On the structure of a Galois Lie algebra

Romyar T. Sharifi

February 7, 2002

Let $X = \mathbf{P}_{\mathbf{Q}}^1 - \{0, 1, \infty\}$. The long exact sequence of étale fundamental groups

 $1 \to \pi_1^{\text{et}}(X_{\bar{\mathbf{Q}}}) \to \pi_1^{\text{et}}(X) \to G_{\mathbf{Q}} \to 1,$

with $G_{\mathbf{Q}} = \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$, yields a canonical representation $\phi: G_{\mathbf{Q}} \to \operatorname{Out}(\pi_1^{\operatorname{et}}(X_{\bar{\mathbf{Q}}}))$. Passing to the maximal pro-*p* quotient $\pi_1^{(p)}$ of $\pi_1^{\operatorname{et}}(X_{\bar{\mathbf{Q}}})$ for *p* odd, we may consider $\phi^{(p)}: G_{\mathbf{Q}} \to \operatorname{Out}(\pi_1^{(p)})$. Let Ω^* denote the fixed field of $\phi^{(p)}$. If $\pi_1^{(p)}(j)$ denotes the *j*th term in the lower central series of $\pi_1^{(p)}$, then we may also consider the representations

$$\phi_m^{(p)} \colon G_{\mathbf{Q}} \to \operatorname{Out}(\pi_1^{(p)} / \pi_1^{(p)}(m+1))$$

for $m \geq 1$. We remark that $K = \mathbf{Q}(\zeta_{p^{\infty}})$ is the fixed field of $\phi_1^{(p)}$. Set $G = \operatorname{Gal}(\Omega^*/K)$, define a filtration on G by $F^m G = \ker \phi_m^{(p)}$, and let \mathfrak{g} be the associated graded object. We have the following [I1, I2].

Theorem 1 (Ihara).

- a. The field Ω^* is a pro-p extension of K unramified outside p.
- b. There is an isomorphism of $G_{\mathbf{Q}}$ -modules, $\operatorname{gr}^m \mathfrak{g} \cong \mathbf{Z}_p(m)^{r_{m,p}}$, for some $r_{m,p} \geq 0$.
- c. The commutator on G provides \mathfrak{g} with the structure of a graded \mathbf{Z}_p -Lie algebra.

For each odd positive integer m, there exists a nontrivial $\operatorname{Gal}(K/\mathbf{Q})$ -equivariant homomorphism $\kappa_m \colon G_K \to \mathbf{Z}_p(m)$ [So]. For each odd integer $m \geq 3$, the map κ_m induces a nontrivial homomorphism $\kappa_m \colon \operatorname{gr}^m \mathfrak{g} \to \mathbf{Z}_p$ [I2]. For such m, we let σ_m denote an element of $F^m G$ such that $\kappa_m(\sigma_m)$ generates $\kappa_m(F^m G)$. We also denote by σ_m the element of $\operatorname{gr}^m \mathfrak{g}$ given by the restriction of $\sigma_m \in F^m G$.

Let S be a free pro-p group on generators s_m with m odd ≥ 3 , and let \mathfrak{s} be a free graded \mathbb{Z}_p -Lie algebra on generators s_m in odd degrees $m \geq 3$. We define homomorphisms $\Psi: S \to G$ and $\psi: \mathfrak{s} \to \mathfrak{g}$ by $s_m \mapsto \sigma_m$.

Conjecture (Deligne). The map $\psi \otimes \mathbf{Q}_p : \mathfrak{s} \otimes \mathbf{Q}_p \to \mathfrak{g} \otimes \mathbf{Q}_p$ is an isomorphism.

Hain and Matsumoto have shown that $\psi \otimes \mathbf{Q}_p$ is surjective [HM]. The following diagram summarizes the relationships between this conjecture and its variants.

Let Ω denote the maximal pro-*p* extension of *K* unramified outside *p*.

Theorem 2. Let p be an odd regular prime. Then Ψ is surjective. If Deligne's conjecture holds for p, then ψ and Ψ are isomorphisms and $\Omega = \Omega^*$.

For any number field F, let F_{∞} denote the compositum of all \mathbb{Z}_p -extensions of F. Greenberg has conjectured that the Galois group of the maximal pro-p unramified abelian extension of F_{∞} is pseudo-null as an Iwasawa module [G]. For $F = \mathbb{Q}(\zeta_p)$, there is the following equivalent formulation [Mc], which we refer to as Greenberg's conjecture for p.

Conjecture (Greenberg). Let M_{∞} denote the maximal abelian pro-*p* extension of F_{∞} unramified outside *p*. Then $\operatorname{Gal}(M_{\infty}/F_{\infty})$ is torsion-free as a module over $\mathbf{Z}_p[[\operatorname{Gal}(F_{\infty}/F)]]$.

McCallum has proven Greenberg's conjecture for a large class of irregular primes [Mc].

Theorem 3. Let p be an irregular prime for which Greenberg's conjecture holds. Then ψ and Ψ are not isomorphisms. If Deligne's conjecture holds for p, then ψ and Ψ are not surjective.

The main ingredient in the proofs of Theorems 2 and 3 is the recursive construction of the $\sigma_m \in G$ for odd $m \geq 3$ beginning with those m with $m \leq p$. If γ denotes an element of $\operatorname{Gal}(\Omega^*/F)$ which restricts to a generator of $\operatorname{Gal}(K/F)$ and ω denotes the cyclotomic character, then this construction is given by

$$\sigma_{m+p-1} = (\gamma \sigma_m \gamma^{-1} \sigma_m^{-\omega(\gamma)^m})^{\epsilon_m},$$

where ϵ_m denotes the application of a sort of "idempotent" for the action of a subgroup of $\operatorname{Gal}(\Omega^*/\mathbf{Q})$ of order p-1.

This construction allows us to use known information on the sturcture of $\mathcal{G} = \operatorname{Gal}(\Omega/F)$ to gain knowledge of the structure of G. More precisely, the elements γ and σ_m with $m \leq p$ will (freely) generate the quotient $\operatorname{Gal}(\Omega^*/F)$ of \mathcal{G} if and only the σ_m with $m \geq 3$ (freely) generate G. Theorem 2 and 3 follow from the latter observation and the following two statements regarding the structure of \mathcal{G} . If p is regular, then \mathcal{G} is freely generated by lifts of the elements γ and σ_m with $m \leq p$. On the other hand, for any irregular prime p, Greenberg's conjecture implies that \mathcal{G} has no free pro-p quotient on (p+1)/2 generators [Mc]. For more details, see [Sh].

References

- [G] R. Greenberg, "Iwasawa theory past and present," Class Field Theory It's Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math. 30, Math. Soc. Japan, 2001, 335–385.
- [HM] R. Hain and M. Matsumoto, "Weighted completion of Galois groups and Galois actions on the fundamental group of $\mathbf{P}^1 \{0, 1, \infty\}$ ", arXiv:math.AG/0006158, Aug. 11, 2001.
- [I1] Y. Ihara, "Profinite Braid Groups, Galois representations and complex multiplications," Ann. of Math. 123 (1986), 43–106.
- [I2] Y. Ihara, "The Galois representation arising from $\mathbf{P}^1 \{0, 1, \infty\}$ and Tate twists of even degree," Galois groups over \mathbf{Q} , Math. Sci. Res. Inst. Publ. **16** (1989), Springer, 299–313.
- [I3] Y. Ihara, "Some arithmetic aspects of Galois actions of the pro-p fundamental group of $\mathbf{P}^1 \{0, 1, \infty\}$," Res. Inst. Math. Sci. Preprint Series, RIMS-1229, May 1999.
- [Mc] W. McCallum, "Greenberg's Conjecture and units in multiple \mathbb{Z}_p -extensions," Amer. J. Math. **123** (2001), 909–930.
- [Sh] R. Sharifi, "Relationships between conjectures on the structure of Galois groups unramified outside p," arXiv:math.NT/0104116, Oct. 3, 2001.
- [So] C. Soulé, "On higher *p*-adic regulators," Lecture Notes in Math. **854** (1981), Springer, 372–401.