Reciprocity maps with restricted ramification

Romyar Sharifi

UCLA

January 6, 2016

Let be an p odd prime and f a newform of level N. Suppose that f is ordinary at p, i.e., its pth Fourier coefficient is a unit at pLet \mathcal{O} be a finite \mathbb{Z}_p -algebra containing the coefficients and T_p -eigenvalues of f.

Notation (Galois representation attached to f)

- \bigcirc V twist of the Galois representation attached to f by its inverse determinant
- $\textcircled{O} T \text{ a Galois stable } \mathcal{O}\text{-lattice in } V$

Definition (Selmer group of f)

 $\begin{array}{l} \mathrm{Sel}(\mathbb{Q}_{\infty},T\otimes_{\mathbb{Z}_p}\mathbb{Q}_p/\mathbb{Z}_p) \text{ is the subgroup of classes in } H^1(\mathbb{Q}_{\infty},T\otimes_{\mathbb{Z}_p}\mathbb{Q}_p/\mathbb{Z}_p) \text{ that} \\ \text{are trivial in } H^1(\mathbb{Q}_{\infty,p},T_{\mathrm{quo}}\otimes_{\mathbb{Z}_p}\mathbb{Q}_p/\mathbb{Z}_p) \text{ and unramified at all other places, for} \\ \mathbb{Q}_{\infty} \text{ the cyclotomic } \mathbb{Z}_p\text{-extension of } \mathbb{Q} \end{array}$

Notation (p-adic L-function of f)

 $\mathcal{L}_f \in \mathcal{O}[\![X]\!]$ is the "usual" power series interpolating special values of L-functions of twists of f

Conjecture (Iwasawa Main Conjecture for Modular Forms)

The characteristic ideal of the Pontryagin dual $\operatorname{Sel}(\mathbb{Q}_{\infty}, T_f \otimes_{\mathbb{Z}_p} \mathbb{Q}_p / \mathbb{Z}_p)^{\vee}$ of the Selmer group in $\mathcal{O}[\![X]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is generated by \mathcal{L}_f , and the same is true in $\mathcal{O}[\![T]\!]$ if V is residually irreducible.

Under various hypotheses including good reduction $(p \nmid N)$, trivial Nebentypus, weight congruent to 2 modulo p-1, and residual irreducibility, the conjecture has been proven by Skinner and Urban, after work of Kato proving one divisibility.

Suppose that $p \ge 5$ and $p \nmid N\varphi(N)$.

Notation

$$\Lambda = \mathbb{Z}_p[\![\mathbb{Z}_{p,N}^{\times}/\langle -1\rangle]\!], \text{ where } \mathbb{Z}_{p,N} = \varprojlim_r \mathbb{Z}/Np^r \mathbb{Z}$$

Notation

• \mathfrak{h} denotes Hida's ordinary cuspidal \mathbb{Z}_p -Hecke algebra of tame level N, which is a finite projective module over Λ via diamond operators

2 S denotes the $\mathfrak{h}\text{-module}$ of $\Lambda\text{-adic}$ cusp forms

 $\mathcal{S} \cong \operatorname{Hom}_{\Lambda}(\mathfrak{h}, \Lambda)$, and \mathfrak{h} is Gorenstein if and only if $\mathcal{S} \cong \mathfrak{h}$.

Notation

Let \mathcal{T} denote the ordinary part of the inverse limit of the $H^1_{\text{\'et}}(X_1(Np^r)_{/\overline{\mathbb{Q}}}, \mathbb{Z}_p(1))$ under trace maps. This is an \mathfrak{h} -module via the adjoint action of Hecke operators.

Any ordinary newform f gives rise to a maximal ideal \mathfrak{m} of \mathfrak{h} , which depends only on f modulo a prime over p, and $\mathcal{T}_{\mathfrak{m}}$ has T_f as a quotient.

Fact (Ordinariness of \mathcal{T})

As $\mathfrak{h}[G_{\mathbb{Q}_p}]$ -modules, we have an exact sequence

$$0 \to \mathcal{T}_{\rm sub} \to \mathcal{T} \to \mathcal{T}_{\rm quo} \to 0,$$

where $\mathcal{T}_{sub} \cong \mathfrak{h}$ and $\mathcal{T}_{quo} \cong S$ as \mathfrak{h} -modules, and \mathcal{T}_{quo} is unramified.

Theorem (Ohta)

There is a perfect pairing

$$\mathcal{T} \times \mathcal{T} \to \mathcal{S}(1)$$

of \mathfrak{h} -modules that is equivariant for the $G_{\mathbb{Q}}$ -action on S for which a Galois element σ acts by the diamond operator $\langle \bar{\sigma} \rangle$, where $\bar{\sigma}$ is the image of σ in $\mathbb{Z}_{p,N}^{\times}$.

Ohta's pairing and Poitou-Tate duality allow one to relate the Selmer group of $\mathcal{T} \otimes_{\mathfrak{h}} \mathcal{S}^{\vee}$ to the Selmer group of \mathcal{T}^{\vee} . We will focus on the latter.

Notation

Let
$$K = \mathbb{Q}(\mu_{Np^{\infty}})$$
, and note that $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}_{p,N}^{\times}$.

Definition (Selmer group)

The Selmer group $\operatorname{Sel}(K, \mathcal{T}^{\vee})$ is the subgroup of classes in $H^1(K, \mathcal{T}^{\vee})$ that are trivial in $H^1(K_v, \mathcal{T}_{\operatorname{sub}}^{\vee})$ for all $v \mid p$ and unramified at all other places.

Notation

Let R be the \mathbb{Z}_p -algebra generated by the values of characters of $(\mathbb{Z}/Np\mathbb{Z})^{\times}$. We require two characters $(\mathbb{Z}/Np\mathbb{Z})^{\times} \to R^{\times}$:

- for diamond operators: θ primitive, even, and such that $\chi = \theta \omega^{-1}$ satisfies $\chi|_{(\mathbb{Z}/p\mathbb{Z})^{\times}} \neq 1$ or $\chi|_{(\mathbb{Z}/N\mathbb{Z})^{\times}}(p) \neq 1$, where ω is projection to $\mu_{p-1}(R)$
- 2 for Galois elements: ϵ . Define \pm by $\epsilon(-1) = \pm 1$.

Notation

- $\mathfrak{h}_{\theta} = \mathfrak{h} \otimes_{\mathbb{Z}_p[(\mathbb{Z}/N_p\mathbb{Z})^{\times}]} R$ with the map to R induced by θ and the map to \mathfrak{h} be given by inverse diamond operators
- $\textbf{0} \ \Lambda_{\epsilon} = R[\![X]\!] \text{ viewed as a quotient of } \Lambda \otimes_{\mathbb{Z}_p} R \text{ via } \epsilon \text{, where } X = [1+p]-1$

We also use superscripts to denote $(\mathbb{Z}/Np\mathbb{Z})^{\times}\text{-eigenspaces}$ of modules over \mathfrak{h} and $\Lambda.$

Conjecture (Two-variable main conjecture)

The class of the dual Selmer group $(\operatorname{Sel}(K, \mathcal{T}_{\theta}^{\vee})^{\vee})_{\epsilon}$ in the Grothendieck group of the quotient of the category of finitely generated (torsion) $\Lambda \hat{\otimes}_R \mathfrak{h}$ -modules by the category of pseudo-null (i.e., codimension 2) modules is equal to that of

 $\frac{\Lambda_{\epsilon} \,\hat{\otimes}_R \, \mathcal{T}_{\theta}^{\mp}}{(\Lambda_{\epsilon} \,\hat{\otimes}_R \, \mathfrak{h}_{\theta}) \mathcal{L}_{\theta,\epsilon}},$

where $\mathcal{T}_{\theta}^{\mp}$ denotes the (± 1) -eigenspace under complex conjugation and $\mathcal{L}_{\theta,\epsilon}$ is a modified Mazur-Kitagawa two-variable *p*-adic *L*-function.

If \mathfrak{h}_{θ} is Gorenstein or ϵ is even, then $\mathcal{T}_{\theta}^{\mp}$ is free of rank 1 over \mathfrak{h}_{θ} , so we may view $\mathcal{L}_{\theta,\epsilon}$ as an element of $\mathfrak{h}_{\theta}[\![X]\!]$ up to unit. The above conjecture says that $\mathcal{L}_{\theta,\epsilon}$ is a characteristic element for $(\operatorname{Sel}(K,\mathcal{T}_{\theta}^{\vee})^{\vee})_{\epsilon}$.

Remarks

We can (and do) replace \mathfrak{h}, S , and \mathcal{T} with their localizations at a maximal ideal \mathfrak{m} of \mathfrak{h} arising from a newform f of tame level N. As direct summands of the original objects, the main conjecture respects this.

- Under hypotheses that include $\epsilon = \theta = 1$ and f is residually irreducible, then the main conjecture should follow from the work of Kato and Skinner-Urban after a duality argument.
- Our interest is in the setting in which f is congruent to an Eisenstein series, in which case *T*/m*T* is reducible. We are particularly interested in the residual representation itself. For even *ε*, this has been studied by Greenberg-Vatsal in the one-variable setting.

Definition (Eisenstein ideal)

Let I be the Eisenstein ideal of \mathfrak{h} is generated by $T_{\ell} - 1 - \ell \langle \ell \rangle$ (resp., $U_{\ell} - 1$) for primes $\ell \nmid Np$ (resp., $\ell \mid Np$).

Suppose $I\mathfrak{h}_{\theta} \neq \mathfrak{h}_{\theta}$, and let \mathfrak{m} be the maximal ideal of \mathfrak{h}_{θ} containing I.

Notation

Set
$$T = \mathcal{T}_{\theta}/I\mathcal{T}_{\theta}$$
, $P = \mathcal{T}_{\theta}^+/I\mathcal{T}_{\theta}^+$, and $Q = \mathcal{T}_{\theta}^-/I\mathcal{T}_{\theta}^-$.

Facts

Intere the sequence of global Galois modules

$$0 \to P \to T \to Q \to 0$$

that is canonically locally split at places over Np. In particular, the maps $\mathcal{T}_{sub}/I\mathcal{T}_{sub} \rightarrow Q$ and $P \rightarrow \mathcal{T}_{quo}/I\mathcal{T}_{quo}$ are isomorphisms.

2 Q is canonically isomorphic to \mathfrak{h}/I as an \mathfrak{h} -module.

Question

What can we say about $\mathfrak{S} = \operatorname{Sel}(K, T^{\vee})^{\vee}$?

Terminology

Let S denote the set of primes over p in K.

- $\ensuremath{\textcircled{O}} S\mbox{-split: unramified and completely split at all primes in S} \label{eq:split:sp$
- **④** By an Iwasawa module over K with a given property, we mean the Galois group of the maximal abelian, pro-p extension of K with that property.

Notation

- **(**) $G_{K,S}$ Galois group of the maximal S-ramified extension of K
- ${\it 2}{\it 0}$ ${\it U}$ norm compatible seq. in $p\mbox{-completions}$ of $p\mbox{-units}$ of number fields in K
- **③** \mathfrak{X} *S*-ramified Iwasawa module over *K*
- $\textcircled{O} Y S-{\sf split} \ {\sf Iwasawa} \ {\sf module} \ {\sf over} \ K$

Definition (Iwasawa cohomology)

For a compact S-ramified Galois module M, $H^i_{\mathrm{Iw}}(K, M)$ is the inverse limit of *i*th S-ramified continuous cohomology groups of M under corestriction.

Terminology (Compactly-supported cohomology)

Compactly supported lwasawa cohomology groups of ${\cal M}$ fit in an exact sequence

$$\cdots \to H^i_{c,\mathrm{Iw}}(K,M) \to H^i_{\mathrm{Iw}}(K,M) \to H^i_{p,\mathrm{Iw}}(K,M) \to \cdots$$

for $H^i_{p,{\rm Iw}}(K,M)$ the direct sum of local Iwasawa cohomology groups at primes over p. By Poitou-Tate duality, they satisfy

$$H^{i}_{c,\mathrm{Iw}}(K,M) \cong H^{2-i}(G_{K,S},M^{\vee}(1))^{\vee}.$$

Examples

• $H^1_{Iw}(K, \mathbb{Z}_p(1)) \cong \mathcal{U}$, and there is an exact sequence

$$0 \to Y \to H^2_{\mathrm{Iw}}(K, \mathbb{Z}_p(1)) \to \bigoplus_{v \in S} \mathbb{Z}_p \to \mathbb{Z}_p \to 0$$

 $\textcircled{O} \ H^2_{c,\mathrm{Iw}}(K,\mathbb{Z}_p(1))\cong \mathfrak{X} \text{ and } H^3_{c,\mathrm{Iw}}(K,\mathbb{Z}_p(1))\cong \mathbb{Z}_p$

Using the local splittings $P\to T$ and restriction, we may define a cone with cohomology groups $H^i_{f,{\rm Iw}}(K,T(1))$ fitting in long exact sequences

$$\cdots \to H^i_{f,\mathrm{Iw}}(K,T(1)) \to H^i_{\mathrm{Iw}}(K,T(1)) \to H^i_{p,\mathrm{Iw}}(K,P(1)) \to \cdots$$
$$\cdots \to H^i_{f,\mathrm{Iw}}(K,T(1)) \to H^i_{\mathrm{Iw}}(K,Q(1)) \to H^{i+1}_{c,\mathrm{Iw}}(K,P(1)) \to \cdots$$

The second sequence reduces to

$$\begin{split} 0 &\to H^1_{f,\mathrm{Iw}}(K,T(1)) \to \mathcal{U} \otimes_{\mathbb{Z}_p} Q \xrightarrow{\kappa} \mathfrak{X} \otimes_{\mathbb{Z}_p} P \to H^2_{f,\mathrm{Iw}}(K,T(1)) \\ &\to H^2_{\mathrm{Iw}}(K,\mathbb{Z}_p(1)) \otimes_{\mathbb{Z}_p} Q \to P \to H^3_{f,\mathrm{Iw}}(K,T(1)) \to 0. \end{split}$$

Lemma (Comparison with Selmer)

There is a canonical exact sequence

$$0 \to \operatorname{coker} \kappa \to \mathfrak{S} \to Y \otimes_{\mathbb{Z}_p} Q \to P.$$

Question

What is the cokernel of $\kappa \colon \mathcal{U} \otimes_{\mathbb{Z}_p} Q \to \mathfrak{X} \otimes_{\mathbb{Z}_p} P$ on ϵ -eigenspaces?

Fact

P has trivial $G_{\mathbb{Q}}$ -action, but $Q = Q_{\chi^{-1}}$. It follows that

 $(\mathcal{U} \otimes_{\mathbb{Z}_p} Q)_{\epsilon} \cong \mathcal{U}_{\chi \epsilon} \otimes_R Q \quad \text{and} \quad (\mathfrak{X} \otimes_{\mathbb{Z}_p} P)_{\epsilon} \cong \mathfrak{X}_{\epsilon} \otimes_R P.$

If ϵ is even, then $\mathcal{U}_{\chi\epsilon}$ is trivial unless $\chi\epsilon = \omega$, in which case it is R(1).

This implies the following 2-variable analogue of a result of Greenberg-Vatsal.

Corollary

If ϵ is even with $\epsilon \neq 1$ and $\chi \epsilon \neq \omega$, then there is a canonical exact sequence

$$0 \to \mathfrak{X}_{\epsilon} \otimes_R P \to \mathfrak{S}_{\epsilon} \to Y_{\chi \epsilon} \otimes_R Q \to 0.$$

The R[X]-characteristic ideals of \mathfrak{X}_{ϵ} and $Y_{\chi\epsilon}$ are generated by Kubota-Leopoldt *p*-adic *L*-functions by the classical lwasawa main conjecture.

Suppose from now on that ϵ is odd.

Conjecture (Greenberg)

 Y^+ is finite, i.e., Y_{ρ} is finite for every even character ρ .

Facts

() If $Y_{\chi\epsilon}$ is finite, then $\mathcal{U}_{\chi\epsilon}$ is generated by sequences of cyclotomic *p*-units.

2 There is a canonical homomorphism

$$\Phi_{\epsilon} \colon \mathfrak{X}_{\epsilon} \to \Lambda_{\epsilon}$$

determined by the action of \mathfrak{X} on cyclotomic *p*-units with the property that if $Y_{\omega\epsilon^{-1}}$ is finite, then Φ_{ϵ} is injective with finite cokernel $(Y_{\omega\epsilon^{-1}})^{\vee}(1)$.

The cocycle $G_{\mathbb{Q}} \to \operatorname{Hom}_{\mathfrak{h}}(Q, P)$ attached to the exact sequence gives rise to a homomorphism $\Upsilon_{\theta} \colon Y_{\chi} \to P$ (conjecturally an isomorphism) by composition with evaluation at the canonical generator of Q.

The S-reciprocity map

Definition (S-reciprocity map)

Let $\mathcal X$ be the quotient of $\mathbb Z_p[\mathfrak X]$ by the square of its augmentation ideal. The S-reciprocity map

$$\Psi \colon \mathcal{U} \to H^2_{\mathrm{Iw}}(K, \mathbb{Z}_p(1)) \otimes_{\mathbb{Z}_p} \mathfrak{X}.$$

is the first connecting map in the Iwasawa cohomology of the Tate twist of

$$0 \to \mathfrak{X} \xrightarrow{\sigma \mapsto \sigma - 1} \mathcal{X} \xrightarrow{\tau \mapsto 1} \mathbb{Z}_p \to 0.$$

The analogous exact sequence for Y in place of \mathfrak{X} is locally split at p. In place of usual cohomology, we again use that of a Selmer complex from Iwasawa cohomology to compactly-supported Iwasawa cohomology with connecting maps

$$\Theta \colon \mathcal{U} \to \mathfrak{X} \otimes_{\mathbb{Z}_p} Y \quad \text{and} \quad q \colon H^2_{\mathrm{Iw}}(K, \mathbb{Z}_p(1)) \to Y.$$

Theorem (S.)

The map q splits the canonical injection, and $(q\otimes 1)\circ\Psi$ and $-\Theta$ are equal after switching the order of the tensor product.

Variant of a conjecture regarding cup products

Notation

- $\bullet \ \Psi_{\epsilon,\chi} \colon \mathcal{U}_{\chi\epsilon} \to \mathfrak{X}_{\epsilon} \otimes Y_{\chi} \text{ is the map induced by } \Psi \text{ via commutativity of the tensor product}$
- $\begin{array}{l} \textcircled{0} \\ u_{\chi\epsilon} \in \mathcal{U}_{\chi\epsilon} \text{ is the image of the norm compatible system } 1-\zeta_{fp^r} \text{ of elements} \\ \mathbb{Q}(\mu_{Np^r}), \text{ where } f \text{ is the tame conductor of } \chi\epsilon. \end{array}$

Conjecture (S.)

For odd ϵ , the $\Lambda_{\epsilon} \otimes_R (\mathfrak{h}/I)_{\theta}$ submodules of $\Lambda_{\epsilon} \otimes_R P$ generated by the image $\overline{\mathcal{L}}_{\epsilon,\theta}$ of $\mathcal{L}_{\epsilon,\theta}$ and $(\Phi_{\epsilon} \otimes \Upsilon_{\theta})(\Psi_{\epsilon,\chi}(u_{\chi\epsilon}))$ are equal.

In fact, we expect that $(\Phi_{\epsilon} \otimes \Upsilon_{\theta})(\Psi_{\epsilon,\chi}(u_{\chi\epsilon})) = \overline{\mathcal{L}}_{\epsilon,\theta}$.

Theorem (Wake-Wang Erickson, Fukaya-Kato)

The conjecture holds if Y_{θ} and $Y_{\omega^2\theta^{-1}}$ are finite and P is p-torsion free.

These hypotheses are actually stronger than needed.

Structure of the dual Selmer group

The proof of the following lemma uses the earlier theorem relating Θ and Ψ .

Lemma

The first connecting homomorphism

$$\kappa_{\epsilon} \colon \mathcal{U}_{\chi\epsilon} \otimes_R Q \to \mathfrak{X}_{\epsilon} \otimes_R P$$

in the sequence for $H^1_{f,\mathrm{Iw}}(K,T(1))_\epsilon$ is equal to the composition

$$\mathcal{U}_{\chi\epsilon} \otimes_R Q \xrightarrow{-\Psi_{\epsilon,\chi} \otimes 1} \mathfrak{X}_{\epsilon} \otimes_R Y_{\chi} \otimes_R Q \xrightarrow{1 \otimes \Upsilon_{\theta} \otimes 1} \mathfrak{X}_{\epsilon} \otimes_R P \otimes_R Q$$
$$\xrightarrow{\rightarrow} \mathfrak{X}_{\epsilon} \otimes_R P \otimes_{\Lambda_{\theta}} Q \xrightarrow{\sim} \mathfrak{X}_{\epsilon} \otimes_R P.$$

Theorem (S.)

Let ϵ be odd. Suppose that Y_{θ} , $Y_{\omega\chi^{-1}}$, $Y_{\chi\epsilon}$, and $Y_{\omega\epsilon^{-1}}$ are finite and that P is p-torsion free. Then \mathfrak{S}_{ϵ} and

 $\frac{\Lambda_{\epsilon}\otimes_{R}P}{(\Lambda_{\epsilon}\otimes_{R}(\mathfrak{h}/I)_{\theta})\cdot\bar{\mathcal{L}}_{\epsilon,\theta}}.$

are pseudo-isomorphic $\Lambda_{\epsilon} \otimes (\mathfrak{h}/I)_{\theta}$ -modules.

Proposition

The canonical map $(\operatorname{Sel}(K, \mathcal{T}_{\theta}^{\vee})^{\vee})_{\epsilon} \otimes_{\mathfrak{h}} \mathfrak{h}/I \to \mathfrak{S}_{\epsilon}$ is an isomorphism.

Theorem (S.)

Suppose the conditions in the above theorem and that \mathfrak{P} is a prime ideal of $\Lambda_{\epsilon} \hat{\otimes}_R \mathfrak{h}_{\theta}$ such that $\mathfrak{p} = \mathfrak{P} \cap \mathfrak{h}_{\theta}$ is properly contained in the maximal ideal \mathfrak{m} of \mathfrak{h}_{θ} containing I. Then the main conjecture implies that the localizations of

$$(\operatorname{Sel}(K, \mathcal{T}_{\theta}^{\vee})^{\vee})_{\epsilon} \quad \text{and} \quad \frac{\Lambda_{\epsilon} \,\hat{\otimes}_{R} \,\mathcal{T}_{\theta}^{+}}{(\Lambda_{\epsilon} \otimes_{R} \,\mathfrak{h}_{\theta}) \cdot \mathcal{L}_{\epsilon, \theta}}$$

at \mathfrak{P} are pseudo-isomorphic $(\Lambda_{\epsilon} \hat{\otimes}_R \mathfrak{h}_{\theta})_{\mathfrak{P}}$ -modules.

Question

What of the two-variable residually reducible main conjecture can one obtain (supposing Greenberg's conjecture) in cases where one divisibility in the two-variable main conjecture can be proven (e.g., via the work of Kato)?