Galois groups
with
restricted ramification

Romyar Sharifi

Harvard University
Unique factorization:

Let K be a *number field*, a finite extension of the rational numbers \mathbb{Q}.

The *ring of integers* \mathcal{O}_K of K consists of all roots in K of monic polynomials in one variable with coefficients in the integers \mathbb{Z}.

In general, \mathcal{O}_K is not a unique factorization domain (UFD).

I.e., nonzero elements need not factor uniquely as products of prime elements up to units.

Example. *The ring of integers of $\mathbb{Q}(\sqrt{-5})$ is $\mathbb{Z}[\sqrt{-5}]$, which is not a (UFD):* e.g.,

$$(1 + \sqrt{-5})(1 - \sqrt{-5}) = 3 \cdot 2.$$

(*Note that the only units in $\mathbb{Z}[\sqrt{-5}]$ are ± 1.*)

2
The class group:

Let us define a measure of how far \mathcal{O}_K is from having unique factorization.

The set of nonzero ideals I_K of K is closed under multiplication.
Let P_K denote the subset of nonzero principal ideals.
The quotient I_K/P_K is a finite group.

Definition. We define the *class group* Cl_K of K to be I_K/P_K.

The order h_K of Cl_K is called the *class number* of K.
\mathcal{O}_K is a UFD \iff \mathcal{O}_K is a PID $\iff h_K = 1$.

Example. $h_{\mathbb{Q}(\sqrt{-5})} = 2$, and $\text{Cl}_{\mathbb{Q}(\sqrt{-5})}$ is generated by the image of $(2, 1 + \sqrt{-5})$.
Ramification of prime ideals:

Definition. We say that a prime ideal \(p \) of \(\mathcal{O}_K \) is *ramified* in a finite extension \(L/K \) if

\[
p\mathcal{O}_L \subseteq q^2
\]

for some prime ideal \(q \) of \(\mathcal{O}_L \). Otherwise, \(p \) is *unramified*.

Only finitely many primes are ramified in \(L/K \).

If \(S \) is the set of ramified primes of \(\mathcal{O}_K \) in \(L/K \), we say that \(L/K \) is *unramified outside* \(S \), or the primes in \(S \).

Example. \(\mathbb{Q}(\sqrt{-5}) \) is unramified outside 2 and 5: \(2\mathbb{Z}[\sqrt{-5}] = (2, 1 + \sqrt{-5})^2 \) and \(5\mathbb{Z}[\sqrt{-5}] = (\sqrt{-5})^2 \).
Cyclotomic fields:

For a positive integer n, we let μ_n denote the group of nth roots of unity in a fixed algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}.

$\mathbb{Q}(\mu_n)$ is called the *cyclotomic field* of nth roots of unity.

$\mathbb{Q}(\mu_n)/\mathbb{Q}$ is Galois with Galois group

$$\text{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^\times.$$

The extension $\mathbb{Q}(\mu_n)/\mathbb{Q}$ is ramified exactly at the primes dividing (the numerator of) $n/2$.
Regular and irregular primes:

Definition. A prime p is called *regular* if p does not divide $h_{Q(\mu_p)}$. Otherwise, p is *irregular*.

Some interesting facts:

1. Let B_k denote the kth Bernoulli number, which is defined by the power series
 \[
 \frac{x}{e^x - 1} = \sum_{k=0}^{\infty} \frac{B_k x^k}{k!}.
 \]
 p is regular if and only if p does not divide the numerator of the Bernoulli number B_k for any even k with $2 \leq k \leq p - 3$.

2. 37 is the smallest irregular prime, and it divides the numerator of B_{32}.

3. Kummer proved Fermat's Last Theorem for regular primes in 1850.
Galois groups:

$G_K = \text{Gal}(\overline{K}/K)$ is the Galois group of the extension of K given by its algebraic closure $\overline{K} \cong \overline{Q}$.

We call G_K the absolute Galois group of K.

G_K is a huge, uncountable group. However, as with any Galois group of an algebraic extension, it is profinite, an inverse limit of finite groups.

$G_K = \lim \leftarrow G_{L/K}$ with L/K finite Galois.

A profinite group G is a topological group, with its topology arising from the discrete topology on the inverse system chosen to define it.

We say that a profinite group G is (topologically) finitely generated if there is a finite set of elements of G such that the closure of the subgroup they generate is G.

G_K is not topologically finitely generated.
Quotients of G_K:

$G^\text{ab}_K = \text{maximal abelian quotient of } G_K$.
Equivalently, this is the Galois group of the maximal abelian extension of K.

Example. The maximal abelian extension \mathbb{Q}^ab of \mathbb{Q} is $\bigcup_{n \geq 1} \mathbb{Q}(\mu_n)$ and $G^\text{ab}_\mathbb{Q} \cong \varprojlim (\mathbb{Z}/n\mathbb{Z})^\times$.

$G^{(p)}_K = \text{the maximal pro-p quotient of } G_K$.
A p-group is a finite group of p-power order.
A pro-p group is an inverse limit of p-groups.

Let S be a set of prime ideals of K.
$G_{K,S} = \text{the Galois group of the maximal algebraic extension of } K \text{ unramified outside } S$.
(An algebraic extension is unramified outside S if this is true in every finite subextension.)

Example. $G_{\mathbb{Q},\emptyset} = 1$.

In general, the structure of $G_{K,S}$ is very far from known.
Class field theory: $G^\text{ab}_{K,\emptyset} \cong \text{Cl}_K$.

8
Galois group of the maximal pro-p unramified outside p extension of $\mathbb{Q}(\mu_p)$:

Take $K = \mathbb{Q}(\mu_p)$ and S the set consisting of the unique prime above p, for an odd prime p.

Let $\mathcal{G} = G^{(p)}_{\mathbb{Q}(\mu_p), S}$.

Theorem (Koch). Let s denote the p-rank of Cl_K (i.e., p^s is the order of $\text{Cl}_K/p\text{Cl}_K$). The group \mathcal{G} has a minimal presentation

$$1 \rightarrow \mathcal{R} \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow 1$$

with \mathcal{F} a free pro-p group on $s + \frac{p+1}{2}$ generators and \mathcal{R} a free pro-p group which is the normal closure of a subgroup generated by s elements.

In particular, $\mathcal{G}^{ab} \cong \mathbb{Z}_p^{\oplus (p+1)/2} \oplus \text{torsion}$, where $\mathbb{Z}_p = \lim \downarrow \mathbb{Z}/p^n\mathbb{Z}$.

The torsion in \mathcal{G}^{ab} does not lift to torsion in \mathcal{G}. However, we can ask how close it is to being torsion.
\(\Delta = \text{Gal}(K/Q) \) is a cyclic group of order \(p - 1 \).

Teichmüller character: \(\omega: \Delta \to \mathbb{Z}_p^\times \).

\(\omega \) takes values in the \((p - 1)\)st roots of 1 in \(\mathbb{Z}_p^\times \) and

\[\delta(\zeta) = \zeta^{\omega(\delta)} \]

for any \(\delta \in \Delta \) and \(\zeta \in \mu_p \).

\(\Omega = \) maximal pro-\(p \) extension of \(K \) unramified outside \(p \).

Denote also by \(\Delta \) a fixed choice of lifting of \(\text{Gal}(K/Q) \) to a subgroup of \(\text{Gal}(\Omega/Q) \).

Proposition (S.). We may choose a set of generators \(X \) of \(\mathcal{G} \) such that for any \(\delta \in \Delta \), we have \(\delta x \delta^{-1} = x^{\omega(\delta)^i} \) for some \(i \) for each \(x \in X \).
In particular, we note that we may decompose G^{ab} into “eigenspaces” for the action of Δ.

The ω^i-eigenspaces corresponding to the non-torsion part of G^{ab} are of rank 1 when $i = 0$ or i is odd and zero otherwise.

Vandiver’s conjecture: the nonzero eigenspaces of the torsion all have i even.

We will choose our generating set X as in the proposition, and let x_i for i odd ($1 \leq i \leq p - 2$) or $i = 0$ as above be an element which reduces to a generator of the ω^i-eigenspace of the nontorsion part of G^{ab}.
An example: \(p = 37 \)

\(37 \mid B_{32} \) and \(h_{Q(\mu_{37})} = 37 \).
The torsion part of \(G^{ab} \) is \(\mathbb{Z}/37\mathbb{Z} \) and lies in the \(\omega^{32} \)-eigenspace.

Let \(y \in X \) be a lift of a generator of this torsion group, so that \(X = \{ y, x_0, x_1, x_3, \ldots, x_{35} \} \).

We get a relation in \(\mathcal{R} \) from the following identity:

\[
y^{37} [x_0, y]^{a_0} [x_1, x_{31}]^{a_1} [x_3, x_{29}]^{a_3} \ldots [x_{15}, x_{17}]^{a_{15}} [x_{33}, x_{35}]^{a_{33}} \in [\mathcal{G}, [\mathcal{G}, \mathcal{G}]].
\]

\(a_0 \not\equiv 0 \mod 37 \) (classical Iwasawa theory).

The triviality, or not, of the numbers \(a_1, a_3, \ldots, a_{15}, a_{33} \) is much deeper.
A pairing on cyclotomic p-units:

Definition. The cyclotomic p-unit group \mathcal{C} is the subgroup of K^\times generated by elements of the form $1 - \zeta$ with $\zeta \in \mu_p$, $\zeta \neq 1$.

As a group, \mathcal{C} has the following structure:

$$\mathcal{C} \cong \mathbb{Z}^{(p-1)/2} \oplus \mathbb{Z}/p\mathbb{Z}.$$

Let k be even with $k \leq p - 2$ such that $p \mid B_k$. $A = \text{Cl}_K/p\text{Cl}_K$. $A^{(1-k)} = \text{the } \omega^{1-k}\text{-eigenspace of } A$.

McCallum and I defined a pairing (via a cup product in Galois cohomology)

$$\langle \ , \rangle_{p,k} : \mathcal{C} \times \mathcal{C} \rightarrow A^{(1-k)}.$$

If p satisfies Vandiver’s conjecture (e.g., $p < 16,000,000$), then $A^{(1-k)}$ is a 1-dimensional \mathbb{F}_p-vector space.

Conjecture (McCallum, S.). $\langle \ , \rangle_{p,k}$ is surjective.
We have special cyclotomic p-units for odd i:

$$\eta_i \equiv \prod_{\delta \in \Delta} (1 - \zeta^{\delta})^{\omega(\delta)^{i-1}} \mod C_p.$$

Fact: $\langle \eta_i, \eta_j \rangle_{p,k} = 0$ if $i + j \not\equiv k \mod (p - 1)$. Set $e_{i,k} = \langle \eta_i, \eta_{k-i} \rangle_{p,k}$.

Remark. I have given interpretations of the $e_{i,k}$ as products in K-theory and, conjecturally, algebraic periods of modular forms.

We further require that the $x_i \in X$ satisfy

$$x_i(\eta_i^{1/p}) = \zeta \cdot \eta_i^{1/p}$$

for a fixed choice of $\zeta \in \mu_p$, $\zeta \not= 1$.

14
Our example: \(p = 37, k = 32\)

There exists a choice of isomorphism

\[
\phi: A^{(1-k)} \rightarrow \mathbb{F}_p
\]

such that \(\phi(e_{i,k}) = a_i\) for \(i = 1, 3, \ldots, 15, 33\).
(I.e., for odd \(i\) with \(1 \leq i \leq [k - i]\), where \([j]\) denotes the least positive residue of \(j\) modulo \(p - 1\).)

Theorem 1 (McCallum, S.). We have \(a_i \equiv 0 \mod 37\) if and only if \(i = 5\).

The \(a_i\) mod 37 in the order \(i = 1, 3, \ldots, 15, 33\) up to a common nonzero scalar multiple: 1, 26, 0, 36, 1, 35, 31, 34, 11.
A representation of G_Q:

The fundamental group of the complex projective line minus three points is free on two generators:

$$\pi_1(P_1^1 - \{0, 1, \infty\}) \cong \mathbb{Z} \ast \mathbb{Z}.$$

One can consider its profinite completion:

$$\hat{\pi}_1 = \lim_{\leftarrow} \pi_1(P_1^1 - \{0, 1, \infty\})/N,$$

where the limit is taken over subgroups N of finite index.

There is a canonical outer action of G_Q on $\hat{\pi}_1$. In fact, Belyi showed that the homomorphism

$$\rho : G_Q \to \text{Out} \hat{\pi}_1$$

is injective.
We focus on the induced action on the maximal pro-p quotient $\pi_1^{(p)}$ of $\hat{\pi}_1$:

$$\rho_p: G_Q \to \text{Out} \pi_1^{(p)}.$$

As shown by Ihara, the kernel of ρ_p contains G_Ω, where Ω is the maximal pro-p extension of $Q(\mu_p)$ unramified outside p.

In other words, restriction to $G_{Q(\mu_p)}$ induces a map

$$\psi_p: G \to \text{Out} \pi_1^{(p)}.$$

Open question: Is ψ_p an injective map?
A p-adic Lie algebra:

ψ_p gives rise to a torsion-free graded \mathbb{Z}_p-Lie algebra \mathfrak{g}_p.

Specifically, one filters $\pi_1^{(p)}$ by its lower central series $\pi_1^{(p)}(k)$ to obtain a filtration on \mathcal{G} given by the kernels $F^k\mathcal{G}$ of the induced maps $\mathcal{G} \to \text{Out}(\pi_1^{(p)}/\pi_1^{(p)}(k + 1))$.

One defines

$$\mathfrak{g}_p = \bigoplus_{k=1}^{\infty} F^k\mathcal{G}/F^{k+1}\mathcal{G}.$$

Conjecture (Deligne). The Lie algebra $\mathfrak{g}_p \otimes \mathbb{Q}_p$ is free on one generator in each odd degree $i \geq 3$.

$\mathfrak{g}_p \otimes \mathbb{Q}_p$ is the p-adic realization of a motivic Lie algebra (Deligne) which encodes multiple zeta values and spaces of modular forms (Goncharov).
The Lie algebra g_p itself contains a rich arithmetic structure not found in $g_p \otimes Q_p$.

Theorem 2 (S.).

a. If p is regular and Deligne’s conjecture holds at p, then g_p is free on one generator in each odd degree $i \geq 3$.

b. If p is irregular and Greenberg’s pseudo-null conjecture holds for $Q(\mu_p)$, then g_p is not free.

Remark. The two cases in the theorem correspond to exactly the cases in which G is free/not free, and this fact is key to the proof.

Greenberg’s pseudo-null conjecture is outside the scope of this talk. It has been proven by McCallum for a large class of irregular primes.
Ihara showed that there exist special nonzero (noncanonical) elements $\sigma_i \in \text{gr}^i g_p$ for $i \geq 3$ odd ($\text{gr}^1 g_p = \text{gr}^2 g_p = 0$) with nontrivial image in $\text{gr}^i g_p^{ab}$.

It is these elements upon which Deligne conjectures that $g_p \otimes \mathbb{Q}_p$ is free.

Ihara conjectures the existence of a relation in $\text{gr}^{12} g_{691}$ of the form:

$$691h = [\sigma_3, \sigma_9] - 50[\sigma_5, \sigma_7]$$

with h having nontrivial image in $\text{gr}^{12} g_{691}^{ab}$. In particular, he expects that $\text{gr}^{12} g_{691}$ is not generated by the σ_i.

Note that $691 \mid B_{12}$.
Theorem 3 (S.). \(\langle , \rangle_{691,12} \neq 0 \) if and only if Ihara’s conjecture is true.

More generally (and imprecisely), I expect that whenever \(p \mid B_k \) with \(k < p \), there is a relation in \(\text{gr}^k \mathfrak{g}_p \) such that the coefficients of \([\sigma_i, \sigma_{k-i}]\) are given by the pairing values \(e_{i,k} \).

Philosophy: relations in the Lie algebra \(\mathfrak{g}_p \) arise from relations in \(\mathcal{G} \).

In particular, there is a relation in \(\mathcal{G} \) for \(p = 691 \) of the form

\[
y^{691}[x_0, y]^{a_0}[x_1, x_{11}]^{a_1}[x_3, x_9]^{a_3}[x_5, x_7]^{a_5}
\]

\[
[x_{13}, x_{689}]^{a_{13}} \ldots [x_{349}, x_{353}]^{a_{349}} \in [\mathcal{G}, [\mathcal{G}, \mathcal{G}]]
\]

and Ihara’s relation is the “image” of this relation in \(\text{gr}^{12} \mathfrak{g}_{691} \).
Relationship with Modular Forms:

Let \(k \) be a positive even integer. Let \(G_k \) denote the normalized Eisenstein series of weight \(k \):

\[
G_k = -\frac{B_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n,
\]

where \(\sigma_{k-1}(n) = \sum_{1 \leq d | n} d^{k-1} \), \(q = e^{2\pi iz} \).

Let \(p \) exactly divide the numerator of \(B_k/k \). Then there exists weight \(k \) cusp form

\[
f = \sum_{n=1}^{\infty} a_n q^n
\]

for \(SL_2(\mathbb{Z}) \) which is a Hecke eigenform and satisfies a certain mod \(p \) congruence with \(G_k \).

Specifically, there is a prime \(p \) lying over \(p \) in the field \(F \) generated by the coefficients \(a_n \) of \(f \) such that

\[
\sigma_{k-1}(n) \equiv a_n \mod p
\]

for all \(n \geq 1 \).
Consider the L-function
\[
L(f, s) = \sum_{n=1}^{\infty} a_n n^{-s}.
\]
The ratios
\[
c_i(f) = \frac{(i - 1)!}{(-2\pi \sqrt{-1})^{i-1}} \frac{L(f, i)}{L(f, 1)}
\]
are elements of F for odd i with $3 \leq i \leq k - 3$ (Shimura, Manin).
In fact, they have positive valuation at p.

Let R denote the localization of \mathcal{O}_F at p.
The images $\bar{c}_i(f)$ of the $c_i(f)$ in pR/p^2R lie in a one-dimensional \mathbb{F}_p-vector subspace.

Conjecture (S.). Assume that p satisfies Vandiver's conjecture. The $e_{i,k} = \langle \eta_i, \eta_{k-i} \rangle_{p,k}$ and $\bar{c}_i(f)$, for i odd with $3 \leq i \leq k - 3$, define the same one-dimensional subspace of $\mathbb{F}_p^{(k-4)/2}$.

Remark. The assumption of Vandiver's conjecture can be removed.