Galois groups with restricted ramification

Romyar Sharifi

Harvard University

Unique factorization:

Let K be a *number field*, a finite extension of the rational numbers \mathbf{Q} .

The ring of integers \mathcal{O}_K of K consists of all roots in K of monic polynomials in one variable with coefficients in the integers \mathbf{Z} .

In general, \mathcal{O}_K is not a unique factorization domain (UFD).

I.e., nonzero elements need not factor uniquely as products of prime elements up to units.

Example. The ring of integers of $Q(\sqrt{-5})$ is $Z[\sqrt{-5}]$, which is not a (UFD): e.g.,

$$(1 + \sqrt{-5})(1 - \sqrt{-5}) = 3 \cdot 2.$$

(Note that the only units in $\mathbb{Z}[\sqrt{-5}]$ are ± 1 .)

The class group:

Let us define a measure of how far \mathcal{O}_K is from having unique factorization.

The set of nonzero ideals I_K of K is closed under multiplication.

Let P_K denote the subset of nonzero principal ideals.

The quotient I_K/P_K is a finite group.

Definition. We define the *class group* Cl_K of K to be I_K/P_K .

The order h_K of Cl_K is called the *class number* of K.

 \mathcal{O}_K is a UFD $\Leftrightarrow \mathcal{O}_K$ is a PID $\Leftrightarrow h_K = 1$.

Example. $h_{Q(\sqrt{-5})} = 2$, and $Cl_{Q(\sqrt{-5})}$ is generated by the image of $(2, 1 + \sqrt{-5})$.

Ramification of prime ideals:

Definition. We say that a prime ideal \mathfrak{p} of \mathcal{O}_K is *ramified* in a finite extension L/K if

$$\mathfrak{p}\mathcal{O}_L\subseteq\mathfrak{q}^2$$

for some prime ideal q of \mathcal{O}_L . Otherwise, \mathfrak{p} is *unramified*.

Only finitely many primes are ramified in L/K.

If S is the set of ramified primes of \mathcal{O}_K in L/K, we say that L/K is *unramified outside* S, or the primes in S.

Example. $Q(\sqrt{-5})$ is unramified outside 2 and 5: $2\mathbb{Z}[\sqrt{-5}] = (2, 1 + \sqrt{-5})^2$ and $5\mathbb{Z}[\sqrt{-5}] = (\sqrt{-5})^2$.

Cyclotomic fields:

For a positive integer n, we let μ_n denote the group of nth roots of unity in a fixed algebraic closure $\overline{\mathbf{Q}}$ of \mathbf{Q} .

 $\mathbf{Q}(\mu_n)$ is called the *cyclotomic field* of *n*th roots of unity.

 $\mathbf{Q}(\mu_n)/\mathbf{Q}$ is Galois with Galois group Gal $(\mathbf{Q}(\mu_n)/\mathbf{Q}) \cong (\mathbf{Z}/n\mathbf{Z})^{\times}.$

The extension $\mathbf{Q}(\mu_n)/\mathbf{Q}$ is ramified exactly at the primes dividing (the numerator of) n/2.

Regular and irregular primes:

Definition. A prime p is called *regular* if p does not divide $h_{\mathbf{Q}(\mu_p)}$. Otherwise, p is *irregular*.

Some interesting facts:

1. Let B_k denote the kth Bernoulli number, which is defined by the power series

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k.$$

p is regular if and only if p does not divide the numerator of the Bernoulli number B_k for any even k with $2 \le k \le p - 3$.

2. 37 is the smallest irregular prime, and it divides the numerator of B_{32} .

3. Kummer proved Fermat's Last Theorem for regular primes in 1850.

Galois groups:

 $G_K = \operatorname{Gal}(\overline{K}/K)$ is the Galois group of the extension of K given by its algebraic closure $\overline{K} \cong \overline{\mathbf{Q}}$.

We call G_K the *absolute Galois group* of K.

 G_K is a huge, uncountable group. However, as with any Galois group of an algebraic extension, it is *profinite*, an inverse limit of finite groups.

 $G_K = \lim_{K \to \infty} G_{L/K}$ with L/K finite Galois.

A profinite group G is a topological group, with its topology arising from the discrete topology on the inverse system chosen to define it.

We say that a profinite group G is (topologically) *finitely generated* if there is a finite set of elements of G such that the closure of the subgroup they generate is G.

 G_K is not topologically finitely generated.

Quotients of G_K :

 $G_K^{ab} = maximal abelian quotient of <math>G_K$. Equivalently, this is the Galois group of the maximal abelian extension of K.

Example. The maximal abelian extension \mathbf{Q}^{ab} of \mathbf{Q} is $\bigcup_{n\geq 1} \mathbf{Q}(\mu_n)$ and $G_{\mathbf{Q}}^{ab} \cong \lim_{\leftarrow} (\mathbf{Z}/n\mathbf{Z})^{\times}$.

 $G_K^{(p)}$ = the maximal pro-*p* quotient of G_K . A *p*-group is a finite group of *p*-power order. A pro-*p* group is an inverse limit of *p*-groups.

Let S be a set of prime ideals of K. $G_{K,S}$ = the Galois group of the maximal algebraic extension of K unramified outside S. (An algebraic extension is unramified outside S if this is true in every finite subextension.)

Example. $G_{\mathbf{Q},\emptyset} = 1$.

In general, the structure of $G_{K,S}$ is very far from known.

Class field theory: $G_{K,\emptyset}^{ab} \cong Cl_K$.

Galois group of the maximal pro-p unramified outside p extension of $Q(\mu_p)$:

Take $K = \mathbf{Q}(\mu_p)$ and S the set consisting of the unique prime above p, for an odd prime p.

Let
$$\mathcal{G} = G_{\mathbf{Q}(\mu_p),S}^{(p)}$$
.

Theorem (Koch). Let *s* denote the *p*-rank of CI_K (*i.e.*, p^s is the order of CI_K/pCI_K). The group \mathcal{G} has a minimal presentation

 $1
ightarrow \mathcal{R}
ightarrow \mathcal{F}
ightarrow \mathcal{G}
ightarrow 1$

with \mathcal{F} a free pro-p group on $s + \frac{p+1}{2}$ generators and \mathcal{R} a free pro-p group which is the normal closure of a subgroup generated by s elements.

In particular, $\mathcal{G}^{ab} \cong \mathbf{Z}_p^{\oplus (p+1)/2} \oplus \text{torsion}$, where $\mathbf{Z}_p = \lim_{\leftarrow} \mathbf{Z}/p^n \mathbf{Z}$.

The torsion in \mathcal{G}^{ab} does not lift to torsion in \mathcal{G} . However, we can ask how close it is to being torsion.
$$\begin{split} &\Delta = \mathrm{Gal}(K/\mathbf{Q}) \text{ is a cyclic group of order } p-1. \\ &\mathrm{Teichmüller \ character:} \ \omega \colon \Delta \to \mathbf{Z}_p^{\times}. \\ &\omega \text{ takes values in the } (p-1) \text{st roots of 1 in } \mathbf{Z}_p^{\times} \\ &\text{and} \end{split}$$

$$\delta(\zeta) = \zeta^{\omega(\delta)}$$

for any $\delta \in \Delta$ and $\zeta \in \mu_p$.

 Ω = maximal pro-*p* extension of *K* unramified outside *p*.

Denote also by Δ a fixed choice of lifting of Gal(K/\mathbf{Q}) to a subgroup of Gal(Ω/\mathbf{Q}).

Proposition (S.). We may choose a set of generators X of G such that for any $\delta \in \Delta$, we have $\delta x \delta^{-1} = x^{\omega(\delta)^i}$ for some *i* for each $x \in X$.

10

In particular, we note that we may decompose \mathcal{G}^{ab} into "eigenspaces" for the action of Δ .

The ω^i -eigenspaces corresponding to the nontorsion part of \mathcal{G}^{ab} are of rank 1 when i = 0 or i is odd and zero otherwise.

Vandiver's conjecture: the nonzero eigenspaces of the torsion all have i even.

We will choose our generating set X as in the proposition, and let x_i for i odd $(1 \le i \le p - 2)$ or i = 0 as above be an element which reduces to a generator of the ω^i -eigenspace of the nontorsion part of \mathcal{G}^{ab} .

An example: p = 37

37 | B_{32} and $h_{\mathbf{Q}(\mu_{37})} = 37$. The torsion part of \mathcal{G}^{ab} is $\mathbf{Z}/37\mathbf{Z}$ and lies in the ω^{32} -eigenspace.

Let $y \in X$ be a lift of a generator of this torsion group, so that $X = \{y, x_0, x_1, x_3, \dots, x_{35}\}.$

We get a relation in ${\mathcal R}$ from the following identity:

$$y^{37}[x_0, y]^{a_0}[x_1, x_{31}]^{a_1}[x_3, x_{29}]^{a_3} \dots [x_{15}, x_{17}]^{a_{15}}[x_{33}, x_{35}]^{a_{33}} \in [\mathcal{G}, [\mathcal{G}, \mathcal{G}]].$$

 $a_0 \not\equiv 0 \mod 37$ (classical Iwasawa theory). The triviality, or not, of the numbers $a_1, a_3, \ldots, a_{15}, a_{33}$ is much deeper.

A pairing on cyclotomic *p*-units:

Definition. The cyclotomic *p*-unit group C is the subgroup of K^{\times} generated by elements of the form $1 - \zeta$ with $\zeta \in \mu_p$, $\zeta \neq 1$.

As a group, \mathcal{C} has the following structure:

$$\mathcal{C} \cong \mathbf{Z}^{\oplus (p-1)/2} \oplus \mathbf{Z}/p\mathbf{Z}.$$

Let k be even with $k \leq p-2$ such that $p \mid B_k$. $A = \operatorname{Cl}_K / p \operatorname{Cl}_K$. $A^{(1-k)} = \text{the } \omega^{1-k}\text{-eigenspace of } A$.

McCallum and I defined a pairing (via a cup product in Galois cohomology)

$$\langle , \rangle_{p,k} \colon \mathcal{C} \times \mathcal{C} \to A^{(1-k)}.$$

If p satisfies Vandiver's conjecture (e.g., p < 16,000,000), then $A^{(1-k)}$ is a 1-dimensional F_p -vector space.

Conjecture (McCallum, S.). $\langle , \rangle_{p,k}$ is surjective.

We have special cyclotomic p-units for odd i:

$$\eta_i \equiv \prod_{\delta \in \Delta} (1 - \zeta^{\delta})^{\omega(\delta)^{i-1}} \mod \mathcal{C}^p.$$

Fact: $\langle \eta_i, \eta_j \rangle_{p,k} = 0$ if $i + j \not\equiv k \mod (p-1)$. Set $e_{i,k} = \langle \eta_i, \eta_{k-i} \rangle_{p,k}$.

Remark. I have given interpretations of the $e_{i,k}$ as products in *K*-theory and, conjecturally, algebraic periods of modular forms.

We further require that the $x_i \in X$ satisfy

$$x_i(\eta_i^{1/p}) = \zeta \cdot \eta_i^{1/p}$$

for a fixed choice of $\zeta \in \mu_p$, $\zeta \neq 1$.

Our example: p = 37, k = 32

There exists a choice of isomorphism

$$\phi \colon A^{(1-k)} \to \mathbf{F}_p$$

such that $\phi(e_{i,k}) = a_i$ for i = 1, 3, ..., 15, 33. (I.e., for odd i with $1 \le i \le [k - i]$, where [j] denotes the least positive residue of j modulo p - 1.)

Theorem 1 (McCallum, S.). We have $a_i \equiv 0 \mod 37$ if and only if i = 5.

The $a_i \mod 37$ in the order i = 1, 3, ..., 15, 33up to a common nonzero scalar multiple: 1, 26, 0, 36, 1, 35, 31, 34, 11.

A representation of G_Q :

The fundamental group of the complex projective line minus three points is free on two generators:

$$\pi_1(\mathbf{P}^1_{\mathbf{C}} - \{0, 1, \infty\}) \cong \mathbf{Z} * \mathbf{Z}.$$

One can consider its *profinite completion*:

$$\widehat{\pi_1} = \lim_{\leftarrow} \pi_1(\mathbf{P}^1_{\mathbf{C}} - \{0, 1, \infty\})/N,$$

where the limit is taken over subgroups ${\cal N}$ of finite index.

There is a canonical outer action of $G_{\mathbf{Q}}$ on $\widehat{\pi_1}$. In fact, Belyi showed that the homomorphism

$$\rho: G_{\mathbf{Q}} \to \operatorname{Out} \widehat{\pi_1}$$

is injective.

We focus on the induced action on the maximal pro-p quotient $\pi_1^{(p)}$ of $\widehat{\pi_1}$:

$$\rho_p \colon G_{\mathbf{Q}} \to \operatorname{Out} \pi_1^{(p)}.$$

As shown by Ihara, the kernel of ρ_p contains G_{Ω} , where Ω is the maximal pro-p extension of $\mathbf{Q}(\mu_p)$ unramified outside p.

In other words, restriction to $G_{\mathbf{Q}(\mu_p)}$ induces a map

$$\psi_p \colon \mathcal{G} \to \operatorname{Out} \pi_1^{(p)}.$$

Open question: Is ψ_p an injective map?

A *p*-adic Lie algebra:

 ψ_p gives rise to a torsion-free graded \mathbf{Z}_p -Lie algebra \mathfrak{g}_p .

Specifically, one filters $\pi_1^{(p)}$ by its lower central series $\pi_1^{(p)}(k)$ to obtain a filtration on \mathcal{G} given by the kernels $F^k \mathcal{G}$ of the induced maps

$$\mathcal{G} \to \text{Out}(\pi_1^{(p)}/\pi_1^{(p)}(k+1)).$$

One defines

$$\mathfrak{g}_p = \oplus_{k=1}^{\infty} F^k \mathcal{G} / F^{k+1} \mathcal{G}.$$

Conjecture (Deligne). The Lie algebra $\mathfrak{g}_p \otimes \mathbf{Q}_p$ is free on one generator in each odd degree $i \geq 3$.

 $\mathfrak{g}_p \otimes \mathbf{Q}_p$ is the *p*-adic realization of a motivic Lie algebra (Deligne) which encodes multiple zeta values and spaces of modular forms (Goncharov).

18

The Lie algebra \mathfrak{g}_p itself contains a rich arithmetic structure not found in $\mathfrak{g}_p \otimes \mathbf{Q}_p$.

Theorem 2 (S.). *a.* If p is regular and Deligne's conjecture holds at p, then \mathfrak{g}_p is free on one generator in each odd degree $i \ge 3$. b. If p is irregular and Greenberg's pseudo-null conjecture holds for $\mathbf{Q}(\mu_p)$, then \mathfrak{g}_p is not free.

Remark. The two cases in the theorem correspond to exactly the cases in which \mathcal{G} is free/not free, and this fact is key to the proof.

Greenberg's pseudo-null conjecture is outside the scope of this talk. It has been proven by McCallum for a large class of irregular primes. Ihara showed that there exist special nonzero (noncanonical) elements $\sigma_i \in \operatorname{gr}^i \mathfrak{g}_p$ for $i \geq 3$ odd ($\operatorname{gr}^1 \mathfrak{g}_p = \operatorname{gr}^2 \mathfrak{g}_p = 0$) with nontrivial image in $\operatorname{gr}^i \mathfrak{g}_p^{ab}$.

It is these elements upon which Deligne conjectures that $\mathfrak{g}_p\otimes \mathbf{Q}_p$ is free.

Ihara conjectures the existence of a relation in $gr^{12}g_{691}$ of the form:

$$691h = [\sigma_3, \sigma_9] - 50[\sigma_5, \sigma_7]$$

with h having nontrivial image in $gr^{12}\mathfrak{g}_{691}^{ab}$. In particular, he expects that $gr^{12}\mathfrak{g}_{691}$ is not generated by the σ_i .

Note that 691 | B_{12} .

Theorem 3 (S.). $\langle , \rangle_{691,12} \neq 0$ if and only if Ihara's conjecture is true.

More generally (and imprecisely), I expect that whenever $p \mid B_k$ with k < p, there is a relation in $\operatorname{gr}^k \mathfrak{g}_p$ such that the coefficients of $[\sigma_i, \sigma_{k-i}]$ are given by the pairing values $e_{i,k}$.

Philosophy: relations in the Lie algebra \mathfrak{g}_p arise from relations in \mathcal{G} .

In particular, there is a relation in ${\mathcal G}$ for p=691 of the form

$$\begin{split} y^{691}[x_0,y]^{a_0}[x_1,x_{11}]^{a_1}[x_3,x_9]^{a_3}[x_5,x_7]^{a_5} \\ [x_{13},x_{689}]^{a_{13}}\dots [x_{349},x_{353}]^{a_{349}} \in [\mathcal{G},[\mathcal{G},\mathcal{G}]] \\ \text{and Ihara's relation is the "image" of this relation in <math>\operatorname{gr}^{12}\mathfrak{g}_{691}. \end{split}$$

Relationship with Modular Forms:

Let k be a positive even integer.

Let G_k denote the normalized Eisenstein series of weight k:

$$G_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n,$$

where $\sigma_{k-1}(n) = \sum_{1 \le d \mid n} d^{k-1}$, $q = e^{2\pi i z}$.

Let p exactly divide the numerator of B_k/k . Then there exists weight k cusp form

$$f = \sum_{n=1}^{\infty} a_n q^n$$

for $SL_2(\mathbf{Z})$ which is a Hecke eigenform and satisfies a certain mod p congruence with G_k .

Specifically, there is a prime p lying over p in the field F generated by the coefficients a_n of f such that

$$\sigma_{k-1}(n) \equiv a_n \mod \mathfrak{p}$$

for all $n \geq 1$.

22

Consider the *L*-function

$$L(f,s) = \sum_{n=1}^{\infty} a_n n^{-s}.$$

The ratios

$$c_i(f) = \frac{(i-1)!}{(-2\pi\sqrt{-1})^{i-1}} \frac{L(f,i)}{L(f,1)}$$

are elements of F for odd i with $3 \le i \le k-3$ (Shimura, Manin).

In fact, they have positive valuation at p.

Let R denote the localization of \mathcal{O}_F at \mathfrak{p} . The images $\overline{c}_i(f)$ of the $c_i(f)$ in $\mathfrak{p}R/\mathfrak{p}^2R$ lie in a one-dimensional \mathbf{F}_p -vector subspace.

Conjecture (S.). Assume that p satisfies Vandiver's conjecture. The $e_{i,k} = \langle \eta_i, \eta_{k-i} \rangle_{p,k}$ and $\bar{c}_i(f)$, for i odd with $3 \leq i \leq k-3$, define the same one-dimensional subspace of $\mathbf{F}_p^{(k-4)/2}$.

Remark. The assumption of Vandiver's conjecture can be removed.