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Unique factorization:

Let K be a number field, a finite extension of

the rational numbers Q.

The ring of integers OK of K consists of all

roots in K of monic polynomials in one variable

with coefficients in the integers Z.

In general, OK is not a unique factorization

domain (UFD).

I.e., nonzero elements need not factor uniquely

as products of prime elements up to units.

Example. The ring of integers of Q(
√
−5) is

Z[
√
−5], which is not a (UFD): e.g.,

(1 +
√
−5)(1−

√
−5) = 3 · 2.

(Note that the only units in Z[
√
−5] are ±1.)
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The class group:

Let us define a measure of how far OK is from

having unique factorization.

The set of nonzero ideals IK of K is closed

under multiplication.

Let PK denote the subset of nonzero principal

ideals.

The quotient IK/PK is a finite group.

Definition. We define the class group ClK of

K to be IK/PK.

The order hK of ClK is called the class number

of K.

OK is a UFD ⇔ OK is a PID ⇔ hK = 1.

Example. hQ(
√
−5) = 2, and ClQ(

√
−5) is gen-

erated by the image of (2,1 +
√
−5).
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Ramification of prime ideals:

Definition. We say that a prime ideal p of OK
is ramified in a finite extension L/K if

pOL ⊆ q2

for some prime ideal q of OL. Otherwise, p is

unramified.

Only finitely many primes are ramified in L/K.

If S is the set of ramified primes of OK in L/K,

we say that L/K is unramified outside S, or the

primes in S.

Example. Q(
√
−5) is unramified outside 2 and

5: 2Z[
√
−5] = (2,1 +

√
−5)2 and 5Z[

√
−5] =

(
√
−5)2.
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Cyclotomic fields:

For a positive integer n, we let µn denote the

group of nth roots of unity in a fixed algebraic

closure Q of Q.

Q(µn) is called the cyclotomic field of nth roots

of unity.

Q(µn)/Q is Galois with Galois group

Gal(Q(µn)/Q) ∼= (Z/nZ)×.

The extension Q(µn)/Q is ramified exactly at

the primes dividing (the numerator of) n/2.
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Regular and irregular primes:

Definition. A prime p is called regular if p does

not divide hQ(µp). Otherwise, p is irregular.

Some interesting facts:

1. Let Bk denote the kth Bernoulli number,

which is defined by the power series

x

ex − 1
=
∞∑
k=0

Bk
k!
xk.

p is regular if and only if p does not divide the

numerator of the Bernoulli number Bk for any

even k with 2 ≤ k ≤ p− 3.

2. 37 is the smallest irregular prime, and it

divides the numerator of B32.

3. Kummer proved Fermat’s Last Theorem for

regular primes in 1850.
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Galois groups:

GK = Gal(K/K) is the Galois group of the
extension of K given by its algebraic closure
K ∼= Q.
We call GK the absolute Galois group of K.

GK is a huge, uncountable group. However,
as with any Galois group of an algebraic ex-
tension, it is profinite, an inverse limit of finite
groups.
GK = lim← GL/K with L/K finite Galois.

A profinite group G is a topological group, with
its topology arising from the discrete topology
on the inverse system chosen to define it.

We say that a profinite group G is (topologi-
cally) finitely generated if there is a finite set
of elements of G such that the closure of the
subgroup they generate is G.
GK is not topologically finitely generated.
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Quotients of GK:

Gab
K = maximal abelian quotient of GK.

Equivalently, this is the Galois group of the
maximal abelian extension of K.

Example. The maximal abelian extension Qab

of Q is ∪n≥1Q(µn) and Gab
Q
∼= lim← (Z/nZ)×.

G
(p)
K = the maximal pro-p quotient of GK.

A p-group is a finite group of p-power order.
A pro-p group is an inverse limit of p-groups.

Let S be a set of prime ideals of K.
GK,S = the Galois group of the maximal alge-
braic extension of K unramified outside S.
(An algebraic extension is unramified outside
S if this is true in every finite subextension.)

Example. GQ,Ø = 1.

In general, the structure of GK,S is very far
from known.
Class field theory: Gab

K,Ø
∼= ClK.
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Galois group of the maximal pro-p unram-
ified outside p extension of Q(µp):

Take K = Q(µp) and S the set consisting of
the unique prime above p, for an odd prime p.

Let G = G
(p)
Q(µp),S

.

Theorem (Koch). Let s denote the p-rank of
ClK (i.e., ps is the order of ClK/pClK). The
group G has a minimal presentation

1→ R→ F → G → 1

with F a free pro-p group on s+p+1
2 generators

and R a free pro-p group which is the normal
closure of a subgroup generated by s elements.

In particular, Gab ∼= Z
⊕(p+1)/2
p ⊕ torsion, where

Zp = lim← Z/pnZ.

The torsion in Gab does not lift to torsion in G.
However, we can ask how close it is to being
torsion.

9



∆ = Gal(K/Q) is a cyclic group of order p−1.

Teichmüller character: ω : ∆→ Z×p .

ω takes values in the (p−1)st roots of 1 in Z×p
and

δ(ζ) = ζω(δ)

for any δ ∈∆ and ζ ∈ µp.

Ω = maximal pro-p extension of K unramified

outside p.

Denote also by ∆ a fixed choice of lifting of

Gal(K/Q) to a subgroup of Gal(Ω/Q).

Proposition (S.). We may choose a set of

generators X of G such that for any δ ∈ ∆,

we have δxδ−1 = xω(δ)i for some i for each

x ∈ X.
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In particular, we note that we may decompose

Gab into “eigenspaces” for the action of ∆.

The ωi-eigenspaces corresponding to the non-

torsion part of Gab are of rank 1 when i = 0 or

i is odd and zero otherwise.

Vandiver’s conjecture: the nonzero eigenspaces

of the torsion all have i even.

We will choose our generating set X as in the

proposition, and let xi for i odd (1 ≤ i ≤ p −
2) or i = 0 as above be an element which

reduces to a generator of the ωi-eigenspace of

the nontorsion part of Gab.
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An example: p = 37

37 | B32 and hQ(µ37)
= 37.

The torsion part of Gab is Z/37Z and lies in the

ω32-eigenspace.

Let y ∈ X be a lift of a generator of this torsion

group, so that X = {y, x0, x1, x3, . . . , x35}.

We get a relation in R from the following iden-

tity:

y37[x0, y]
a0[x1, x31]

a1[x3, x29]
a3 . . .

[x15, x17]
a15[x33, x35]

a33 ∈ [G, [G,G]].

a0 6≡ 0 mod 37 (classical Iwasawa theory).

The triviality, or not, of the numbers a1, a3,

. . . , a15, a33 is much deeper.
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A pairing on cyclotomic p-units:

Definition. The cyclotomic p-unit group C is
the subgroup of K× generated by elements of
the form 1− ζ with ζ ∈ µp, ζ 6= 1.

As a group, C has the following structure:

C ∼= Z⊕(p−1)/2 ⊕ Z/pZ.

Let k be even with k ≤ p− 2 such that p | Bk.
A = ClK/pClK.
A(1−k) = the ω1−k-eigenspace of A.

McCallum and I defined a pairing (via a cup
product in Galois cohomology)

〈 , 〉p,k : C × C → A(1−k).

If p satisfies Vandiver’s conjecture (e.g., p <
16,000,000), then A(1−k) is a 1-dimensional
Fp-vector space.

Conjecture (McCallum, S.). 〈 , 〉p,k is sur-
jective.
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We have special cyclotomic p-units for odd i:

ηi ≡
∏
δ∈∆

(1− ζδ)ω(δ)i−1
mod Cp.

Fact: 〈ηi, ηj〉p,k = 0 if i+ j 6≡ k mod (p− 1).

Set ei,k = 〈ηi, ηk−i〉p,k.

Remark. I have given interpretations of the ei,k
as products in K-theory and, conjecturally, al-

gebraic periods of modular forms.

We further require that the xi ∈ X satisfy

xi(η
1/p
i ) = ζ · η1/pi

for a fixed choice of ζ ∈ µp, ζ 6= 1.
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Our example: p = 37, k = 32

There exists a choice of isomorphism

φ : A(1−k) → Fp

such that φ(ei,k) = ai for i = 1,3, . . . ,15,33.

(I.e., for odd i with 1 ≤ i ≤ [k − i], where [j]

denotes the least positive residue of j modulo

p− 1.)

Theorem 1 (McCallum, S.). We have ai ≡
0 mod 37 if and only if i = 5.

The ai mod 37 in the order i = 1,3, ...,15,33

up to a common nonzero scalar multiple:

1,26,0,36,1,35,31,34,11.
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A representation of GQ:

The fundamental group of the complex pro-

jective line minus three points is free on two

generators:

π1(P
1
C − {0,1,∞})

∼= Z ∗ Z.

One can consider its profinite completion:

π̂1 = lim← π1(P
1
C − {0,1,∞})/N,

where the limit is taken over subgroups N of

finite index.

There is a canonical outer action of GQ on π̂1.

In fact, Belyi showed that the homomorphism

ρ : GQ → Out π̂1

is injective.
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We focus on the induced action on the maxi-

mal pro-p quotient π(p)
1 of π̂1:

ρp : GQ → Outπ(p)
1 .

As shown by Ihara, the kernel of ρp contains

GΩ, where Ω is the maximal pro-p extension

of Q(µp) unramified outside p.

In other words, restriction to GQ(µp) induces a

map

ψp : G → Outπ(p)
1 .

Open question: Is ψp an injective map?
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A p-adic Lie algebra:

ψp gives rise to a torsion-free graded Zp-Lie
algebra gp.

Specifically, one filters π(p)
1 by its lower central

series π(p)
1 (k) to obtain a filtration on G given

by the kernels F kG of the induced maps

G → Out(π(p)
1 /π

(p)
1 (k+ 1)).

One defines

gp = ⊕∞k=1F
kG/F k+1G.

Conjecture (Deligne).The Lie algebra gp⊗Qp

is free on one generator in each odd degree
i ≥ 3.

gp ⊗ Qp is the p-adic realization of a motivic
Lie algebra (Deligne) which encodes multiple
zeta values and spaces of modular forms (Gon-
charov).
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The Lie algebra gp itself contains a rich arith-

metic structure not found in gp ⊗Qp.

Theorem 2 (S.). a. If p is regular and Deligne’s

conjecture holds at p, then gp is free on one

generator in each odd degree i ≥ 3.

b. If p is irregular and Greenberg’s pseudo-null

conjecture holds for Q(µp), then gp is not free.

Remark. The two cases in the theorem cor-

respond to exactly the cases in which G is

free/not free, and this fact is key to the proof.

Greenberg’s pseudo-null conjecture is outside

the scope of this talk. It has been proven by

McCallum for a large class of irregular primes.
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Ihara showed that there exist special nonzero

(noncanonical) elements σi ∈ grigp for i ≥ 3

odd (gr1gp = gr2gp = 0) with nontrivial image

in grigab
p .

It is these elements upon which Deligne con-

jectures that gp ⊗Qp is free.

Ihara conjectures the existence of a relation in

gr12g691 of the form:

691h = [σ3, σ9]− 50[σ5, σ7]

with h having nontrivial image in gr12gab
691.

In particular, he expects that gr12g691 is not

generated by the σi.

Note that 691 | B12.
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Theorem 3 (S.). 〈 , 〉691,12 6= 0 if and only if

Ihara’s conjecture is true.

More generally (and imprecisely), I expect that

whenever p | Bk with k < p, there is a relation

in grkgp such that the coefficients of [σi, σk−i]
are given by the pairing values ei,k.

Philosophy: relations in the Lie algebra gp arise

from relations in G.

In particular, there is a relation in G for p = 691

of the form

y691[x0, y]
a0[x1, x11]

a1[x3, x9]
a3[x5, x7]

a5

[x13, x689]
a13 . . . [x349, x353]

a349 ∈ [G, [G,G]]

and Ihara’s relation is the “image” of this re-

lation in gr12g691.
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Relationship with Modular Forms:

Let k be a positive even integer.
Let Gk denote the normalized Eisenstein series
of weight k:

Gk = −
Bk
2k

+
∞∑
n=1

σk−1(n)q
n,

where σk−1(n) =
∑

1≤d|n d
k−1, q = e2πiz.

Let p exactly divide the numerator of Bk/k.
Then there exists weight k cusp form

f =
∞∑
n=1

anq
n

for SL2(Z) which is a Hecke eigenform and
satisfies a certain mod p congruence with Gk.

Specifically, there is a prime p lying over p in
the field F generated by the coefficients an of
f such that

σk−1(n) ≡ an mod p

for all n ≥ 1.
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Consider the L-function

L(f, s) =
∞∑
n=1

ann
−s.

The ratios

ci(f) =
(i− 1)!

(−2π
√
−1)i−1

L(f, i)

L(f,1)

are elements of F for odd i with 3 ≤ i ≤ k − 3

(Shimura, Manin).

In fact, they have positive valuation at p.

Let R denote the localization of OF at p.

The images c̄i(f) of the ci(f) in pR/p2R lie in

a one-dimensional Fp-vector subspace.

Conjecture (S.). Assume that p satisfies Van-

diver’s conjecture. The ei,k = 〈ηi, ηk−i〉p,k and

c̄i(f), for i odd with 3 ≤ i ≤ k − 3, define the

same one-dimensional subspace of F
(k−4)/2
p .

Remark. The assumption of Vandiver’s con-

jecture can be removed.
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