Iwasawa Theory and the Eisenstein Ideal

Romyar T. Sharifi

Max Planck Institute of Mathematics Bonn, Germany

December 18, 2003

Iwasawa Theory for Cyclotomic Fields:

p odd prime, $n \geq 1$
$\mu_{p^{n}}$ group of p^{n} th roots of unity
$\mu_{p} \infty=\cup_{n \geq 1} \mu_{p^{n}}$
$K_{n}=\mathbf{Q}\left(\mu_{p^{n}}\right), K=\mathbf{Q}\left(\mu_{p^{\infty}}\right)$

$\chi: \tilde{\Gamma} \xrightarrow{\sim} \mathbf{Z}_{p}^{\times}$cyclotomic character
$\sigma \zeta=\zeta^{\chi(\sigma)}$ for $\zeta \in \mu_{p} \infty, \sigma \in \tilde{\Gamma}$
$\chi(\Gamma)=1+p \mathbf{Z}_{p}$
$\omega: \Delta \xrightarrow{\sim}(\mathbf{Z} / p \mathbf{Z})^{\times} \hookrightarrow \mathbf{Z}_{p}^{\times}$Teichmüller character χ and ω induce characters on $G_{\mathrm{Q}}=\operatorname{Gal}(\overline{\mathrm{Q}} / \mathbf{Q})$ by first projecting to $\tilde{\Gamma}$ and Δ, respectively

Iwasawa algebras:
$\wedge=\mathbf{Z}_{p}[[\Gamma]]=\lim \mathbf{Z}_{p}\left[\Gamma_{n}\right], \tilde{\Lambda}=\mathbf{Z}_{p}[[\tilde{\Gamma}]]$
Let $\gamma \in \Gamma$ with $\chi(\gamma)=1+p$.
$\gamma-1 \mapsto T$ defines $\wedge \xrightarrow{\sim} \mathbf{Z}_{p}[[T]]$.

Iwasawa modules:
Any $\tilde{\Lambda}$-module A breaks up into "eigenspaces":

$$
A=\bigoplus_{i=0}^{p-2} A^{(m)}
$$

with

$$
A^{(m)}=\left\langle a \in A \mid \delta a=\omega(\delta)^{m} a, \delta \in \Delta\right\rangle
$$

Also, $A=A^{+} \oplus A^{-}$via complex conjugation.

The Iwasawa module X_{K} :
$H=$ maximal pro- p abelian unramified extension of $K, X_{K}=\operatorname{Gal}(H / K)$
Action of $\tilde{\Gamma}$ on X_{K} by conjugation gives X_{K} the structure of a $\tilde{\Lambda}$-module.
$A_{n}=p$-part of ideal class group of K_{n}
$X_{K} \cong \lim _{\leftarrow} A_{n}$ (class field theory)
Let k be even with $2 \leq k \leq p-3$.
$B_{k}=k$ th Bernoulli number
$X_{K}^{(1-k)} \neq 0 \Leftrightarrow A_{1}^{(1-k)} \neq 0 \Leftrightarrow p \mid B_{k}$ (Herbrand, Ribet)
We say that (p, k) is an irregular pair if $p \mid B_{k}$.
$X_{K}^{(k)}=0 \Rightarrow X_{K}^{(1-k)}$ procyclic

Conjecture (Vandiver). $X_{K}^{+}=0$.
Vandiver's conjecture holds for $p<12,000,000$ (Buhler, et al).

More on Iwasawa modules:
If A is a finitely generated torsion Λ-module, then there exists a pseudo-isomorphism (finite kernel and cokernel),

$$
A \rightarrow \oplus_{i=1}^{r} \wedge /\left(f_{i}\right)
$$

with $f_{i} \in \Lambda, f_{i} \neq 0$ (Iwasawa, Serre).
$\operatorname{char}_{\wedge} A=\left(\prod_{i=1}^{r} f_{i}\right)$ is an invariant of A.

More on X_{K} :
X_{K} is a f.g. torsion \wedge-module (Iwasawa).
X_{K}^{-}has no p-torsion (Ferrero-Washington).
$L_{p}\left(s, \omega^{k}\right) p$-adic L-function, interpolates special values of classical L-functions.

Iwasawa Main Conjecture (Mazur-Wiles).

 Let $g_{k} \in \Lambda$ with$$
g_{k}\left((1+p)^{s}-1\right)=L_{p}\left(s, \omega^{k}\right)
$$

for all $s \in \mathbf{Z}_{p}$. Then $\left(g_{k}\right)=\operatorname{char}_{\wedge} X_{K}^{(1-k)}$.

Iwasawa theory for Kummer extensions:

Let L be a \mathbf{Z}_{p}-extension of K unramified outside p, totally ramified at p, and Galois over \mathbf{Q}. $G=\operatorname{Gal}(L / K), \sigma \in G$ generator $I_{G}=(\sigma-1) \leq \mathbf{Z}_{p}[[G]]$ augmentation ideal $M=$ max. unramified abelian pro- p ext. of L

X_{L} is not in general a $\tilde{\Lambda}$-module, but its quotients $I_{G}^{t} X_{L} / I_{G}^{t+1} X_{L}$ are.
E.g., restriction induces $X_{L} / I_{G} X_{L} \xrightarrow{\sim} X_{K}$.

Let Y_{L} denote the Galois group of the maximal unramified abelian pro- p extension of L in which the prime above p splits completely. $X_{L} \rightarrow Y_{L}$ is a surjection with procyclic kernel. Defining Y_{K} similarly, we have $Y_{K}=X_{K}$. We also have $Y_{L} / I_{G} Y_{L} \xrightarrow{\sim} X_{K}$.

Multiplication defines a surjection

$$
I_{G} / I_{G}^{2} \otimes_{\mathbf{Z}_{p}} Y_{L} / I_{G} Y_{L} \rightarrow I_{G} Y_{L} / I_{G}^{2} Y_{L} .
$$

Since $I_{G} / I_{G}^{2} \cong \mathrm{Z}_{p}$, there exists a canonical isomorphism of $\tilde{\Lambda}$-modules

$$
I_{G} / I_{G}^{2} \otimes_{\mathbf{Z}_{p}} X_{K} / \mathcal{P}_{L / K} \xrightarrow{\sim} I_{G} Y_{L} / I_{G}^{2} Y_{L}
$$

for some subgroup $\mathcal{P}_{L / K} \leq X_{K}$.
$\mathcal{P}_{L / K}$ can be described using cup products.

Cup products in Galois cohomology:

$\mathcal{G}_{n}=$ Galois group of the maximal unramified outside p extension of K_{n} $\mathcal{E}_{n}=\mathbf{Z}_{p}\left[\mu_{p^{n}}, \frac{1}{p}\right]^{\times}$group of p-units in K_{n} $A_{n}=p$-part of the class group of K_{n}

$$
\begin{gathered}
\mathcal{E}_{n} / \mathcal{E}_{n}^{p^{n}} \hookrightarrow H^{1}\left(\mathcal{G}_{n}, \mu_{p^{n}}\right) \\
H^{2}\left(\mathcal{G}_{n}, \mu_{p^{n}}\right) \cong A_{n} / p^{n} A_{n}
\end{gathered}
$$

The cup products

$$
H^{1}\left(\mathcal{G}_{n}, \mu_{p^{n}}\right)^{\otimes 2} \rightarrow H^{2}\left(\mathcal{G}_{n}, \mu_{p^{n}}^{\otimes 2}\right)
$$

yield pairings

$$
(,)_{n}: \mathcal{E}_{n} \times \mathcal{E}_{n} \rightarrow A_{n} \otimes \mu_{p^{n}}
$$

\mathcal{E}_{K} the pro-p completion of $\cup_{n} \mathcal{E}_{n}$ $\mathcal{U}_{K}=\lim \left(\mathcal{E}_{n} \otimes \mathbf{Z}_{p}\right)$ universal norms Inverse limit of the pairings yields

$$
(,)_{K}: \mathcal{E}_{K} \times \mathcal{U}_{K} \rightarrow X_{K}(1) .
$$

Conjecture 1 (McCallum-S.). The image of $(,)_{K}$ contains $X_{K}^{-}(1)$.

Assume L / K is defined by (the p-power roots of) an element $a \in \mathcal{E}_{K}$.

Theorem 1. $\mathcal{P}_{L / K}=\left(a, \mathcal{U}_{K}\right)_{K}(-1)$. That is,

$$
I_{G} / I_{G}^{2} \otimes_{\mathbf{z}_{p}} X_{K} /\left(\left(a, \mathcal{U}_{K}\right)_{K}(-1)\right) \cong I_{G} Y_{L} / I_{G}^{2} Y_{L} .
$$

The goal of this talk will be:

Theorem 2. $\left(p, \mathcal{U}_{K}\right)_{K}=X_{K}(1)$ for $p<1000$.
Corollary. Conjecture 1 holds for $p<1000$.
Corollary. $X_{L} \cong Y_{L} \cong X_{K}$ for $L=K\left(p^{1 / p^{\infty}}\right)$ and $p<1000$.

Ordinary Hecke algebras:

$\mathrm{T}_{n}=$ wt. 2 cuspidal Hecke algebra for $\Gamma_{1}\left(p^{n}\right)$ We consider Hida's ordinary Hecke algebra

$$
\widetilde{\mathbf{T}}=\lim _{\longleftarrow}\left(\mathbf{T}_{n} \otimes \mathbf{Z}_{p}\right)^{\text {ord }}
$$

where "ord" signifies the maximal subfactor in which U_{p} is a unit.
diamond operators $\langle i\rangle \in \widetilde{\mathbf{T}}$ for $i \in \mathbf{Z}_{p}^{\times}$
\mathbf{T} eigenspace of $\tilde{\mathbf{T}}$ upon which $\langle i\rangle$ for $i \in(\mathbf{Z} / p \mathbf{Z})^{\times}$ acts by multiplication by i^{k-2}.
\mathbf{T} is a $\wedge_{\mathbf{T}}=\mathbf{Z}_{p}[[T]]$-algebra, $T=\langle 1+p\rangle-1$.
Eisenstein ideal \mathcal{I} of \mathbf{T} :

$$
\mathcal{I}=\left(U_{p}-1\right)+\left(T_{l}-1-l\langle l\rangle \mid l \neq p\right) .
$$

We have $\mathbf{T} / \mathcal{I} \cong \mathbf{Z}_{p}[[T]] / h_{k}(T)$, with

$$
h_{k}\left((1+p)^{-1-s}-1\right)=L_{p}\left(s, \omega^{k}\right)
$$

(Wiles).

The representation space:

We begin by describing work of Ohta, which provides a generalization of results of HarderPink and Kurihara for level 1.

Let Y denote the eigenspace of

$$
\lim _{\leftarrow} H_{\mathrm{ett}}^{1}\left(X_{1}\left(p^{n}\right), \mathbf{Z}_{p}\right)^{\mathrm{ord}} .
$$

upon which $\langle i\rangle$ acts as i^{k-2} for $i \in(\mathbf{Z} / p \mathbf{Z})^{\times}$.

Fix a decomposition group D_{p} in $G_{\mathbf{Q}}$ at p. Let I_{p} be the inertia subgroup of D_{p}.
Fix $\Delta_{p} \leq I_{p}$ with $\omega: \Delta_{p} \xrightarrow{\sim}(\mathbf{Z} / p \mathbf{Z})^{\times}$. Under Δ_{p}, we have $Y=Y^{+} \oplus Y^{-}$.
Y^{+}is a free \mathbf{T}-module of rank 1.
$\mathcal{L}_{\mathrm{T}}=$ quotient field of Λ_{T}
$Y^{-} \otimes_{\wedge_{T}} \mathcal{L}_{T}$ is a free $\mathbf{T} \otimes_{\wedge_{\mathbf{T}}} \mathcal{L}_{\mathbf{T}^{-}}$module of rank 1 .

The modular representation:

The action of $G_{\mathbf{Q}}$ on Y provides

$$
\rho: G_{\mathbf{Q}} \rightarrow \operatorname{Aut}_{\mathbf{T}}(Y)
$$

For $\sigma \in G_{\mathbf{Q}}$, we write

$$
\rho(\sigma)=\left(\begin{array}{ll}
a(\sigma) & b(\sigma) \\
c(\sigma) & d(\sigma)
\end{array}\right)
$$

$a(\sigma) \in \operatorname{End}_{\mathbf{T}}\left(Y^{-}\right), b(\sigma) \in \operatorname{Hom}_{\mathbf{T}}\left(Y^{+}, Y^{-}\right), \ldots$
We remark that End $_{\mathbf{T}}\left(Y^{ \pm}\right) \hookrightarrow \mathbf{T} \otimes_{\wedge_{\mathbf{T}}} \mathcal{L}_{\mathbf{T}}$.
For $\sigma \in I_{p}$, we have

$$
\rho(\sigma)=\left(\begin{array}{ll}
a(\sigma) & 0 \\
c(\sigma) & 1
\end{array}\right)
$$

For $\sigma, \tau \in G_{\mathrm{Q}}$, we have

$$
\begin{aligned}
d(\sigma) & \equiv 1 \bmod \mathcal{I} \\
b(\sigma) c(\tau) & \equiv 0 \bmod \mathcal{I}
\end{aligned}
$$

In fact, let B (resp., C) denote the \mathbf{T}-module generated by all $b(\sigma)$ (resp., $c(\sigma)$) with $\sigma \in G_{\mathbf{Q}}$. Then $B C=\mathcal{I}$.

Classical Iwasawa Theory:

Let (p, k) be an irregular pair.

Consider the maps

$$
\bar{a}: G_{\mathbf{Q}} \rightarrow(\mathbf{T} / \mathcal{I})^{\times} \text {and } \bar{b}: G_{\mathbf{Q}} \rightarrow B / \mathcal{I} B
$$

We have a homomorphism on $G_{\mathbf{Q}}$:

$$
\phi_{B}(\sigma)=\left(\begin{array}{cc}
\bar{a}(\sigma) & \bar{b}(\sigma) \\
0 & 1
\end{array}\right) .
$$

Let H be the fixed field of the kernel of ϕ_{B}. H is an unramified abelian pro-p extension of K with $\operatorname{Gal}(H / K) \cong B / \mathcal{I} B$ having an ω^{1-k}-action of Δ.

By an argument on characteristic ideals, Ohta shows:

Theorem (Ohta). $\operatorname{Gal}(H / K)=X_{K}^{(1-k)}$.
This yields another proof of Iwasawa's Main Conjecure.

Iwasawa theory for Kummer extensions:

Let (p, k) be an irregular pair with $p \nmid B_{p+1-k}$.
Now let $\bar{c}: G_{\mathbf{Q}} \rightarrow C / \mathcal{I} C$ and define

$$
\phi_{C}(\sigma)=\left(\begin{array}{cc}
\bar{a}(\sigma) & 0 \\
\bar{c}(\sigma) & 1
\end{array}\right) .
$$

The fixed field L of the kernel of ϕ_{C} is an abelian pro-p extension of K which is unramified outside p and totally ramified at p.

Let $G=\operatorname{Gal}(L / K)$.
Remark. If $X_{K}^{(1-k)}$ is procyclic (e.g., if $p<$ $12,000,000)$, then $G=G^{(k-1)} \cong \mathbf{Z}_{p}$ as a pro- p group.

Now define $\bar{d}: G_{\mathbf{Q}} \rightarrow\left(\mathbf{T} / \mathcal{I}^{2}\right)^{\times}$and consider the homomorphism

$$
\phi_{D}(\sigma)=\left(\begin{array}{cc}
\bar{a}(\sigma) & \bar{b}(\sigma) \\
\bar{c}(\sigma) & \bar{d}(\sigma)
\end{array}\right)
$$

We also have a homomorphism

$$
\psi(\sigma)=\left(\begin{array}{ccc}
1 & \bar{c}(\sigma) & \bar{d}(\sigma)-1 \\
0 & \bar{a}(\sigma) & \bar{b}(\sigma) \\
0 & 0 & 1
\end{array}\right)
$$

defining the same extension as ϕ_{D}.
Fact: $\bar{d}([\sigma, \tau])-1=\bar{c}(\sigma) \bar{b}(\tau)$ for $\sigma, \tau \in G_{K}$. The map $\bar{d}-1$ yields a surjection

$$
I_{G} / I_{G}^{2} \otimes_{\mathbf{Z}_{p}} X_{K}^{(1-k)} \rightarrow \mathcal{I} / \mathcal{I}^{2}
$$

This leads to the following.

Theorem 3. Assume that $p \mid B_{k}$ and $p \nmid B_{p+1-k}$. Then there is a canonical isomorphism

$$
\left(I_{G} X_{L} / I_{G}^{2} X_{L}\right)_{\tilde{\Gamma}} \cong \mathcal{I} / \mathcal{I}^{2}
$$

Remark. If $X_{K}^{(1-k)}$ is procyclic, then

$$
\left(I_{G} X_{L} / I_{G}^{2} X_{L}\right)_{\tilde{\Gamma}}=\left(I_{G} X_{L} / I_{G}^{2} X_{L}\right)^{(0)}
$$

$\bar{d}\left(\varphi_{p}^{-1}\right)=U_{p}$ for a Frobenius $\varphi_{p} \in D_{p}$
$\mathcal{U}=\mathbf{Z}_{p}$-submodule of \mathbf{T} generated by $U_{p}-1$
Theorem 4. Assume that $p \mid B_{k}$ and $p \nmid B_{p+1-k}$. There is canonical a isomorphism

$$
\left(I_{G} Y_{L} / I_{G}^{2} Y_{L}\right)_{\tilde{\Gamma}} \cong \mathcal{I} /\left(\mathcal{U}+\mathcal{I}^{2}\right)
$$

The following was verified computationally:

Theorem 5. For any irregular pair (p, k) with $p<1000$, we have $\mathcal{I}=\mathcal{U}+\mathcal{I}^{2}$.

We conclude from this that $\left(p, \mathcal{U}_{K}\right)_{K}=X_{K}(1)$ for $p<1000$.

Remark: Actually, our L is not the Kummer extension defined by p, but rather by an element which pairs nontrivially with it at the level of K_{1}.

Some applications:

We obtain results on the structure of many different objects (for $p<1000$).

1. complete determination of the pairing $(,)_{1}$
2. determination of X_{L} for "most" L
3. relations in the Galois group of the maximal pro- p unramified outside p extension of $\mathbf{Q}\left(\mu_{p}\right)$
4. Greenberg's pseudo-nullity conj. for $\mathbf{Q}\left(\mu_{p}\right)$
5. pro-p Galois Lie algebra of $\mathbf{P}_{\overline{\mathrm{Q}}}^{1}-\{0,1, \infty\}$ (e.g., Ihara's $p=691$ conjecture)
6. products on p-parts of K-groups of \mathbf{Z} and other cyclotomic integer rings
7. Selmer groups of modular representations
