak{h}/I)_\theta$-modules.
Proposition

The canonical map \((\text{Sel}(K, T^\wedge))^\wedge \otimes_R h/I \rightarrow \mathcal{C}_\epsilon\) is an isomorphism.

Theorem (S.)

Suppose the conditions in the above theorem and that \(\mathfrak{p}\) is a prime ideal of \(\Lambda_\epsilon \hat{\otimes}_R h_\theta\) such that \(\mathfrak{p} = \mathfrak{P} \cap h_\theta\) is properly contained in the maximal ideal \(\mathfrak{m}\) of \(h_\theta\) containing \(I\). Then the main conjecture implies that the localizations of

\[
(\text{Sel}(K, T^\wedge))^\wedge \quad \text{and} \quad \frac{\Lambda_\epsilon \hat{\otimes}_R T^\wedge_\theta}{(\Lambda_\epsilon \hat{\otimes}_R h_\theta) \cdot \mathcal{L},\theta}
\]

at \(\mathfrak{p}\) are pseudo-isomorphic \((\Lambda_\epsilon \hat{\otimes}_R h_\theta)_{\mathfrak{p}}\)-modules.

Question

What of the two-variable residually reducible main conjecture can one obtain (supposing Greenberg’s conjecture) in cases where one divisibility in the two-variable main conjecture can be proven (e.g., via the work of Kato)?