Iwasawa Theory and the Eisenstein Ideal

Romyar T. Sharifi

Max Planck Institute of Mathematics Bonn, Germany

December 18, 2003

Iwasawa Theory for Cyclotomic Fields:

<u>Iwasawa algebras</u>: $\Lambda = \mathbf{Z}_p[[\Gamma]] = \lim_{\leftarrow} \mathbf{Z}_p[\Gamma_n], \ \tilde{\Lambda} = \mathbf{Z}_p[[\tilde{\Gamma}]]$ Let $\gamma \in \Gamma$ with $\chi(\gamma) = 1 + p$. $\gamma - 1 \mapsto T$ defines $\Lambda \xrightarrow{\sim} \mathbf{Z}_p[[T]]$.

Iwasawa modules:

Any $\tilde{\Lambda}$ -module A breaks up into "eigenspaces":

$$A = \bigoplus_{i=0}^{p-2} A^{(m)}$$

with

$$A^{(m)} = \langle a \in A \mid \delta a = \omega(\delta)^m a, \delta \in \Delta \rangle.$$

Also, $A = A^+ \oplus A^-$ via complex conjugation.

The Iwasawa module X_K :

H = maximal pro-p abelian unramified extension of K, $X_K =$ Gal(H/K)Action of $\tilde{\Gamma}$ on X_K by conjugation gives X_K

the structure of a $\tilde{\Lambda}$ -module.

 $A_n = p$ -part of ideal class group of K_n $X_K \cong \lim_{\leftarrow} A_n$ (class field theory)

Let k be even with $2 \le k \le p-3$. $B_k = k$ th Bernoulli number $X_K^{(1-k)} \ne 0 \Leftrightarrow A_1^{(1-k)} \ne 0 \Leftrightarrow p \mid B_k$ (Herbrand, Ribet)

We say that (p,k) is an irregular pair if $p \mid B_k$.

 $X_K^{(k)} = 0 \Rightarrow X_K^{(1-k)}$ procyclic

Conjecture (Vandiver). $X_K^+ = 0$.

Vandiver's conjecture holds for p < 12,000,000 (Buhler, et al).

More on Iwasawa modules:

If A is a finitely generated torsion Λ -module, then there exists a pseudo-isomorphism (finite kernel and cokernel),

$$A \to \oplus_{i=1}^r \Lambda/(f_i),$$

with $f_i \in \Lambda$, $f_i \neq 0$ (Iwasawa, Serre). char_{Λ} $A = (\prod_{i=1}^{r} f_i)$ is an invariant of A.

More on X_K : X_K is a f.g. torsion Λ -module (Iwasawa). X_K^- has no p-torsion (Ferrero-Washington). $L_p(s, \omega^k)$ p-adic L-function, interpolates special values of classical L-functions.

Iwasawa Main Conjecture (Mazur-Wiles). Let $g_k \in \Lambda$ with

$$g_k((1+p)^s-1)=L_p(s,\omega^k)$$

for all $s\in {f Z}_p.$ Then $(g_k)={
m char}_\Lambda X_K^{(1-k)}.$

Iwasawa theory for Kummer extensions:

Let L be a \mathbb{Z}_p -extension of K unramified outside p, totally ramified at p, and Galois over \mathbb{Q} . $G = \operatorname{Gal}(L/K), \ \sigma \in G$ generator $I_G = (\sigma - 1) \leq \mathbb{Z}_p[[G]]$ augmentation ideal $M = \max$. unramified abelian pro-p ext. of L

 X_L is not in general a $\tilde{\Lambda}$ -module, but its quotients $I_G^t X_L / I_G^{t+1} X_L$ are.

E.g., restriction induces $X_L/I_G X_L \xrightarrow{\sim} X_K$.

Let Y_L denote the Galois group of the maximal unramified abelian pro-p extension of L in which the prime above p splits completely. $X_L \to Y_L$ is a surjection with procyclic kernel. Defining Y_K similarly, we have $Y_K = X_K$. We also have $Y_L/I_GY_L \xrightarrow{\sim} X_K$.

Multiplication defines a surjection

$$I_G/I_G^2 \otimes_{\mathbf{Z}_p} Y_L/I_G Y_L \to I_G Y_L/I_G^2 Y_L.$$

Since $I_G/I_G^2 \cong \mathbb{Z}_p$, there exists a canonical isomorphism of $\tilde{\Lambda}$ -modules

$$I_G/I_G^2 \otimes_{\mathbf{Z}_p} X_K/\mathcal{P}_{L/K} \xrightarrow{\sim} I_G Y_L/I_G^2 Y_L$$

for some subgroup $\mathcal{P}_{L/K} \leq X_K$. $\mathcal{P}_{L/K}$ can be described using cup products.

Cup products in Galois cohomology:

 $\mathcal{G}_n =$ Galois group of the maximal unramified outside p extension of K_n $\mathcal{E}_n = \mathbf{Z}_p[\mu_{p^n}, \frac{1}{p}]^{\times}$ group of p-units in K_n $A_n = p$ -part of the class group of K_n

$$\mathcal{E}_n / \mathcal{E}_n^{p^n} \hookrightarrow H^1(\mathcal{G}_n, \mu_{p^n})$$

 $H^2(\mathcal{G}_n, \mu_{p^n}) \cong A_n / p^n A_n$

The cup products

$$H^1(\mathcal{G}_n,\mu_{p^n})^{\otimes 2} \to H^2(\mathcal{G}_n,\mu_{p^n}^{\otimes 2})$$

yield pairings

$$(,)_n : \mathcal{E}_n \times \mathcal{E}_n \to A_n \otimes \mu_{p^n}.$$

 \mathcal{E}_K the pro-*p* completion of $\cup_n \mathcal{E}_n$ $\mathcal{U}_K = \lim_{\leftarrow} (\mathcal{E}_n \otimes \mathbf{Z}_p)$ universal norms Inverse limit of the pairings yields

$$(,)_K : \mathcal{E}_K \times \mathcal{U}_K \to X_K(1).$$

Conjecture 1 (McCallum-S.). The image of $(,)_K$ contains $X_K^-(1)$.

Assume L/K is defined by (the *p*-power roots of) an element $a \in \mathcal{E}_K$.

Theorem 1. $\mathcal{P}_{L/K} = (a, \mathcal{U}_K)_K(-1)$. That is, $I_G/I_G^2 \otimes_{\mathbb{Z}_p} X_K/((a, \mathcal{U}_K)_K(-1)) \cong I_G Y_L/I_G^2 Y_L.$

The goal of this talk will be:

Theorem 2. $(p, \mathcal{U}_K)_K = X_K(1)$ for p < 1000. **Corollary.** Conjecture 1 holds for p < 1000. **Corollary.** $X_L \cong Y_L \cong X_K$ for $L = K(p^{1/p^{\infty}})$ and p < 1000.

Ordinary Hecke algebras:

 $T_n = wt.$ 2 cuspidal Hecke algebra for $\Gamma_1(p^n)$ We consider Hida's ordinary Hecke algebra

$$ilde{\mathbf{T}} = \lim_{\leftarrow} (\mathbf{T}_n \otimes \mathbf{Z}_p)^{\mathsf{ord}}$$

where "ord" signifies the maximal subfactor in which U_p is a unit.

diamond operators $\langle i \rangle \in \tilde{\mathbf{T}}$ for $i \in \mathbf{Z}_p^{\times}$ \mathbf{T} eigenspace of $\tilde{\mathbf{T}}$ upon which $\langle i \rangle$ for $i \in (\mathbf{Z}/p\mathbf{Z})^{\times}$ acts by multiplication by i^{k-2} . \mathbf{T} is a $\Lambda_{\mathbf{T}} = \mathbf{Z}_p[[T]]$ -algebra, $T = \langle 1 + p \rangle - 1$. Eisenstein ideal \mathcal{I} of \mathbf{T} :

$$\mathcal{I} = (U_p - 1) + (T_l - 1 - l\langle l \rangle \mid l \neq p).$$

We have $\mathbf{T}/\mathcal{I} \cong \mathbf{Z}_p[[T]]/h_k(T)$, with

$$h_k((1+p)^{-1-s}-1) = L_p(s,\omega^k)$$

(Wiles).

The representation space:

We begin by describing work of Ohta, which provides a generalization of results of Harder-Pink and Kurihara for level 1.

Let Y denote the eigenspace of

 $\lim_{\leftarrow} H^1_{\text{ét}}(X_1(p^n), \mathbf{Z}_p)^{\text{ord}}.$

upon which $\langle i \rangle$ acts as i^{k-2} for $i \in (\mathbf{Z}/p\mathbf{Z})^{\times}$.

Fix a decomposition group D_p in $G_{\mathbf{Q}}$ at p. Let I_p be the inertia subgroup of D_p . Fix $\Delta_p \leq I_p$ with $\omega \colon \Delta_p \xrightarrow{\sim} (\mathbf{Z}/p\mathbf{Z})^{\times}$. Under Δ_p , we have $Y = Y^+ \oplus Y^-$.

 Y^+ is a free T-module of rank 1.

 $\mathcal{L}_{\mathbf{T}} = \text{quotient field of } \Lambda_{\mathbf{T}}$ $Y^{-} \otimes_{\Lambda_{T}} \mathcal{L}_{T} \text{ is a free } \mathbf{T} \otimes_{\Lambda_{T}} \mathcal{L}_{\mathbf{T}} \text{-module of rank 1.}$

The modular representation:

The action of $G_{\mathbf{Q}}$ on Y provides

$$\rho \colon G_{\mathbf{Q}} \to \operatorname{Aut}_{\mathbf{T}}(Y).$$

For $\sigma \in G_{\mathbf{Q}}$, we write

$$\rho(\sigma) = \begin{pmatrix} a(\sigma) & b(\sigma) \\ c(\sigma) & d(\sigma) \end{pmatrix},$$

 $a(\sigma) \in \operatorname{End}_{\mathbf{T}}(Y^{-}), \ b(\sigma) \in \operatorname{Hom}_{\mathbf{T}}(Y^{+}, Y^{-}), \ \dots$ We remark that $\operatorname{End}_{\mathbf{T}}(Y^{\pm}) \hookrightarrow \mathbf{T} \otimes_{\Lambda_{\mathbf{T}}} \mathcal{L}_{\mathbf{T}}.$ For $\sigma \in I_p$, we have

$$\rho(\sigma) = \left(\begin{array}{cc} a(\sigma) & 0\\ c(\sigma) & 1 \end{array}\right).$$

For $\sigma, \tau \in G_{\mathbf{Q}}$, we have

$$d(\sigma) \equiv 1 \mod \mathcal{I},$$
$$b(\sigma)c(\tau) \equiv 0 \mod \mathcal{I}.$$

In fact, let *B* (resp., *C*) denote the T-module generated by all $b(\sigma)$ (resp., $c(\sigma)$) with $\sigma \in G_{\mathbf{Q}}$. Then $BC = \mathcal{I}$.

Classical Iwasawa Theory:

Let (p, k) be an irregular pair.

Consider the maps

 $\bar{a} \colon G_{\mathbf{Q}} \to (\mathbf{T}/\mathcal{I})^{\times}$ and $\bar{b} \colon G_{\mathbf{Q}} \to B/\mathcal{I}B.$

We have a homomorphism on $G_{\mathbf{Q}}$:

$$\phi_B(\sigma) = \begin{pmatrix} \bar{a}(\sigma) & \bar{b}(\sigma) \\ 0 & 1 \end{pmatrix}$$

Let H be the fixed field of the kernel of ϕ_B . H is an unramified abelian pro-p extension of Kwith $Gal(H/K) \cong B/\mathcal{I}B$ having an ω^{1-k} -action of Δ .

By an argument on characteristic ideals, Ohta shows:

Theorem (Ohta). Gal $(H/K) = X_K^{(1-k)}$.

This yields another proof of Iwasawa's Main Conjecure.

Iwasawa theory for Kummer extensions:

Let (p,k) be an irregular pair with $p \nmid B_{p+1-k}$.

Now let $\overline{c}\colon G_{\mathbf{Q}}\to C/\mathcal{I}C$ and define

$$\phi_C(\sigma) = \left(\begin{array}{cc} \overline{a}(\sigma) & 0\\ \overline{c}(\sigma) & 1 \end{array}\right).$$

The fixed field L of the kernel of ϕ_C is an abelian pro-p extension of K which is unramified outside p and totally ramified at p.

Let $G = \operatorname{Gal}(L/K)$.

Remark. If $X_K^{(1-k)}$ is procyclic (e.g., if p < 12,000,000), then $G = G^{(k-1)} \cong \mathbb{Z}_p$ as a pro-p group.

Now define \overline{d} : $G_{\mathbf{Q}} \to (\mathbf{T}/\mathcal{I}^2)^{\times}$ and consider the homomorphism

$$\phi_D(\sigma) = \begin{pmatrix} \bar{a}(\sigma) & \bar{b}(\sigma) \\ \bar{c}(\sigma) & \bar{d}(\sigma) \end{pmatrix}.$$

We also have a homomorphism

$$\psi(\sigma) = \begin{pmatrix} 1 & \overline{c}(\sigma) & \overline{d}(\sigma) - 1 \\ 0 & \overline{a}(\sigma) & \overline{b}(\sigma) \\ 0 & 0 & 1 \end{pmatrix}$$

defining the same extension as ϕ_D . Fact: $\overline{d}([\sigma, \tau]) - 1 = \overline{c}(\sigma)\overline{b}(\tau)$ for $\sigma, \tau \in G_K$. The map $\overline{d} - 1$ yields a surjection

$$I_G/I_G^2 \otimes_{\mathbf{Z}_p} X_K^{(1-k)} \to \mathcal{I}/\mathcal{I}^2$$

This leads to the following.

Theorem 3. Assume that $p \mid B_k$ and $p \nmid B_{p+1-k}$. Then there is a canonical isomorphism

$$(I_G X_L / I_G^2 X_L)_{\widetilde{\Gamma}} \cong \mathcal{I} / \mathcal{I}^2.$$

Remark. If $X_K^{(1-k)}$ is procyclic, then $(I_G X_L / I_G^2 X_L)_{\tilde{\Gamma}} = (I_G X_L / I_G^2 X_L)^{(0)}.$

 $\overline{d}(\varphi_p^{-1}) = U_p$ for a Frobenius $\varphi_p \in D_p$ $\mathcal{U} = \mathbb{Z}_p$ -submodule of T generated by $U_p - 1$

Theorem 4. Assume that $p \mid B_k$ and $p \nmid B_{p+1-k}$. There is canonical a isomorphism

$$(I_G Y_L / I_G^2 Y_L)_{\tilde{\Gamma}} \cong \mathcal{I} / (\mathcal{U} + \mathcal{I}^2).$$

The following was verified computationally:

Theorem 5. For any irregular pair (p,k) with p < 1000, we have $\mathcal{I} = \mathcal{U} + \mathcal{I}^2$.

We conclude from this that $(p, U_K)_K = X_K(1)$ for p < 1000.

Remark: Actually, our *L* is not the Kummer extension defined by *p*, but rather by an element which pairs nontrivially with it at the level of K_1 .

Some applications:

We obtain results on the structure of many different objects (for p < 1000).

1. complete determination of the pairing (, $\,)_1$

2. determination of X_L for "most" L

3. relations in the Galois group of the maximal pro-p unramified outside p extension of $\mathbf{Q}(\mu_p)$

4. Greenberg's pseudo-nullity conj. for $Q(\mu_p)$

5. pro-p Galois Lie algebra of $P_{\overline{Q}}^{1} - \{0, 1, \infty\}$ (e.g., Ihara's p = 691 conjecture)

6. products on p-parts of K-groups of \mathbf{Z} and other cyclotomic integer rings

7. Selmer groups of modular representations