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Let p be a prime number. Let F be a number field, and let S denote a finite set of

primes of F including those above p and any real infinite places. If p = 2, we assume

that F is totally imaginary. We use GF,S to denote the Galois group of the maximal

unramified outside S extension of F .

Let XF denote the maximal abelian pro-p quotient of GF,S, which is quite easily

identified with the Pontryagin dual H1(GF,S,Qp/Zp)∨ of H1(GF,S,Qp/Zp). On the other

hand, let YF denote he maximal unramified quotient of XF in which all primes above

those in S split completely. There is a standard identification of YF with a subgroup of

the continuous cohomology group H2
cts(GF,S,Zp(1)) that arises from Kummer theory, as

we shall describe in the proof of the proposition below.

Now, Poitou-Tate duality provides us with a canonically defined homomorphism

H1(GF,S,Qp/Zp)∨ → H2
cts(GF,S,Zp(1)),

and hence, via our identifications, a homomorphism XF → YF . The natural question to

ask is whether or not this map is the restriction map on Galois groups, and the answer

is that in fact it is. However, as we have been unable to find a proof of this non-obivous

but useful fact in the literature, we provide one here.

Proposition 0.1. The Poitou-Tate map H1(GF,S,Qp/Zp)∨ → H2
cts(GF,S,Zp(1)) induces

the canonical restriction XF → YF on Galois groups.

Proof. Let us begin with notation. Let FS denote the Galois group of the maximal

unramified outside S-extension of F , and let OS denote its ring of S-integers. Moreover,

as in [NSW], let IS and CS be the S-idèle group and S-idèle class group of FS, respec-

tively, and let IS(F ) and CS(F ) denote the S-idéle group and S-idéle class group of F ,

respectively. Finally, let ClF,S denote the S-class group of F .
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We first recall the definition of the Poitou-Tate map

H1(GF,S,Qp/Zp)∨ → H2
cts(GF,S,Zp(1)).

We find it most convenient to work modulo pn throughout and then take inverse limits.

Modulo pn, the Poitou-Tate map arises simply as the composition

H1(GF,S,Z/p
nZ)∨ → H0(GF,S,Hom(µpn , CS))∨ → H2(GF,S, µpn),

where the first map is the dual of the connecting homomorphism arising from the se-

quence

0→ µpn → Hom(µpn , IS)→ Hom(µpn , CS)→ 0

and the second map arises from the duality

H0(GF,S,Hom(µpn , CS))×H2(GF,S, µpn)
∪−→ H2(F,CS)

inv−→ Q/Z,

where “inv” denotes the invariant map.

Next, we explain the injection YF ↪→ H2
cts(GF,S,Zp(1)), again working modulo pn.

Recall that the reciprocity homomorphism

rec : CS(F )/pn → XF/p
n

is dual to the connecting homomorphism

δ : H1(GF,S,Z/p
nZ)→ H2(GF,S,Z)[pn]

under the cup product

H2(GF,S,Z)[pn]×H0(GF,S, CS)/pn ∪−→ H2(GF,S, CS)[pn]
inv−→ Z/pnZ

in the sense that

inv(δφ ∪ a) = φ(rec(a))

for φ ∈ H1(GF,S,Z/p
nZ) and a ∈ CS(F )/pn.

From the long exact sequence attached to

0→ O×S → IS → CS → 0

and the fact that the cokernel of IS(F ) → CS(F ) is isomorphic to ClF,S, we have an

isomorphism H1(GF,S,O×S ) ∼= ClF,S, and an induced reciprocity map

rec : ClF,S/p
n → YF/p

n.
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From the long exact sequence attached to

0→ µpn → O×S
pn

−→ O×S → 0,

we obtain an injection that is the composite

YF/p
n rec−1

−−−→ ClF,S/p
n ∼−→ H1(GF,S,O×S )/pn ↪→ H2(GF,S, µpn).

This gives the identification of YF/p
n with a subgroup of H2(GF,S, µpn) arising from

Kummer theory and class field theory.

Putting all of the definitions together, the proposition is reduced to the commuta-

tivity of the diagram

H0(GF,S,Hom(µpn , CS))

��

× H2(GF,S, µpn)
∪ // Q/Z

H1(GF,S,Z/p
nZ)

��

× H1(GF,S,O×S )

OO

H2(GF,S,Z) × H0(GF,S, CS)

OO

∪ // Q/Z

in the obvious sense. This diagram can be found (without proof of its commutativity)

in [NSW, (8.4.6)], though not in the second edition of the book.

To show its commutativity, we replace the right-hand composition with the compo-

sition

H0(GF,S, CS)→ H1(GF,S, CS[pn])→ H2(GF,S, µpn)

which is in fact its negative by a standard lemma (e.g., [NSW, (1.3.4)]), since we have

a commutative diagram

0

��

0

��

0

��
0 // µpn //

��

IS[pn] //

��

CS[pn] //

��

0

0 // O×S //

pn

��

IS //

pn

��

CS
//

pn

��

0

0 // O×S //

��

IS //

��

CS
//

��

0

0 0 0
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noting the p-divisibility of CS [NSW, (10.9.5)]. We therefore have a new diagram

H0(GF,S,Hom(µpn , CS))

��

× H2(GF,S, µpn)
∪ // Q/Z

H1(GF,S,Z/p
nZ)

��

× H1(GF,S, CS[pn])

OO

∪ // Q/Z

−1

OO

H2(GF,S,Z) × H0(GF,S, CS)

OO

∪ // Q/Z

which commutes by two applications of [La, Theorem III.2.1]. That is, for the lower

rectangle, take the pairing Z×CS → CS, and for the upper, take the Galois-equivariant

pairing

IS[pn]× Hom(µpn , IS[pn])→ CS[pn]

given by multiplication on IS[pn] followed by projection, noting that

IS[pn] = lim→
E⊂FS

⊕
v∈SE

µpn(Ev).

The result follows.
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