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Abstract

Several authors have studied homomorphisms from first homology groups of modular
curves to K2(X), with X either a cyclotomic ring or a modular curve. These maps send
Manin symbols in the homology groups to Steinberg symbols of cyclotomic or Siegel units.
We give a new construction of these maps and a direct proof of their Hecke equivariance,
analogous to the construction of Siegel units using the universal elliptic curve. Our main
tool is a 1-cocycle from GL2(Z) to the second K-group of the function field of a suitable
group scheme over X , from which the maps of interest arise by specialization.
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1 Introduction

For a positive integer N, let Y1(N) and X1(N) denote the usual open and closed modular curves
over Q. In this paper, we provide a new perspective on two homomorphisms from the integral
homology of the C-points of X1(N) to second K-groups of the cyclotomic integer ring Z[µN ]

and the modular curve Y1(N):

ΠN : integral homology of X1(N)/C→ K2(Z[µN ])[
1
2 ] (1.1)

zN : integral homology of X1(N)/C→ K2(X1(N))[ 1
30N ]. (1.2)

The map ΠN was defined explicitly on slightly larger groups by Busuioc [Bus] and the first
author [Sha1]. The map zN was given an explicit construction in a recent preprint of Brunault
[Bru2], following earlier constructions of Goncharov [Gon1] and Brunault [Bru1] of an analo-
gous map zN⊗Q for Y (N). The p-adic realization of zN for p |N was constructed by Fukaya and
Kato in their study [FuKa] of a conjecture of the first author [Sha1]. Most of these constructions
boil down to the remarkable fact that Steinberg symbols of cyclotomic or Siegel units satisfy
relations parallel to the very simple relations satisfied by Manin symbols (although Fukaya and
Kato use norm relations among Beilinson-Kato elements and a p-adic regulator computation);
see §1.1 for more.

Our construction is different, and is analogous to the construction of Siegel units on Y1(N).
Let us specialize to the ΠN-case for a moment to give the idea of our construction, postponing
a more careful discussion to §1.2. Siegel units are pullbacks by an N-torsion section of theta
functions on the universal elliptic curve over Y1(N); these theta functions are uniquely specified
by their poles. In our situation, the role of the theta function is played by a “big” 1-cocycle
Θ on GL2(Z) that is valued in (a quotient of) K2 of the function field of G2

m. This Θ is again
characterized by its “poles”, i.e., its image under residue maps to K1 of function fields of divisors
on G2

m. We then pull its restriction to Γ0(N) back via a torsion point on G2
m to obtain a cocycle

ΘN : Γ0(N)→ K2(Q(µN)).

which underlies ΠN described above.
The construction of the map from Γ1(N) to K2(Y1(N)) is similar1, but the role of G2

m is
played by the square E2 of an elliptic curve, and then E is varied over the moduli space of
elliptic curves. Because the “big” cocycle Θ is characterized by its poles, it is easy to analyze.
In contrast, the specialized cocycle ΘN cannot be so analyzed (it has residues only at primes
above N, and these carry very little information).

In particular, we are able to prove the following (see Theorems 4.3.7 and 7.4.1 for details):

Theorem. The map ΠN is Eisenstein with respect to the prime-to-N Hecke operators.
1Our cocycle actually takes values in a second motivic cohomology group that is a quotient of K2(Y1(N)). We

largely elide this point in this introduction.
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Theorem. The map zN is equivariant for the prime-to-N Hecke operators.

These results may be considered in the context of a body of results that suggest close rela-
tionships between homology of arithmetic groups and K-groups of algebraic varieties; see, for
instance, [FKS1, Gon2, Ste, Ven]. Most relevant to our paper is the work of the first author sug-
gesting that the map induced by ΠN on an Eisenstein quotient of homology is an isomorphism
to K2(Z[µN ])

+ away from 2-parts; see Conjecture 4.3.5 for details.

1.1 Background on the maps

We describe in more detail some of the forms of the maps ΠN and zN that have appeared in
the literature. The map ΠN is most easily defined on a larger homology group relative to the
“non-infinity cusps” C◦1(N), which are those that do not lie over the infinity cusp of the modular
curve X0(N). That is, the map ΠN is the restriction of a map

Π
◦
N : H1(X1(N),C◦1(N),Z)→ K2(Z[µN ,

1
N ])⊗ZZ[1

2 ]

taking image in the slightly larger second K-group of the N-integers of Q(µN).
The integral homology relative to the cusps is generated by certain classes [u : v] of geodesics

between cusps known as Manin symbols, where (u,v) is a pair of relatively prime integers
modulo N.2 Those Manin symbols for which both u and v are nonzero generate the homology
relative to the non-infinity cusps.3 The map Π◦N was defined in [Bus, Sha1] to send each such
Manin symbol to a Steinberg symbol of cyclotomic N-units in Q(µN):

Π
◦
N([u : v]) = {1−ζ

u
N ,1−ζ

v
N},

where ζN is a primitive Nth root of unity. The Manin symbols satisfy very simple relations,
and to show this map is well defined is to verify that the relations hold at the level of Steinberg
symbols, which results from the usual symbol formula {x,1− x}= 0 for N-units x and 1− x.

In [Sha1], the first author conjectured that the p-adic realization of ΠN (i.e., its tensor product
with Zp, which we will denote by the same notation) for p dividing N is Eisenstein in the sense
that for primes ℓ ∤ N, one has

ΠN(Tℓx) = (ℓ+σℓ)ΠN(x) (1.3)

for x ∈ H1(X1(N),Zp), where Tℓ is the ℓth Hecke operator and σℓ ∈ Gal(Q(µN)/Q) is the arith-
metic Frobenius at ℓ. For primes ℓ | N, he also conjectured that ΠN(U∗ℓ x) = ΠN(x), where U∗ℓ is
the ℓth adjoint Hecke operator.

Fukaya and Kato proved this conjecture in [FuKa] by exhibiting ΠN as a specialization at
the infinity cusp of the p-adic realization of zN .4 Roughly speaking, their map zN is also the

2This generation is a consequence of the fact that Z is a Euclidean ring. For purposes of generalization, our more
abstract approach to the construction of analogues of ΠN should therefore prove useful.

3See [FuKa, 3.3.7], but note that our convention for Manin symbols is the standard one, which is to say that it
differs from that of [Sha1] and [FuKa] by application of an Atkin-Lehner involution. This accounts for the differences
with those papers in our description.

4The idea of composing a rational version of zN with a specialization at ∞ is also found in [Gon1, Section 3].
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restriction of a map on relative homology sending [u : v] to a Steinberg symbol {g u
N
,g v

N
} of

Siegel units on Y1(N). Via a regulator computation, they show that the p-adic realization of zN

is Hecke equivariant for the operators Tℓ for ℓ ∤ N and U∗ℓ for ℓ | N and they then use the fact
that the specialization-at-infinity map is Eisenstein.5 The first author has frequently expressed
a tentative expectation that the Eisenstein property should hold without passing to the p-adic
realization.

Here, we give a construction of the maps ΠN and zN without recourse to explicit symbols
or regulator computations.6 As mentioned earlier, this also allows us to prove that (1.3) holds
for all ℓ ∤ N without tensoring with Zp. Unlike in the work of Fukaya and Kato, we do not use
the Hecke equivariance of zN to study the Eisenstein property of ΠN . Rather, we consider these
maps entirely separately.

1.2 Our approach

As we have mentioned, our goal in this paper is to provide an alternate construction of the maps
ΠN and zN that is analogous to the construction of Siegel units on Y1(N) via theta functions on
the universal elliptic curve E over Y1(N). We now describe this approach in more detail.

Recall from [Kat, Proposition 1.3] that given a positive integer n prime to 6N, there is a theta-
function nθ in Q(E )× that is a unit outside of the n-torsion, and which is uniquely specified by
the properties that its divisor is n2(0)−E [n] and that it is invariant under norm maps attached
to multiplication by positive integers prime to n. Siegel units are obtained by pulling back the
theta function nθ to Y1(N) using N-torsion sections. Though these Siegel units depend upon n,
they satisfy a distribution relation that permits one to construct an “n = 1” unit, upon inverting
6N.

The analogues of theta functions in our work are parabolic 1-cocycles on GL2(Z), again
valued in second K-groups, but of the function fields of the squares of the multiplicative group
Gm over Q and the universal elliptic curve E over Y1(N). That is, the first is a 1-cocycle

Θ : GL2(Z)→ K2(Q(G2
m))/⟨{−z1,−z2}⟩, (1.4)

where GL2(Z) acts on the K-group via pullback of its right-multiplication action on G2
m, and

where zi denotes the ith coordinate function on G2
m (cf. Proposition 3.3.1). The second is a

family of 1-cocycles

nΘ : GL2(Z)→ K2(Q(E 2))⊗ZZ[ 1
30 ] (1.5)

depending upon a choice of prime n ∤ N. Using N-torsion sections, we pull back the restrictions
of these “big” cocycles on Γ1(N) to obtain ΠN and a map nzN depending on n (which we make

5Actually, they prove that the specialization-at-infinity map is Eisenstein for the prime-to-level operators and also
for the remaining operators when applied to the Beilinson-Kato elements in question.

6In fact, we do not show that our map zN satisfies the expected explicit formula. Rather, we show it holds in
the quotient by a group that dies in any standard realization and which is an artifact of making the construction
independent of an auxiliary integer.
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explicit only at the level of cocycles). As with Siegel units, upon further inverting N, we obtain
a map zN that may be understood as the n = 1 analogue of the maps nzN .

Because of the characterization of our big cocycles in terms of their residues, it is easy to
provide explicit formulas for and analyze how Hecke operators act on them. In particular, the
compatibility of the classes of these 1-cocycles with the actions of Hecke operators is verified
directly using the equivariance of residue maps for integral matrices of nonzero determinant.
The analogous properties of the specialized cocycles follow from the analogous formulas for the
big cocycles.

1.2.1 Construction of “big” cocycles

The big cocycles are constructed using three-term motivic complexes. These play the roles of
the two-term complex given by the divisor map in the construction of theta functions. Let us
describe this in more detail. Taking G to be Gm or E in the respective cases, the “motivic
complexes” are homological complexes in degrees 2, 1, and 0 of the form

K2(Q(G2))
∂2−→
⊕

D

K1(Q(D))
∂1−→
⊕

x
K0(Q(x)), (1.6)

where the maps are residue maps, and D and x vary respectively over irreducible codimension
1 and 2 cycles of G2. The first map is given on symbols by the tame symbol, and the second
map sends an element of K1(Q(D)) =Q(D)× to its divisor. These complexes carry an action of
the monoid ∆ of integral 2-by-2 matrices with nonzero determinant via pullback under the endo-
morphism of right multiplication. They then also have trace maps with respect to multiplication
by positive integers.

Much as a theta function is uniquely determined by its “poles”, or more specifically, its
norm-invariant divisor, our cocycles are uniquely determined by choices of a trace-fixed GL2(Z)-
invariant element Z of

⊕
x K0(Q(x)), which is to say a formal Z-linear sum of sections of G2.

More specifically, given a suitable choice of Z as above in the image of ∂1, we choose a lift

η ∈
⊕

D

K1(Q(D))

of Z. For γ ∈ GL2(Z), we show that γη−η ∈ im∂2, so there is a unique element

Θ
Z
γ ∈ K2(Q(G2))/ker∂2, (1.7)

with residue γη −η , and the recipe γ 7→ ΘZ
γ defines a “big” cocycle ΘZ on GL2(Z). Its coho-

mology class depends upon the choice of Z but not the choice of η (cf. Proposition 6.2.2).
In the case that G=Gm, the complex (1.6) is left exact, and the kernel of ∂2 is identified with

H2(G2
m,2). For x0 the identity in G2

m, we choose Z to be the class e of the identity element of the
GL2(Z)-fixed subgroup K0(Q(x0))∼= Z of

⊕
x K0(Q(x)). We choose η to be the class of 1− z−1

1

on the rank 1 subtorus defined by z2 = 1, though as mentioned the class of Θ=Θe is independent
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of this choice. In fact, since we take η to be trace fixed, the ambiguity inherent in taking the
quotient of K2(Q(G2

m)) by ker∂2 = H2(G2
m,2) can be further reduced to its trace-invariant part,

which is generated by {−z1,−z2}.
In the case G = E , the homology of the motivic complex (1.6) does not vanish anywhere,

but if we restrict to its trace-invariant part, then, at least upon inverting 6, it is right exact and the
image of the residue map ∂1 is the kernel of the degree map

⊕
x K0(Q(x))→Z. Since there is no

meromorphic function on an elliptic curve whose divisor is supported at the origin, the role of
1 ∈ K0(Q(x0)) in the above construction must be replaced by a slightly less canonically chosen
trace-invariant and GL2(Z)-fixed element en that is known to be in the image of ∂1, its choice
depending on an auxiliary prime n ∤ N.

Remark 1.2.1 (Toric geometry perspective). We also provide an alternate point of view on the
cocycle Θ in the Gm-case that is tied to toric geometry and which allows us to reduce the am-
biguity in Θ up to torsion of small order. As observed by Brion [Bri], the function that sends a
rational cone C ⊆ R2 to the generating function

φ(C) = ∑
(m,n)∈Z2∩C∨

zm
1 zn

2 ∈Q(z1,z2)

of the dual cone is additive with respect to subdivisions of cones. (The right-hand series analyt-
ically continues from its region of convergence to a rational function.) The differential symbol

{ f ,g} 7→ d log( f )∧d log(g)
dz1∧dz2

gives rise to a map K2(Q(G2
m))→ Q(z1,z2). We explain in Section 5 how the association C 7→

φ(C) lifts to K2(Q(G2
m)) along this map. For γ ∈ SL2(Z), the image of the cone spanned by

(1,0) and γ(1,0) is a lift of Θγ . The resulting map is only a cocycle modulo {−z1,−z2}, and we
explain in §5.4 how it can be modified to avoid even this ambiguity.

1.2.2 Specialization

To obtain our specialized cocycles, we pull back our big cocycles under N-torsion sections of
G2 of the form (1, ιN), where ιN is an N-torsion point or section of G. That is, for Gm, we take
ιN to be a primitive Nth root of unity ζN , and for E , we take ιN : Y1(N)→ E to be the universal
N-torsion section. The values Θγ for γ ∈ GL2(Z) need not be regular at (1, ιN), but they are for
γ in the congruence subgroup Γ̃0(N) of GL2(Z) consisting of matrices with bottom-left entry
divisible by N. So, we must first restrict to this group prior to taking the pullback.

For instance, in the case that G =Gm, upon pulling back via (1,ζN), we obtain a cocycle

ΘN : Γ̃0(N)→ K2(Q(µN))/⟨{−1,−ζN}⟩, (1.8)

the right-hand side being the quotient of K2(Q(µN)) by a group of order at most 2. The re-
striction of ΘN to Γ1(N) is a homomorphism taking image in the corresponding quotient of
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K2(Z[µN ]). In fact, it is easy to see that Θ is parabolic so that ΘN induces a map from the
parabolic homology of the latter group to the quotient of K2, which in turn yields ΠN .

The map nzN for Y1(N) is constructed analogously. By pulling back, we obtain a cocycle

nΘN : Γ̃0(N)→ K2(Y1(N))⊗ZZ[ 1
30 ]. (1.9)

Much as with Siegel units [Kat], upon specialization we can define a universal rational cocycle
independent of this choice. That is, the pullbacks of the resulting classes to K2(Y1(N)) satisfy
natural distribution relations in n that permit one, upon inverting N, to construct a specialized
cocycle ΘN that should be thought of as the n = 1 case of the construction; see Theorem 7.2.2.

The Eisenstein property of ΠN and Hecke equivariance of zN follow from analogous proper-
ties of the cohomology classes of the big cocycles, as do the explicit formula for ΠN that arises
from (1.3) and its analogue for zN involving Steinberg symbols of Siegel units.

We are moreover able to show the expected explicit formula for ΘN as a sum of Steinberg
symbols of Siegel units (Beilinson-Kato elements) in Proposition 7.3.1 modulo a subgroup of
K2(Y1(N)) that vanishes under any standard regulator map. It would be desirable to eliminate
this last ambiguity.

1.2.3 Relationship to other topics in the literature

Our construction does not stand in isolation but is related to a rich body of theory that has been
developed in different contexts. It is particularly notable that in both cases studied here, one can
view the class of the big cocycle Θ as arising from a class in equivariant motivic cohomology.
We briefly describe this class in the Gm-case in §5.5.

The equivariant class corresponding to Θ provides a kernel to pass between cohomology of
Γ1(N) and various K-groups. Our situation is formally similar to the theory of reductive dual
pairs, where the theta-function provides a kernel to pass between automorphic forms on different
groups, and in fact our proofs of Hecke equivariance are formally similar to the arguments about
theta kernels. The idea of using an equivariant class as a kernel has been used in other contexts,
for example in Soulé’s work [Sou] on the Chern character in algebraic K-theory.

Our paper is also related to a number of recent works constructing classes in different flavors
of equivariant cohomology [BHYY, BCG, KiSp]. The class most relevant to us is the Eisenstein
symbol studied in [Bei, Fal], but constructed here equivariantly. The possibility of such an
equivariant refinement was observed in a different context by Nekovář and Scholl [NeSc, §13].
A closely related story is the theory of polylogarithms [BeLe, HuKi], or again, more precisely,
the equivariant version of such a theory, as is discussed in [BKL, §3.7].

Our goals are, however, rather different than those of the papers mentioned above: namely,
we aim to develop a framework optimized for the analysis of (1.1) and (1.2), with an emphasis
on the explicit description of these maps by symbols. This framework can certainly be extended
to study other interesting examples as well, such as relating the first homology of Bianchi spaces
and Steinberg symbols of elliptic units, or relating the second homology of locally symmetric
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spaces for GL3 and Steinberg symbols of three Siegel units, as proposed in [FKS1, §4.2]. When
working in sufficient generality, it will likely be fruitful to systematically proceed in an equiv-
ariant fashion.

1.3 An outline

We briefly summarize the contents of the paper. We start by recalling and establishing certain
constructions of motivic cohomology useful to our study in Section 2. Most importantly, we
employ coniveau spectral sequences to construct Gersten-type complexes in Milnor K-theory,
paying special attention to the case of the square of a commutative group scheme.

The next three sections treat the case of G2
m. In Section 3, we construct the big cocycle Θ

of (1.4). We derive an explicit formula for Θ in Proposition 3.3.2 and study its behavior under
Hecke operators in Proposition 3.4.4. We then specialize Θ at a torsion point to construct the
cyclotomic cocycle ΘN of (1.8) in Section 4, deriving its explicit formula (Proposition 4.2.4) and
its transformation under Hecke operators (Theorem 4.2.11) from the results on Θ. We recover
the map ΠN of (1.1) from ΘN and verify its Eisenstein property in Theorem 4.3.2. Section 5
has a rather different flavor: in it, we examine the construction of Θ through the lens of toric
geometry. The main tool is Proposition 5.2.2, which constructs a map from the chain complex
of the circle to the motivic complex.

In the final two sections of the paper, we turn to the more technically demanding case of
E 2. In Section 6, we construct the big cocycles nΘ of (1.5) for primes n ∤ N, derive an explicit
formula for them in Theorem 6.4.1, and demonstrate their Hecke equivariance in Theorem 6.5.4.
In Section 7, we specialize these cocycles nΘ using an N-torsion section to obtain the cocycles

nΘN of (1.9). We construct a “universal” cocycle ΘN independent of n in Theorem 7.2.2, and
we derive an explicit formula for it in Proposition 7.3.1. Finally, in Theorem 7.4.1, we construct
the map zN of (1.2) and establish its Hecke equivariance.
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2 Preliminaries on motivic cohomology

We shall recall basic properties of motivic cohomology groups in §2.1 and coniveau spectral
sequences in §2.2. We shall use these coniveau spectral sequences to construct Gersten-type
complexes in Milnor K-theory that will be central to our later study, paying special attention to
the case of the square of a commutative group scheme.

In §2.3, we recall the trace maps which will allow us to take fixed parts. In §2.4, we discuss
the particular case of the square of a commutative group scheme of interest to us, introducing
our complexes that compute motivic cohomology and various quasi-isomorphic subcomplexes
of motivic cohomology groups.

2.1 Motivic cohomology

We shall define motivic cohomology using Bloch’s cycle complexes: see for instance [Blo1,
Blo2, Lev1, Lev2]. This has a certain psychological advantage for us in that it allows us to think
of our classes as coming from cycles. However, which theory of motivic cohomology is used
does not matter in our final results, which concern smooth schemes over perfect fields.

Let Y denote a quasi-projective scheme of finite type over a perfect field F . For nonnegative
integers j and k, let zk(Y, j) denote the group of codimension k cycles in Y ×∆ j (the F-fiber
product) that meet Y ×Φ for each face Φ of the algebraic j-simplex ∆ j over F properly. Via
alternating sums of face maps, the zk(Y, ·) form a homological complex with zk(Y, j) in degree j.
This is Bloch’s cycle complex for Y ; its homology groups are called higher Chow groups. These
complexes admit pullbacks by flat maps and pushforwards by proper maps [Blo1, Proposition
1.3].

For any i ∈ Z, we set
H i(Y,k) = H2k−i(zk(Y, ·)).

We also set H i(Y,k) = 0 for negative integers k. If Y is smooth, then H i(Y,k) is naturally
isomorphic to the ith motivic cohomology group of Y with Z(k)-coefficients in the sense of
Voevodsky [Voe] (see [MVW, Theorem 19.1]):7

H i(Y,k)∼= H i(Y,Z(k)).

As such, we will refer to the groups H i(Y,k) themselves as motivic cohomology groups. (This
is slightly nonstandard notation, which hopefully makes some of the typography easier to read.)

We briefly summarize a number of standard properties of these groups. To start with, as a
consequence of the strong moving lemma of Bloch [Blo2, Theorem 0.1], they admit arbitrary
pullbacks (see [Blo1, Theorem 4.1]). They also satisfy:

• if Y =
∏t

h=1Yh is a finite disjoint union of F-schemes, then H i(Y,k)∼=
⊕t

h=1 H i(Yh,k);

7For general Y and F admitting resolution of singularities, they are isomorphic to motivic Borel-Moore homology
groups [MVW, Theorem 19.18]

9



• H i(Y,k) ∼= H i(Y ×A1,k) via pullback by the projection morphism Y ×F A1 → Y (see
[Blo1, Theorem 2.1]);

• H0(Y,0)∼= Z if Y is connected and H i(Y,0) = 0 for i ̸= 0;

• if Y is smooth, then H1(Y,1) is naturally isomorphic to the group of global units on Y , and
H2(Y,1) is naturally isomorphic to the Picard group of Y , while H i(Y,1) = 0 for i /∈ {1,2}
(see [MVW, Corollary 4.2]);

• if Y is smooth, then H i(Y,k) = 0 for i > k+dimY (see [MVW, Theorem 3.6]);

• if Y is a smooth variety over F , then H i(Y,k) = 0 for i > 2k (see [MVW, Theorem 19.3]);

• if f : X → Y is a finite locally free morphism of quasi-projective F-schemes of finite type
(so proper of relative dimension zero), then f∗ f ∗ is multiplication by the degree of f (cf.
[Sta, Lemma 02RH]).

Suppose that Y is equidimensional. Then, for any closed F-subscheme ρ : Z → Y of pure
codimension c and its complement ι : U → Y , there is an exact Gysin sequence

· · · → H i(Y,k) ι∗−→ H i(U,k) ∂−→ H i−2c+1(Z,k− c)
ρ∗−→ H i+1(Y,k)→ ··· .

We refer to the map ∂ as a residue map. It results from the distinguished triangle determined
by the left exact sequence of complexes given by pushforward by ι and pullback by ρ given by
Bloch’s moving lemma.

Motivic cohomology also has cup products

∪ : H i(Y,k)×H i′(Y,k′)→ H i+i′(Y,k+ k′),

which can be constructed by pulling back an external product via the diagonal [Blo1, §5]. There
is then an isomorphism of graded rings

∞⊕
i=0

KM
i (F)

∼−→
∞⊕

i=0

H i(F, i)

induced by the standard identifications of both sides with Z and F× in degrees 0 and 1 (see
[MVW, Theorem 5.1 and Lemma 5.6]). Recall that the canonical homomorphism KM

i (F)→
Ki(F) to the ith algebraic K-group of F is an isomorphism for i ≤ 2, the case of i = 2 being
Matsumoto’s theorem.

We will need to compare compositions of pushforwards and pullbacks. For instance, we
shall often employ the following in the case that the underlying schemes are spectra of fields
and i = k, in which case the assertion is one of Milnor K-theory (see also [Ros, Rule 1c, p. 329]
for a direct formulation of this assertion, noting Theorem 1.4 therein).
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Lemma 2.1.1 (Base change). Suppose that

X ′ X

Y ′ Y

πX

f ′ f

πY

is a Cartesian diagram of smooth, equidimensional quasi-projective schemes of finite type over
F, with πY flat and f proper. Then πX is flat, f ′ is proper, and

( f ′)∗π∗X = π
∗
Y f∗

as morphisms H i(X ,k)→ H i+2c(Y ′,k), where c = dimY −dimX is the relative dimension of f .

Proof. The assertions regarding πX and f ′ are standard. Since πX and πY are flat, these mor-
phisms are already defined on cycles by taking inverse images and images, so they are defined
on the terms of Bloch’s cycle complexes, and they are compatible with the boundary maps
(cf. [Blo1, Proposition 1.3]). The stated equality of compositions then already holds at the level
of complexes (cf. [Ful, Proposition 1.7]).

Corollary 2.1.2 (Projection formula). Let f : X→Y be a proper, relative dimension c morphism
of smooth, equidimensional quasi-projective schemes of finite type over F, and let α ∈ H i(X ,k)
and β ∈ H i′(X ,k′). Then

f∗(α ∪ f ∗(β )) = f∗(α)∪β ∈ H i+i′+2c(X ,k+ k′).

Proof. We need only apply Lemma 2.1.1 to the cartesian square

X X×Y

Y Y ×Y,

(1× f )◦∆X

f f×1

∆Y

where ∆X and ∆Y are the diagonal embeddings of X and Y , respectively.

We also have the following compatibility of residues with transfers and inclusions of fields.

Lemma 2.1.3. Let E/F be a finite extension of fields. Then for v a discrete valuation on F, one
has

∂v ◦NE/F = ∑
w|v

Nk(w)/k(v) ◦∂w

as morphisms KM
n (E)→KM

n−1(k(v)) on Milnor K-theory; the sum on the right is over valuations
w on E extending v, the symbols ∂v and ∂w are the residue maps on Milnor K-theory induced by
the valuations v and w, and N denotes transfer in Milnor K-theory.
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Similarly, for each w | v as above, we have

∂w ◦ ιE/F = ek(w)/k(v) · ιk(w)/k(v) ◦∂v

as morphisms KM
n (F)→ KM

n−1(k(w)), where ι denotes a map on Milnor K-theory induced by
inclusions of fields, and ek(w)/k(v) is the ramification index.

Proof. This is stated (without proof, but with references) in [Ros, Theorem 1.4]; see in particular
Rules 3b and 3cs therein.

2.2 Coniveau spectral sequences

Let us recall the coniveau spectral sequence for motivic cohomology. We refer to [Deg], which
contains many of the details required to set this up. The primary role of this spectral sequence
is that it provides complexes that compute motivic cohomology in our situations of interest, and
these are also manifestly equivariant for the automorphism group of the ambient variety.

Continuity properties of motivic cohomology [MVW, Lemma 3.9] imply that for a finite
type smooth connected variety Y over a field F with function field k(Y ), we have

H p(k(Y ),q)∼= lim−→
U⊂Y

H p(U,q),

where the limit is taken over open subvarieties U of Y .8

For U as above and any irreducible divisor D such that D∩U is nonempty, there is a residue
homomorphism

H p(U− (D∩U),q)→ H p−1(D∩U,q−1).

Consider the collection of open sets U such that D∩U is smooth and nonempty. The collection
of sets U − (D∩U) is cofinal in open sets on Y , and the collection of D∩U is cofinal in open
sets on D. Therefore, the residue maps for U in the collection induce a residue map

H p(k(Y ),q)→ H p−1(k(D),q−1). (2.1)

The latter map is determined by the field k(Y ) and the valuation v on it which cuts out D in Y (see
[Deg, Lemma 5.4.5]). When p = q, it is the residue in Milnor K-theory (see [Deg, Proposition
6.2.3]).

With these preliminaries in hand, we recall the coniveau spectral sequence for n≥ 0.

Theorem 2.2.1. There is a right half-plane spectral sequence with E1-page

E p,q
1 =

⊕
x∈Yp

Hq−p(k(x),n− p)⇒ H p+q(Y,n),

where Yp denotes the set of points of Y of codimension p and the differentials are residue maps.

8This isomorphism is not a tautology, as the definition of motivic cohomology involves the choice of base scheme:
here, on the left, it is k(Y ), whereas on the right, it is F .
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The coniveau spectral sequence essentially carries the information of “all Gysin sequences at
once” and is a limit of spectral sequences attached to these Gysin sequences. We briefly explain
its derivation: attached to a decreasing system Z = (Zp)p∈Z of closed F-subschemes of Y with
each Zp−Zp+1 smooth, Zp = Y for p≤ 0, each Zp with 1≤ p≤ n of pure codimension p, and
Zp =∅ for p > n, we have Gysin sequences

· · · → H i(Zp,n− p)→ H i(Zp−Zp+1,n− p−1) ∂−→ H i−1(Zp+1,n− p−1)→ ··· (2.2)

for 0≤ p≤ n−1. Setting Dp,q = Hq−p(Zp,n− p) and E p,q = Hq(Zp−Zp+1,n), the exact couple
(Dp,q,E p,q) determined by the exact sequences of (2.2) gives rise to a convergent right half-plane
spectral sequence E(Z) with E1-page

E p,q
1 (Z) = Hq−p(Zp−Zp+1,n− p)⇒ E p+q(Z) = H p+q(Y,n).

Note that the qth row of the E1-page of this spectral sequence E(Z) is a complex the form

Hq(Y −Z1,n)
∂−→ Hq−1(Z1−Z2,n−1) ∂−→ ·· · ∂−→ Hq−n(Zn,0).

Our convention will be that pth term in this complex has homological degree the twist n− p+1.
If we have two collections Z′ = (Z′p)p and Z = (Zp)p of closed subschemes as above with

each Z′p a closed subscheme of Zp, then we obtain morphisms E1
p,q(Z)→ E1

p,q(Z
′) via composi-

tion j∗ι∗ of pushforward and pullback along

Z′p−Z′p+1
ι−→ Zp−Z′p+1

j←− Zp−Zp+1

(with ι a closed immersion and j an open immersion). In particular, we can take direct limits of
the spectral sequences over directed sets of such collections. If we use the collection of all Z,
then we obtain the coniveau spectral sequence.

The row for q = n in the E1-page of the coniveau sequence is a homological complex K

given in degrees n through 0 by

K= K(n)(Y ) : KM
n k(Y )→

⊕
x∈Y1

KM
n−1k(x)→ ·· · →

⊕
x∈Yn

KM
0 k(x). (2.3)

It follows from Lemmas 2.1.1 and 2.1.3 that pushforwards by proper maps and pullbacks by flat
maps induce morphisms between these sequences via transfer maps and the maps induced by
inclusions of fields, respectively, on Milnor K-theory. In this paper, we employ this complex for
n = 2. So, let us describe this case in more detail.

Example 2.2.2. Suppose that n = 2. Then the E1-terms of the coniveau sequence in the range

13



0≤ p≤ 2 and 0≤ q≤ 2 look like this:

(q = 2) H2(k(Y ),2)︸ ︷︷ ︸
K2k(Y )

⊕
D H1(k(D),1)︸ ︷︷ ︸

K1k(D)

⊕
x H0(k(x),0)︸ ︷︷ ︸

K0k(x)

(q = 1) H1(k(Y ),2) 0 0

(q = 0) H0(k(Y ),2) 0 0

(p = 0) (p = 1) (p = 2).

where the direct sums are over divisors D and codimension 2 points x.
Except possibly those with p = 0 and q < 0, all other terms vanish, recalling that the motivic

cohomology H i(F,k) of a field F vanishes when i > k. In particular, the spectral sequence
degenerates, and the row

K= K(2)(Y ) : K2k(Y ) ∂2−→
⊕

D

K1k(D)
∂1−→
⊕

x
Z

is a complex in homological degrees 2, 1, and 0 computing the cohomology groups H2(Y,2),
H3(Y,2), and H4(Y,2), respectively.

As noted after (2.1), the D-component of the map ∂2 is given by the tame symbol in K-theory

{ f ,g} 7→ (−1)v( f )v(g)gv( f ) f−v(g) (2.4)

for the valuation v attached to D. The map ∂1 takes the divisor of f ∈ k(D)× (i.e., yielding
the order of vanishing at f in each K0k(x) ∼= Z for x ∈ D), which we interpret in the sense of
intersection theory if D is not smooth.

Remark 2.2.3. Suppose that n≤ 2. For any (connected) open subscheme U of Y , the maps

Hn(U,n)→ Hn(k(Y ),n)∼= KM
n k(Y )

are injective, as follows for n = 2 from the form of the coniveau spectral sequence for U in Ex-
ample 2.2.2, noting that k(U) = k(Y ) (and for n≤ 1 more easily). Accordingly, we will say that a
class in KM

n k(Y ) is defined on U if it lies in the image of the morphism Hn(U,n)→Hn(k(Y ),n).
Given a class in KM

n k(Y ) defined on U and a closed point x ∈U , it is then meaningful to special-
ize κ to x via pullback, producing a class in KM

n k(x).

2.3 Trace maps

Let G be a smooth, connected commutative group scheme over our base smooth variety Y over
F . Let U be a nonempty open F-subscheme of a closed F-subscheme of G of pure codimension.
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Multiplication by any positive integer m defines a morphism m : m−1U →U . Pushforward by
the finite map given by multiplication by m on G induces a map

H i(m−1U,k)→ H i(U,k).

If m−1U is a subscheme of U , then precomposing the pushforward by m with pullback under
inclusion gives a morphism

[m]∗ : H i(U,k)→ H i(U,k)

denoted by the same symbol, which we refer to as a trace map for m. (The reader might compare
with [KiRo, Definition 2.1.1].)

In the remainder of this paper, we will frequently be interested in the “fixed parts” of motivic
cohomology groups, comprising all elements fixed by all (but finitely many) trace maps [p]∗ for
p prime not equal to the characteristic of F . This frequently isolates a subspace of elements of
geometric significance.

Example 2.3.1. Let z denote the coordinate function on G =Gm over F . Choose m not divisible
by the characteristic of F , and suppose that U open in G satisfies m−1U ⊂U . The map [m]∗ on
H1(U,1)⊂ F(z)× is characterized by the property that for f ∈ H1(U,1) and α ∈U(F)⊆ F×

([m]∗ f )(α) = ∏
β m=α

f (β ),

with the product taken over mth roots of α inside an algebraic closure of F . The pullback [m]∗

is given more simply by
([m]∗ f )(α) = f (αm).

In particular, for U =Gm−{1}, the norm map [m]∗ fixes 1−z in H1(Gm−{1},1), as follows
from the calculation

m−1

∏
i=0

(1−ζ
i
mz1/m) = 1− z, (2.5)

where ζm denotes a primitive mth root of unity. (In fact, 1− z is [m]∗-fixed even for m divisible
by charF .)

Example 2.3.2. Take two smooth connected commutative group schemes G1 and G2 over F ,
and set G = G1×G2. For ν j ∈ H i j(G j,k j) with i j ∈ Z and k j ≥ 0, define the exterior product
ν1 ⊠ ν2 ∈ H i1+i2(G,k1 + k2) as the cup product π∗1 ν1 ∪ π∗2 ν2, with π j : G→ G j the projection
maps. We then have

[m]∗(ν1 ⊠ν2) = [m]∗ν1 ⊠ [m]∗ν2. (2.6)

(To verify this from basic properties, factor the multiplication-by-m map [m] as a product of
corresponding maps [m]1 and [m]2 in the first and second coordinates. Then (2.6) follows from
the equality

[m]1∗(π
∗
1 ν1∪π

∗
2 ν2) = [m]1∗(π

∗
1 ν1∪ [m]∗1π

∗
2 ν2) = [m]1∗π

∗
1 ν1∪π

∗
2 ν2 = π

∗
1 [m]∗ν1∪π

∗
2 ν2,
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where the middle equality is the projection formula of Lemma 2.1.2, together with the analogous
assertion with the roles of first and second variables switched.)

The maps [m]∗ commute with each other, with pullback to open subschemes, with pushfor-
ward by inclusion of closed subschemes, and with residue maps in Gysin sequences (see [KiRo,
§2.1]). They also induce a self-map of the E1-page of the coniveau spectral sequence of Theorem
2.2.1.

Remark 2.3.3. For x ∈ Gp (i.e., a codimension p point) and y ∈ Gp with my = x, the trace map

[m]∗ :
⊕
y∈Gp

KM
n−pk(y)→

⊕
x∈Gp

KM
n−pk(x)

is the sum of norm maps associated to the induced inclusions k(x) ↪→ k(y) for x,y ∈ Gp with
my = x. By [Hes, Lemma 14], this is compatible with residues, so with differentials on the E1-
page of the coniveau sequence. In particular, we have trace maps on our complexes K(n)(G) of
(2.3).

2.4 Powers of commutative group schemes

If we start with a smooth, equidimensional quasi-projective scheme Y of finite type over Y ,
then instead of taking a limit of motivic cohomology groups over all open subvarieties of Y ,
it is natural to use only those subvarieties which are themselves defined over Y . As in Section
2.2, we have a coniveau-type spectral sequence for this limit. We are actually interested in only
very special cases with finer structure. Correspondingly, we consider here complements of much
smaller collections of closed subsets defined over Y and limits thereof.

Now let us fix n≥ 1 and let Y = Gn be the nth power of a smooth, connected commutative
group scheme G of relative dimension 1 over Y , such as Gm/Y or a smooth family of elliptic
curves over Y . We use throughout the convention that the monoid

∆ = Mn(Z)∩GLn(Q)

of integral matrices of nonzero determinant acts by right multiplication on Gn. E.g., if n = 2 and(
a b
c d

)
∈ ∆, then for any g1,g2 ∈ G, we have

(g1,g2) ·
(

a b
c d

)
= (ga

1gc
2,g

b
1gd

2). (2.7)

This being a right action, the monoid ∆ then acts on the left on the motivic cohomology groups
H i(Gn,k) by pullback.

Even better, ∆ acts on the left on the complex K= K(n)(Y ) of (2.3), also by pullback. That
is, if x ∈ Yq is a codimension q point of Y = Gn, δ ∈ ∆, and y ∈ Yq is such that y · γ = x,
then pullback yields a map γ∗ : k(x)→ k(y) of residue fields, and this induces γ∗ : KM

n−qk(x)→
KM

n−qk(y). The pullback map on Kn−q is the sum of these maps, and the residue maps are clearly
equivariant for this action.
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Now let us focus on the case n = 2 of interest to us. We consider divisors of the form

Sα = Si, j = ker
(

G2 z j
1z j

2−−→ G
)

(2.8)

for nonzero α = (i, j) ∈ Z2. Then Si, j is connected if and only if i and j are relatively prime.
Take a finite indexing set I ⊂Z2−{(0,0)} with at least two elements and containing at most

one representative of each element of P1(Q). We set

SI =
⋃
α∈I

Sα and UI = G2−SI,

where we regard SI as a closed subscheme of G2 with its reduced scheme structure and UI as an
open subscheme of G2

m. We then consider the union of pairwise intersections

TI =
⋃

α,β∈I
α ̸=β

(Sα ∩Sβ ),

which is a finite subgroup scheme of G2 by our choice of I. Let

S◦I = SI−TI

so that S◦I is the disjoint union of the smooth subschemes S◦α = Sα ∩S◦I for α ∈ I.
This fits into the setting above for n = 2 with Z1 = SI and Z2 = TI , so Z0− Z1 = UI and

Z1−Z2 = S◦I . We obtain a spectral sequence having the following terms in degrees (p,q) with
0≤ p≤ 2 and 0≤ q≤ 2:

(q = 2) H2(UI,2) H1(S◦I ,1) H0(TI,0)

(q = 1) H1(UI,2) 0 0

(q = 0) H0(UI,2) 0 0

(p = 0) (p = 1) (p = 2).

This spectral sequence maps to the coniveau sequence detailed in Example 2.2.2 (with Y
replaced by G2). It follows from Remark 2.2.3 that each of the complexes

KI : H2(UI,2)→ H1(S◦I ,1)→ H0(TI,0)

injects quasi-isomorphically into the big complex

K : K2(k(G2))→
⊕

D

K1k(D)→
⊕

x
K0k(x).
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If we order our indexing sets by I ≤ I′ if UI′ ⊆UI , then the limit complex lim−→I
KI is also a

quasi-isomorphic subcomplex of K. The constructions in this paper can all be carried out using
this complex, which is just large enough to allow for the definition of Hecke actions on GL2(Z)-
cocycles, in that it is preserved under the pullback action of the monoid ∆ = M2(Z)∩GL2(Q).

3 The square of the multiplicative group

In this section, we shall define a cocycle

Θ : GL2(Z)−→ K2(Q(G2
m))/everywhere regular classes,

where “everywhere regular” means the image of H2(G2
m,2). We will primarily work over the

base field Q, but on occasion we will need to work over a finite base field. We follow the notation
for motivic cohomology of Section 2.1.

In §3.1, we begin by computing the motivic cohomology of Gr
m for r ≥ 1. In §3.2, we

introduce explicit symbols in the terms of our motivic complex to be used in the construction.
The parabolic cocycle Θ is constructed in §3.3, and its explicit formula and its parabolicity are
verified using its characterizing property. In §3.4, we then exhibit an Eisenstein property of the
class of Θ for Hecke operators of all prime levels.

3.1 Motivic cohomology of Gr
m

Let z denote the coordinate function on the multiplicative group Gm over a field F , normalized so
that the value of z at the identity element is 1. The motivic cohomology of Gm involves classes
directly constructed from −z, together with classes pulled back from the motivic cohomology
of SpecF itself. We extend this description to powers of Gm.

First, we construct suspension isomorphisms in motivic cohomology. Recall the definition
of exterior product from Example 2.3.2.

Proposition 3.1.1. Let Y denote an equidimensional quasi-projective scheme of finite type over
F. There is a natural isomorphism

H i(Y,k)⊕H i−1(Y,k−1) ∼−→ H i(Gm×Y,k),

where the map on the first summand is pullback under projection to the first factor and the map
on the second summand is left exterior product with −z, considered as a class in H1(Gm,1).

The reason for choosing−z, as opposed to z, will be made clear in Lemma 4.1.1. This result
is well known and corresponds to the “fundamental theorem” of algebraic K-theory (proved for
K0 and K1 by Bass and in general by Quillen).

18



Proof. Consider the canonical embedding ι : Gm×Y ↪→ A1×Y given by the usual embedding
in the first coordinate and the identity in the second. The Gysin sequence has the form

· · · → H i(A1×Y,k)→ H i(Gm×Y,k) ∂−→ H i−1(Y,k−1)→ ··· .

As noted in §2.1, the pullback H i(Y,k)→ H i(A1×Y,k) by the projection map is an isomor-
phism. Thus, it suffices to show that ∂ is split by a map on the right-hand summand in the
theorem, and this follows from ∂ (−z⊠ x) = ∂ (−z)⊠ x = x for x ∈ H i−1(Y,k−1).

Corollary 3.1.2. Let Y denote an equidimensional quasi-projective scheme of finite type over a
field F, and let r ≥ 1. There is a natural isomorphism

H i(Gr
m,k)∼=

min(k,r)⊕
j=0

H i− j(F,k− j)(
r
j).

Proof. This follows by induction on r by iterating Proposition 3.1.1, i.e., taking Y =Gr−1
m in the

inductive step. Note that H i− j(F,k− j) = 0 if k < j, so the direct sum stops at the minimum of
k and r.

Since H i(F,k) = 0 for i > k, we obtain in particular:

Corollary 3.1.3. The groups H i(Gr
m,k) vanish for all i > k.

3.2 Symbols in the complex computing motivic cohomology

Recall from Example 2.2.2 that the coniveau spectral sequence gives rise to a homological com-
plex K with nonzero terms in degrees 2, 1, and 0 given by

K : K2k(G2
m)→

⊕
D

K1k(D)→
⊕

x
K0k(x), (3.1)

the sums being taken over irreducible divisors and closed points respectively. This complex
computes the cohomology groups H∗(G2

m,2) in degrees 2 to 4 from left to right. Therefore, by
Corollary 3.1.3, the sequence is exact in the middle and at the right, and its homology at the left
is H2(G2

m,2). Let K2 be the quotient of K2 by the image of H2(G2
m,2) so that we get a short

exact sequence
0→ K2→ K1→ K0→ 0.

We shall denote the boundary maps in this complex by the generic symbol ∂ .
The monoid ∆ = GL2(Q)∩M2(Z) acts on the right on G2

m by the formula of (2.7). As
explained in §2.4, the complex K is correspondingly endowed with a left ∆-action via pullback.
This action descends to an action on K. For now, we use only the induced action of the group
GL2(Z); we will employ the full ∆-action in §3.4.
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Let us define special elements

e ∈ K0, ⟨a,c⟩ ∈ K1, ⟨γ⟩ ∈ K2

attached to a primitive vector (a,c) ∈ Z2 or to a matrix γ ∈ GL2(Z) that satisfy

∂ ⟨
(

a b
c d

)
⟩=

⟨a,c⟩−⟨−b,−d⟩ if detγ = 1,

⟨−a,−c⟩−⟨b,d⟩ if detγ =−1
and ∂ ⟨a,c⟩= e. (3.2)

These are:

• the GL2(Z)-fixed class e ∈ K0 of the element 1 ∈ Z supported at the identity of Gm,

• for a primitive vector (a,c) ∈ Z2 and the torus Sa,c = ker(G2
m

(x,y)7→xayc

−−−−−−→Gm) of (2.8), the
image ⟨a,c⟩ ∈ K1 of the invertible function

1− zb
1zd

2 ∈ O(Sa,c−{1})× ↪→ K1(Q(Sa,c)),

where
(

a b
c d

)
∈ SL2(Z) extends (a,c); this is independent of the choice of (b,d), since

another choice simply alters the function zb
1zd

2 by a multiple of za
1zc

2, which is 1 on Sa,c,

• for γ =
(

a b
c d

)
∈GL2(Z), and its columns v1 = (a,c) and v2 = (b,d), the Steinberg symbol

⟨γ⟩= ⟨v1,v2⟩= {1− za
1zc

2,1− zb
1zd

2} ∈ K2.

Note that ⟨γ⟩= γ∗⟨
(

1 0
0 1

)
⟩ is the image of (1− za

1zc
2)∪ (1− zb

1zd
2) ∈H2(G2

m−Sa,c∪Sb,d ,2).

The special elements of the form e, ⟨a,c⟩ for (a,c) ∈ Z2 primitive, and ⟨γ⟩ for γ ∈ GL2(Z)
together span a subcomplex Symb of K that we refer to as the symbol complex. We’ll return to
it in Sections 4 and 5. That these symbols satisfy (3.2) follows directly from the description in
Example 2.2.2 of the residue maps in K in terms of tame symbols (2.4) and divisors.

Remark 3.2.1. We note for later use that, for γ =
(

a b
c d

)
∈ GL2(Z), the pullback γ∗⟨0,1⟩ is

supported on the torus Sb,d which is the kernel of (z1,z2) 7→ zb
1zd

2 . On this divisor, it is given by
γ∗(1− z−1

1 ) = 1− z−a
1 z−c

2 . Thus

γ
∗⟨0,1⟩=

⟨b,d⟩ if det(γ) = 1,

⟨−b,−d⟩ if det(γ) =−1.
(3.3)

3.3 The cocycle

Pulling back the complex K2→ K1→ K0 to the cyclic subgroup generated by e ∈ K0, we get an
extension of Z by K2, and so an extension class in

Ext1Z[GL2(Z)](Z,K2) = H1(GL2(Z),K2).
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We shall describe a cocycle representing this class more explicitly in Proposition 3.3.1 below.
We then give an explicit recipe for Θγ as a sum of symbols ⟨ρ⟩ with ρ ∈ SL2(Z) and show that
it lies in parabolic cohomology. Because H2(GL2(Z),Z) is torsion, a multiple of Θ can actually
be lifted to K2; in Section 5, we sketch how to do this explicitly.

Proposition 3.3.1. There is a 1-cocycle

Θ : GL2(Z)→ K2, γ 7→Θγ ,

uniquely characterized by the property that

∂Θγ = (γ∗−1)⟨0,1⟩.

Proof. Since (γ∗−1)⟨0,1⟩ has trivial boundary e−e= 0, it is the boundary of a unique Θγ ∈K2.
Since pullback is a left action, we have

∂Θγγ ′ = (γ∗(γ ′)∗−1)⟨0,1⟩= γ
∗((γ ′)∗−1)⟨0,1⟩+(γ∗−1)⟨0,1⟩= ∂ (γ∗Θγ ′+Θγ),

for γ,γ ′ ∈ GL2(Z). That Θ is a cocycle therefore follows by the exactness of K.

Next, we give an explicit recipe for values of Θ in terms of our special symbols in K2 using
a standard variant of the Euclidean algorithm, analogous to writing a geodesic between cusps on
the modular curve as a sum of Manin symbols. We make the latter analogy precise in §4.3.

Given γ =
(

a b
c d

)
∈ GL2(Z), the Euclidean algorithm allows us to find a sequence (vi)

k
i=0 in

Z2 for some k ≥ 0 with v0 = (0,1) and vk = det(γ)(b,d) and such that the vi = (bi,di) satisfy
det
(

bi−1 bi
di−1 di

)
= 1 for all 1≤ i≤ k. We call such a sequence (vi)

k
i=0 a connecting sequence for γ .

Proposition 3.3.2. Let γ =
(

a b
c d

)
∈ GL2(Z), and choose a connecting sequence (vi)

k
i=0 for γ .

Then we have the following equality in K2:

Θγ =
k

∑
i=1
⟨vi,−vi−1⟩.

Recall from §3.2 that ⟨vi,−vi−1⟩ is the symbol associated to the matrix with first column vi

and second column −vi−1.

Proof. By (3.3) and (3.2) we have

∂

(
k

∑
i=1
⟨vi,−vi−1⟩

)
=

k

∑
i=1

(⟨vi⟩−⟨vi−1⟩) = ⟨vk⟩−⟨v0⟩= γ
∗⟨0,1⟩−⟨0,1⟩.

Since Θγ and ∑
k
i=1⟨vi,−vi−1⟩ have the same boundary, they are equal in K2.
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Example 3.3.3. Take γ =
(−1 0

0 −1

)
. Then v0 = (0,1), v1 = (−1,0), and v2 = (0,−1) form a

connecting sequence for γ , so

Θγ = ⟨(−1,0),(0,−1)⟩+ ⟨(0,−1),(1,0)⟩= {−z−1
1 ,1− z−1

2 },

which equals −{−z1,1− z2} in K2.

We will use a perhaps slightly nonstandard notion of parabolic cohomology for GL2(Z),
consistent with our use of right actions of GL2(Z) on group schemes. That is, we define the
GL2(Z)-parabolic cohomology group H1

P(GL2(Z),M) for a Z[GL2(Z)]-module M to be the
intersection of the kernels of the restriction maps from H1(GL2(Z),M)→ H1(P,M), where P
runs over all stabilizers of nonzero elements of Z2 under the right action of GL2(Z). We say
that a 1-cocycle GL2(Z)→ M is parabolic if its class lies in the parabolic cohomology group
H1

P(GL2(Z),M).

Proposition 3.3.4. The cocycle Θ is parabolic.

Proof. Since the right action of GL2(Z) on the set of relatively prime pairs of integers is tran-
sitive, it is enough to verify triviality upon restriction to the stabilizer P∞ = {

(
1 0
c ±1

)
| c ∈ Z} of

(1,0) ∈ Z2. If we take γ ∈ P∞, then by (3.3),

∂Θγ = (γ∗−1)⟨0,1⟩= ⟨0,1⟩−⟨0,1⟩= 0,

so Θγ = 0 in K2.

Remark 3.3.5. The parabolic cocycle Θ is also integral in a sense we shall now describe. For
this, let us suppose the theory of motivic cohomology over schemes over Dedekind domains
(see the work of Levine [Lev1], Geisser [Gei], and Spitzweck [Spi]), which we denote as over
fields. Take the direct limit of second motivic cohomology groups K2/Z = lim−→U

H2(U,2), where
U runs over the open Z-subschemes of G2

m/Z that are complements of unions of kernels of
morphisms G2

m/Z→ G2
m/Z with (z1,z2) 7→ za

1zc
2 for some primitive (a,c) ∈ Z2−{0}. There is

a canonical injection K2/Z ↪→ K2, under which the inverse image of H2(G2
m,2) is H2(G2

m/Z,2).
The statement is then that

Θ takes values in K2/Z/H2(G2
m/Z,2).

This can be seen directly from the explicit formula of Proposition 3.3.2 or without recourse to
this formula using Gysin sequences and Lemma 4.1.2 over finite fields (supposing an expected
compatibility of pushforwards and residues as in Lemma 2.1.3 that we did not endeavor to
check).
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3.4 Hecke actions

We now turn to the action of Hecke operators on the class of our 1-cocycle Θ. To set the
stage, suppose that ∆ is a submonoid of M2(Z)∩GL2(Q) and Γ is a finite index subgroup of
GL2(Z)∩∆. We recall the explicit formulas for the action of Hecke operators of double cosets
for Γ\∆/Γ on the cohomology H1(Γ,M) for any Z[∆]-module M.

For g ∈ ∆, write

ΓgΓ =
t∏

j=1
g jΓ. (3.4)

For γ ∈ Γ, there exist a permutation σ ∈ St (the permutation group on t letters) and elements
γ j ∈ Γ such that γg j = gσ( j)γ j for 1≤ j ≤ t. For a 1-cocycle θ : Γ→M and γ ∈ Γ, we set

T (g)θ(γ) =
t

∑
j=1

gσ( j)θ(γ j), (3.5)

which in general depends on the chosen coset representatives g j. The following lemma is well
known and verified simply by writing out the definitions.

Lemma 3.4.1. For a 1-cocycle θ : Γ→M, the cochain T (g)θ is a cocycle with class indepen-
dent of the choice of double coset decomposition. In particular, T (g) induces a well-defined
action on H1(Γ,M). Moreover, this restricts to an action on parabolic cocycles and parabolic
cohomology.

Remark 3.4.2. The Hecke operators T (g) of Lemma 3.4.1 arise from left coset decompositions
of ΓgΓ for g ∈ ∆. Given a right ∆-module N, the analogous construction to the above yields
right Hecke operators T R(g) using a decomposition of ΓgΓ into right cosets, as often found in
the literature (see, e.g., [Shi, Section 8.3]).

The two operators are related as follows. Write ∗ for the anti-involution on GL2(Q) given
by g∗ = (detg)g−1. If θ : Γ→M is a left cocycle, then θ ′ : γ 7→ θ(γ−1) is a Γ-cocycle for the
right action of ∆ on M given by (m,h) 7→ h∗m, and the rule θ 7→ θ ′ intertwines the actions of
T (g) and T R(g∗). If the action on M is trivial, then there is no distinction between left and right
cocycles, and the actions of T (g) and T R(g∗) coincide.

Returning to our case of interest, we again take

∆ = M2(Z)∩GL2(Q)

and Γ = GL2(Z). The monoid ∆ acts on the right on G2
m(Y ) for any smooth Q-scheme Y by the

formula (2.7), and this right action on G2
m induces a left pullback action on K as in §2.4.

For example, the pullback by γ ∈ ∆ of an invertible regular function f on Si, j−{1} is the
function on Sai+b j,ci+d j = Si, jγ

−1 defined by

(γ∗ f )(z1,z2) = f ((z1,z2)γ) = f (za
1zc

2,z
b
1zd

2),
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and the divisor of γ∗ f is the pullback of the divisor of f . This action descends to an action on
K also, since M2(Z)∩GL2(Q) acts by pullback on H2(G2

m,2), compatibly with its morphism to
K2. In the case of the matrix

(
ℓ 0
0 ℓ

)
, we denote this action on K more succinctly by [ℓ]∗.

For a prime ℓ, let Tℓ = T (g) for g =
(
ℓ

1

)
, where T (g) is as in (3.5) above for the coset

representatives9

g j =

(
ℓ j

1

)
for 0≤ j ≤ ℓ−1 and gℓ =

(
1

ℓ

)
(3.6)

in ΓgΓ =
∏ℓ

j=0 g jΓ. By Lemma 3.4.1, this gives an action of Tℓ on cohomology independent of
the latter decomposition. Let us also define an endomorphism of the complex K by the rule

TK
ℓ =

ℓ

∑
j=0

g∗j : K→ K.

This depends upon the choice of g j and appears primarily as a computational aid.
We can now compute the action of Tℓ on the class of Θ from the action of T K

ℓ on e of §3.2.

Lemma 3.4.3. For each prime ℓ, we have an equality

TK
ℓ e = (ℓ+[ℓ]∗)e

of elements of K0.

Proof. The left-hand side is the sum (with multiplicity) of the classes of the ℓ+ 1 cyclic ℓ-
subgroups of µ2

ℓ . This is the sum of the class [ℓ]∗e of µ2
ℓ and ℓ copies of e.

In the following, note that [ℓ]∗ acts on the cocycle Θ through its action on K2.

Proposition 3.4.4. The 1-cocycle (Tℓ− ℓ− [ℓ]∗)Θ has trivial class in H1(GL2(Z),K2).

Proof. As the residue of ⟨0,1⟩ is e, Lemma 3.4.3 and the ∆-equivariance of the boundary maps
in K imply that (TK

ℓ − ℓ− [ℓ]∗)⟨0,1⟩ has zero residue. Accordingly there exists ψ ∈ K2 so that

∂ψ = (TK
ℓ − ℓ− [ℓ]∗)⟨0,1⟩. (3.7)

For γ ∈GL2(Z), let σ be a permutation of {0, . . . , ℓ}, and let γ j ∈GL2(Z) for 0≤ j ≤ ℓ be such
that γg j = gσ( j)γ j. We then have

(γ∗−1)TK
ℓ ⟨0,1⟩= (γ∗−1)

ℓ

∑
j=0

g∗j⟨0,1⟩=
ℓ

∑
j=0

g∗
σ( j)(γ

∗
j −1)⟨0,1⟩= ∂

(
ℓ

∑
j=0

g∗
σ( j)Θγ j

)
= ∂ (TℓΘ)γ ,

(3.8)

9This operator agrees with the Hecke operator T R(g∗) as defined via right cosets of g∗ =
(

1
ℓ

)
as in Remark

3.4.2.
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where the last equality follows by definition (3.5) of our Hecke action on K. Comparing (3.7)
and (3.8), we see that

∂ (γ∗−1)ψ = (γ∗−1)(T K
ℓ − ℓ− [ℓ]∗)⟨0,1⟩= ∂ ((Tℓ− ℓ− [ℓ]∗)Θ)γ .

It follows that ((Tℓ− ℓ− [ℓ]∗)Θ)γ and (γ∗−1)ψ coincide in K2, and therefore the cocycle (Tℓ−
ℓ− [ℓ]∗)Θ is the coboundary of ψ .

4 The cyclotomic cocycle

We specialize the cocycle of the previous section at an N-torsion point of G2
m. There are two

points to be addressed: classes in K2 of the function field cannot a priori be specialized at a
point, and the previous cocycle was valued not in this K2 but its quotient by everywhere regular
classes. To remedy the second issue, we narrow down the regular classes using trace maps.

In §4.1, we calculate the fixed part of the motivic cohomology of G2
m under trace maps. We

show that our explicit symbols are contained in the fixed parts of our big complex and use this to
reduce the ambiguity in the values of Θ. In §4.2, we construct the explicit cocycle ΘN by pulling
back Θ, verify its explicit formula (Proposition 4.2.4), and demonstrate its Eisenstein property
(Theorem 4.2.11) for prime-to-level Hecke operators. In §4.3, we compare with prior work: in
particular, we show that ΘN induces the map ΠN of (1.1) that is the restriction of the explicit
map of [Bus, Sha1], and we verify the Eisenstein property of ΠN .

4.1 Fixed parts via suspension

4.1.1 Fixed parts of the cohomology of G2
m

The results of §3.1 imply that the motivic cohomology group H2(G2
m,2) breaks up as a direct

sum of motivic cohomology classes that are Z-multiples of (−z1)∪ (−z2) and sums of classes
pulled back via one of the two projection maps. We want to be able to “ignore” the latter classes,
and to kill them we will use trace maps.

We work in this subsection over a base field F . For r ≥ 1, we define the fixed part of the
motivic cohomology group H i(Gr

m,k) as

H i(Gr
m,k)

(0) = {α ∈ H i(Gr
m,k) | ([p]∗−1)α = 0 for all primes p ̸= charF}. (4.1)

In general, if F has zero or sufficiently large characteristic, then this fixed part is the direct
summand of H i(Gr

m,k) given by H i(F,k) in the decomposition of Corollary 3.1.2. However, we
shall only be interested in these groups in very specific cases: in particular, let us study them for
i = k ≤ r ∈ {1,2}.

Lemma 4.1.1. The element −z ∈ H1(Gm,1) generates H1(Gm,1)(0).
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Proof. The group H1(Gm,1) consists of the invertible functions on Gm/F . As such, each element
is uniquely of the form η(−z)k for η ∈ F×,k ∈ Z.

Suppose that such a class is [m]∗-fixed for m prime to charF . The global unit−z is [m]∗-fixed
for m prime to charF since

[m]∗(−z) =
m−1

∏
i=0

(−ζ
i
mz1/m) =−z. (4.2)

Thus, we also have [m]∗η = ηm for such m.
If charF ̸= 2, then η2 = η and so η = 1; in characteristic 2 the equality η3 = η implies the

same conclusion. So η = 1, and the claim follows.

Let us turn to G2
m over F , on which we let zi denote the ith coordinate function.

Lemma 4.1.2. The group H1(G2
m,1)

(0) is trivial, and if F has characteristic not 2 or 3 or is a
finite field, then H2(G2

m,2)
(0) is Z-free of rank 1, generated by (−z1)∪ (−z2).

Proof. Let us use ν j to denote the class of−z j in H1(G2
m,1) for short. As in Corollary 3.1.2, we

have an isomorphism

H2(F,2)⊕H1(F,1)⊕H1(F,1)⊕H0(F,0) ∼−→ H2(G2
m,2), (4.3)

where the maps are given by pullback and (left) cup product with 1, ν1, ν2 and ν1∪ν2, respec-
tively.

Let m≥ 1 with charF ∤ m. By Example 2.3.2 and (4.2), the class ν1∪ν2 is [m]∗-fixed. Any
class η that is pulled back from SpecF satisfies [m]∗η = η , so for such η and any α among 1,
ν1, ν2 and ν1∪ν2, Corollary 2.1.2 yields

[m]∗(α ∪η) = [m]∗(α ∪ [m]∗η) = ([m]∗α)∪η ,

which tells us that the trace maps preserve the summands in (4.3). Thus, we need only consider
the summands individually. So, let us suppose that α ∪η is [m]∗-fixed:

(i) If α = 1, then [m]∗η = m2η . So, if η is [m]∗-fixed, then (m2−1)η = 0. If charF /∈ {2,3},
then since this is true for m = 2 and m = 3, we have η = 0. In the case that i = k = 1,
note that if charF = 2, then 8η = 0 implies η = 0 and if charF = 3, then 3η = 0 implies
η = 0. If i = k = 2 and F is a finite field, then H2(F,2) = 0, so η = 0.

(ii) If α = ν j, then we have
[m]∗(ν j ∪η) = m(ν j ∪η),

so if ν j ∪η is [m]∗-fixed, then it is (m− 1)-torsion. If i = k = 1, then H0(F,0) ∼= Z, so
ν j ∪ η = 0. In general, so long as charF ̸= 2, then ν j ∪ η is trivial taking m = 2. If
i = k = 2 and charF = 2, then by taking m = 3, we see that ν j ∪η is 2-torsion in F×, so
trivial.

(iii) If α = ν1∪ν2, then it is indeed [m]∗-fixed.
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4.1.2 Fixed parts of complexes

We return to the consideration of G2
m over Q. As explained in Remark 2.3.3, the trace maps [m]∗

act on the complex K as well. We define the fixed complex K(0) in exactly the same way as (4.1).

Lemma 4.1.3. The symbols defined in §3.2 all lie in the fixed part of K:

e ∈ K
(0)
0 , ⟨a,c⟩ ∈ K

(0)
1 , ⟨γ⟩ ∈ K

(0)
2 .

Proof. First, note that [m]∗e = e for all m. From (2.5), we see that ⟨a,c⟩ ∈ K
(0)
1 . Finally, since

[m]∗ on K2 is given by the “product of the pushforwards by m in the first and second variable”
by (2.6), it fixes ⟨(1,0),(0,1)⟩. We then note that γ∗ and [m]∗ commute.

Proposition 4.1.4. The cocycle Θ lifts to a cocycle valued in K2/⟨{−z1,−z2}⟩.

Proof. Indeed, Proposition 3.3.2 and Lemma 4.1.3 imply that for each γ ∈ GL2(Z), the cocy-
cle Θγ is valued in the image of K

(0)
2 → K2. By Lemma 4.1.2, that image is isomorphic to

K
(0)
2 /⟨{−z1,−z2}⟩. Thus Θ lifts to that group, and a fortiori to K2/⟨{−z1,−z2}⟩.

In the remainder of this section, we will implicitly regard Θ as valued in K2/⟨{−z1,−z2}⟩.

Remark 4.1.5. The symbol complex Symb defined in §3.2 is contained in the fixed part under
trace maps of the limit complex lim−→I

KI ⊂ K of §2.4. In fact, it is the fixed part of a certain
motivic subcomplex k of lim−→I

KI that we refer to as the small complex.
To make this precise, for γ =

(
a b
c d

)
∈ SL2(Z), let us set kγ = KI for I = {(a,c),(b,d)}. The

complex kγ has the form

H2(G2
m−Sa,c∪Sb,d ,2)→ H1(Sa,c−{1},1)⊕H1(Sb,d−{1},1)→ H0({1},0),

where Sa,c and Sb,d are the rank one tori of (2.8), and the last term is identified with Z. Using
Gysin sequences and the results of Section 3.1, it is not hard to see that k(0)γ is canonically a
direct summand of kγ such that

• k
(0)
γ,2
∼= Z4 is generated by ⟨±(a,c),±(b,d)⟩,

• k
(0)
γ,1
∼= Z4 is generated by ⟨±(a,c)⟩ and ⟨±(b,d)⟩, and

• k
(0)
γ,0
∼= Z is generated by e.

The homology of k(0)γ is then concentrated in degree 2, being isomorphic to H2(G2
m,2)

(0) ∼= Z.
Define the small complex k ⊂ K to be the span of the kγ for γ ∈ SL2(Z). One may verify

that the small complex is, like its subcomplexes kγ , a quasi-isomorphic subcomplex of K, and
from our description of each k

(0)
I , we see that k(0) is precisely the symbol complex Symb. In

fact, Symb = k(0) is a Z[GL2(Z)]-direct summand of k with homology H2(G2
m,2)

(0) in degree
2. In particular, by Proposition 3.3.2, our cocycle Θ takes values in k

(0)
2 = k

(0)
2 /⟨(−z1)∪ (−z2)⟩.
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4.2 Specialization at an N-torsion point

Fix a positive integer N ≥ 2. Let us fix the notation for the congruence subgroups of GL2(Z)
that we shall use from this point forward. That is, we set

Γ̃0(N) =
{(

a b
c d

)
∈ GL2(Z) | N | c

}
, (4.4)

Γ̃1(N) =
{(

a b
c d

)
∈ Γ̃0(N) | d ≡ 1 mod N

}
. (4.5)

We denote by Γ0(N) and Γ1(N) their respective intersections with SL2(Z), as usual. Setting
∆ = M2(Z)∩GL2(Q), we also have associated monoids

∆0(N) =
{(

a b
c d

)
∈ ∆ | (d,N) = 1 and N | c

}
, (4.6)

∆1(N) =
{(

a b
c d

)
∈ ∆0(N) | d ≡ 1 mod N

}
. (4.7)

In this section, we specialize our cocycle Θ at the N-torsion point

s : SpecQ(µN)→G2
m (4.8)

with value (1,ζN) ∈Gm(Q(µN))
2 to obtain a cocycle

ΘN : Γ̃0(N)→ K2(Q(µN))/⟨{−1,−ζN}⟩.

4.2.1 The specialized cocycle

We turn to the specialization of Θ at the Q(µN)-point s of (4.8), which is given by the map
z1 7→ 1 and z2 7→ ζN on coordinate rings. The stabilizer of s in GL2(Z) under its right ac-
tion on Gm(Q(µN))

2 is the congruence subgroup Γ̃1(N) of (4.5). For j ∈ (Z/NZ)×, let σ j ∈
Gal(Q(µN)/Q) be such that σ j(ζN) = ζ

j
N . Via the isomorphism

Γ̃0(N)/Γ̃1(N)
∼−→ (Z/NZ)×,

(
a b
c d

)
7→ d (4.9)

and its composite with d 7→ σd , we may consider any Z[Gal(Q(µN)/Q)]-module as a Z[Γ̃0(N)]-
module. In particular, we let Γ̃0(N) act on K2(Q(µN)) in this fashion.

Note that s∗ is not well defined on the whole of K2: there is no field map Q(G2
m)→Q(µN).

In order to pull back the values of our cocycle via s, we show that for γ =
(

a b
c d

)
∈ Γ̃0(N), any

lift to K2 of Θγ lies in a sufficiently small subgroup of K2 upon which s∗ can be defined.
For this, let

Uγ =G2
m−Sb,d ∪S0,1,

which is to say the complement in G2
m of the subtori that are the kernels of (z1,z2) 7→ zb

1zd
2 and

(z1,z2) 7→ z2. Since (1,ζN) ∈Uγ , the specialization map

s∗ : H2(Uγ ,2)→ H2(Q(µN),2)∼= K2(Q(µN))
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is well defined. The residue of Θγ in K1 is ⟨det(γ)(b,d)⟩− ⟨0,1⟩. Therefore, any lift of Θγ to
K2 is defined on Uγ in the sense of Remark 2.2.3.

Proposition 4.1.4 provides a canonical lift of Θ to a cocycle valued in K2/⟨{−z1,−z2}⟩,
which we also denote by Θ. The value Θγ lies inside

K2(N) := lim−→
s∈U

H2(U,2)/⟨(−z1)∪ (−z2)⟩,

where the limit runs over the open Q-subschemes U of the Q-scheme G2
m containing all multiples

of s by an element of (Z/NZ)×. Specialization at s now defines a morphism

s∗ : K2(N)→ K2(Q(µN))/ZN (4.10)

where ZN is the Γ̃0(N)-stable subgroup of K2(Q(µN)) generated by the specialization {−1,−ζN}
of the symbol {−z1,−z2} ∈ K2(Q(G2

m)) under s∗. It therefore makes sense to speak of

ΘN,γ := s∗Θγ

as an element of K2(Q(µN))/ZN , Note that

{−1,−ζN}=

{−1,−1} if N is odd,

0 if N is even,

so ZN is a group of order dividing 2.

Proposition 4.2.1. The map

ΘN : Γ̃0(N)→ K2(Q(µN))/ZN , γ 7→ΘN,γ

is a parabolic cocycle.

Proof. That ΘN is a cocycle follows from if we can show that s∗ as in (4.10) is a homomorphism
of Γ̃0(N)-modules. Here, note that Γ̃0(N) acts on K2(Q(µN)) as in (4.9). Write γ =

(
a b
c d

)
and

note that the the two maps SpecQ(µN)→G2
m defined by γ ◦ s and s◦σd coincide, since viewed

on coordinate rings both send z1 to 1 = ζ c
N and z2 to ζ d

N . In particular, Γ̃0(N) acts on K2(N),
since for any Q-subscheme U of G2

m with s ∈U(Q(µN)), the composition γ ◦ s = s◦σd is also a
Q(µN)-point of U . This implies that s∗ ◦ γ∗ = σd ◦ s∗ on K2(N).

The proof of Proposition 3.3.4 argued that Θ is trivial on a lower-triangular parabolic P∞

in GL2(Z). An arbitrary parabolic Q of Γ̃0(N) has the form Q = µP∞µ−1 ∩ Γ̃0(N) for some
µ ∈ SL2(Z). For γ ∈ P∞, we have Θµγµ−1 = (1− (µγµ−1)∗)Θµ . So long as Θµ ∈ K2(N), we
then have that Θ|Q : Q→K2(N) is a coboundary, and for this, it suffices that µ =

(
a′ b′
c′ d′
)

satisfies
N ∤ d′. On the other hand, the set of µ with N | d′ is exactly the coset Γ̃0(N)

(
0 1
1 0

)
, and in this

case Q = µP∞µ−1. We may then suppose µ =
(

0 1
1 0

)
, for which Q = {

(±1 n
0 1

)
| n ∈ Z}. Since ΘN

lifts to a map taking the value {1−ζN ,1−ζ
−1
N } = 0 on

(
1 −1
0 1

)
and the value {−1,−ζN} ∈ ZN

on
(−1 0

0 1

)
, it is trivial on Q, and we have parabolicity.
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We need to modify the notion of connecting sequence of §3.3 to adapt it to the level N struc-
ture. Specifically, let us refer to a connecting sequence (bi,di)

k
i=0 for γ ∈ Γ̃0(N) with the property

that N ∤ di for all 0 ≤ i ≤ k as an N-connecting sequence for γ . Note that an N-connecting se-
quence always exists, as we verify by a little fiddling.

Lemma 4.2.2. Given a primitive vector (b,d) ∈ Z2 with N ∤ d, there exists a sequence (vi)
k
i=0 in

Z2 with vi∧ vi+1 = 1 for 0≤ i < k such that v0 = (0,1), vk = (b,d), and vi = (bi,di) with N ∤ di

for all 0≤ i≤ k.

Proof. Choose any connecting sequence (vi)
k
i=0 with vk = (b,d). Suppose that vi has second

coordinate divisible by N. Then neither vi−1 nor vi+1 does. We will insert another sequence
between vi−1 and vi+1, no element of which has second coordinate divisible by N. For v,w ∈
Z2, consider v∧w as an integer via the identification of

∧2Z2 with Z using the basis vector
(1,0)∧ (0,1). Note that vi−1 ∧ vi = vi ∧ vi+1 = 1 for 1 ≤ i ≤ k− 1. Write t = vi−1 ∧ vi+1. We
suppose that t ≥ 1, the other case being easier. The sequence with vi−1,vi,vi+1 replaced by
vi−1,vi+1 +(1− t)vi, . . . ,vi+1− vi,vi+1 has nearly the desired properties since

vi−1∧ (vi+1 +(1− t)vi) = (vi+1− ( j− t)vi)∧ (vi+1− ( j+1− t)vi) = 1

for 1 ≤ j ≤ t−1. However, the last pair of adjacent vectors x = vi+1− vi and y = vi+1 satisfies
x∧ y =−1, rather than 1. To remedy this, we replace x,y by the sequence x,−y,−x,y.

Remark 4.2.3. As in Remark 4.1.5, Lemma 4.2.2 tells us that Θ restricted to Γ̃0(N) takes values
in (a quotient of) the degree 2 term of the subcomplex of the small complex k spanned by the kγ

for those γ =
(

a b
c d

)
∈ SL2(Z) such that N ∤ c and N ∤ d.

We then have the following explicit formula for our cocycle.

Proposition 4.2.4. Let γ =
(

a b
c d

)
∈ Γ̃0(N), and let (bi,di)

k
i=0 be an N-connecting sequence for

γ . Then

ΘN,γ =
k

∑
i=1
{1−ζ

di
N ,1−ζ

−di−1
N }.

Proof. By Proposition 3.3.2, we need only note that

s∗⟨(bi,di),(−bi−1,−di−1)⟩= {1−ζ
di
N ,1−ζ

−di−1
N }

for 1≤ i≤ k.

Since 1− ζ c
N is an N-unit for all c ̸≡ 0 mod N and the map K2(Z[µN ,

1
N ])→ K2(Q(µN)) is

an injection, we have the following corollary.

Corollary 4.2.5. The cocycle ΘN takes values in K2(Z[µN ,
1
N ])/ZN .
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Remark 4.2.6. One could use Remark 3.3.5 to avoid the explicit formula in proving this corol-
lary (supposing the same expected property of integral motivic cohomology), since pullback by
(1,ζN) defines a morphism K2/Z(N)→ K2(Z[µN ,

1
N ]), where K2/Z(N) = K2/Z∩K2(N).

In fact, we can do slightly better.

Lemma 4.2.7. If N is divisible by two distinct primes, then ΘN takes values in K2(Z[µN ])/ZN .
Otherwise, its restriction to Γ1(N) does.

Proof. Fix a prime ℓ dividing N. Let Fℓ denote the residue field at a prime of Q(µN) over ℓ, and
consider the tame symbol map

δℓ : K2(Z[µN ,
1
N ])/ZN → F×ℓ ,

of (2.4). The common kernel of the maps δℓ is K2(Z[µN ])/ZN . Thus, it suffices to see that
δℓ ◦ΘN is trivial on the congruence subgroups of interest.

Suppose first that N is divisible by two distinct primes. For any prime p | N with p ̸= ℓ, we
have that Γ̃0(N)⊂ Γ̃0(p), so there exists a p-connecting sequence (bi,di)

k
i=0 for any γ ∈ Γ̃0(N).

But then each 1−ζ
di
N is a unit locally at primes over ℓ, so δℓ({1−ζ

di
N ,1−ζ

−di−1
N }) vanishes. By

Proposition 4.2.4, we then have δℓ(ΘN,γ) = 1, independent of ℓ.
Next, suppose that N is a power of a prime ℓ. Given γ =

(
a b
c d

)
∈ Γ̃0(N), there exists an

ℓ-connecting sequence (bi,di)
k
i=0 for γ . Then each 1−ζ

di
N has valuation 1 at (1−ζN), so

δℓ({1−ζ
di
N ,1−ζ

−di−1
N }) =−

1−ζ
−di−1
N

1−ζ
di
N

mod (1−ζN),

which reduces to di−1
di

in F×ℓ . Proposition 4.2.4 then yields that δℓ(Θγ) = det(γ)d−1 mod ℓ, which
is trivial if γ ∈ Γ1(N).

4.2.2 Hecke equivariance

We next consider the Hecke equivariance of ΘN . Let us set Φ = ⟨{−z1,−z2}⟩ ⊂ K2 for simplic-
ity, which we also view as a subgroup of H2(G2

m,2). Over the next few lemmas, we show that
the class of Θ in H1(GL2(Z),K2/Φ) is annihilated by all of the operators Tℓ− ℓ− [ℓ]∗ for odd
primes ℓ, as well as by 2(T2− 2− [2]∗), in order to show the analogous Eisenstein property of
ΘN in Theorem 4.2.11.

Lemma 4.2.8. For any finite index subgroup Γ of Γ̃0(N), the inclusion K2(N) ↪→ K2/Φ induces
an injection on H1(Γ,−).

Proof. From Gysin sequences, we see that there is an exact sequence

0→ K2(N)→ K2/Φ→
⊕
s∈D

k(D)×, (4.11)
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where the sum ranges over divisors D containing s. The lemma follows if we know that the finite
index subgroup Γ of Γ̃0(N) has trivial invariants on the right-hand group.

We claim that the orbit of any divisor D containing (1,ζN) on G2
m under GL2(Z) is infinite,

so no element of the direct sum can be fixed by the finite index subgroup Γ. Such a divisor is
the vanishing locus of an f ∈ Q[z±1

1 ,z±1
2 ] that is unique up to units, i.e., up to some czi

1z j
2 with

c ∈ Q× and i, j ∈ Z. Define the support supp( f ) of f to be the set of (a,b) ∈ Z2 for which the
coefficient of za

1zb
2 is nonzero. Note that |supp( f )| ≥ 2. For any hyperbolic element γ ∈ Γ, the

diameter of supp( f )γn increases without bound as n→ ∞. In particular, supp( f )γn cannot be a
translate of supp( f ) for sufficiently large n, and therefore Dγn ̸= D for all n≥ 1.

Lemma 4.2.9. The kernel of the map on H1(GL2(Z),−) induced by the quotient map K2/Φ ↠

K2 is 2-torsion.

Proof. Recall from Corollary 3.1.2 and Lemma 4.1.2 that H2(G2
m,2) is the direct sum of sub-

groups generated by symbols of the form a∪ b, (−z1)∪ b, (−z2)∪ b, and (−z1)∪ (−z2) with
a,b ∈ Q×. It follows that, as a Z[GL2(Z)]-module, the group H2(G2

m,2)/Φ is a direct sum of
copies of modules A and W ⊗Z A with A having trivial GL2(Z)-action, where W is the group Z2

endowed with the standard left GL2(Z)-action.
By the universal coefficient sequence (which is split), it is then enough to verify that the

groups H1(GL2(Z),Z) and Hi(GL2(Z),W ) for i∈ {0,1} are 2-torsion. In fact H1(GL2(Z),Z)∼=
GL2(Z)ab ∼= (Z/2Z)2. Since SL2(Z) acts transitively on W −{0}, the group H0(GL2(Z),W )

vanishes, and H1(GL2(Z),W ) is a quotient of H1(SL2(Z),W ). It then suffices to show that the
latter group is killed by 2.

The group SL2(Z) is an amalgamated free product of the cyclic 4-subgroup generated by
S =

(
0 1
−1 0

)
and the cyclic 6-subgroup generated by T =

(
1 −1
1 0

)
over the 2-subgroup generated

by σ = S2 = T 3. Thus we have a Mayer-Vietoris sequence

· · · → H1(⟨S⟩,W )⊕H1(⟨T ⟩,W )→ H1(SL2(Z),W )→ H0(⟨σ⟩,W )→ ··· .

The first two groups vanish because neither S nor T have invariants, and the last is (Z/2Z)2.

Lemma 4.2.10. The operator Tℓ−ℓ− [ℓ]∗ kills the class of Θ (resp., 2Θ) in H1(GL2(Z),K2/Φ)

for ℓ ̸= 2 (resp., for ℓ= 2).

Proof. Let τℓ denote the class of (Tℓ− ℓ− [ℓ]∗)Θ in the latter group. Lemma 3.4.4 implies that
τℓ lies in the kernel of the homomorphism

f : H1(GL2(Z),K2/Φ)→ H1(GL2(Z),K2)

of Lemma 4.2.9, so is 2-torsion. In particular, we have the statement for ℓ= 2.
This kernel of f is a quotient of H1(GL2(Z),H2(G2

m,2)/Φ). By Lemma 4.1.2 and the
decomposition (4.3), the latter group is a direct sum of subgroups on which either every [m]∗
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acts by one of the scalars m and m2. In particular, τℓ is killed by any operator

ε =
∞

∑
m=1

am[m]∗

with am ∈ Z and ∑mam = ∑m2am = 0.
Next, let us note that the actions of Tℓ and [m]∗ on H1(GL2(Z),K2/Φ) commute if ℓ ∤ m

since by Lemma 2.1.1, the trace map [m]∗ commutes with the pullbacks used in the definition of
Tℓ for ℓ ∤ m. Consequently, τℓ is fixed by each such [m]∗. Therefore, so long as the am are zero
for m not prime to ℓ, the operator ε above acts on τℓ by the scalar ∑am, and we conclude that
∑am · τℓ = 0 for am as above such that am = 0 if ℓ divides m. Taking a1 = −a2 = 3a3 = 3, we
see that τℓ is zero for ℓ≥ 5 as desired. Taking a4 = 1, a2 =−6, and a1 = 8, we see that 3τ3 = 0,
which is sufficient as 2τ3 = 0 as well.

Let ∆0(N) be the monoid of matrices with lower-left entry divisible by N and lower-right
entry prime to N: see (4.6). For a prime ℓ and g =

(
ℓ

1

)
as before, we let Tℓ = T (g) for ℓ ∤ N,

with T (g) as in Section 3.4.

Theorem 4.2.11. For primes ℓ not dividing 2N, we have

TℓΘN = (ℓ+σℓ)ΘN

in H1(Γ̃0(N),K2(Q(µN))/ZN). If N is odd, we have 2(T2−2−σ2)ΘN = 0.10

Proof. In Lemma 4.2.10, we proved that for ℓ ∤ 2N, the cocycle (Tℓ−ℓ− [ℓ]∗)Θ is cohomologous
to zero when considering Θ as a GL2(Z)-cocycle with target K2/⟨{−z1,−z2}⟩. For ℓ ∤ N, the
elements g j of (3.6) lie in ∆0(N) and still provide left coset representatives of Γ̃0(N)

(
ℓ

1

)
Γ̃0(N).

By Lemma 4.2.8, the class of (Tℓ− ℓ− [ℓ]∗)Θ then remains zero when Θ is considered as a
Γ̃0(N)-cocycle with target K2(N).

Moreover, the map s∗ : K2(N)→K2(Q(µN))/ZN , is equivariant for the action of ∆0(N) in the
sense that σd ◦ s∗ = s∗ ◦δ , where δ =

(
a b
c d

)
∈ ∆0(N); in particular σℓ ◦ s∗ = s∗ ◦ [ℓ]∗. Therefore,

s∗(Tℓ− ℓ− [ℓ]∗)Θ = (Tℓ− ℓ−σℓ)ΘN

is cohomologous to zero, as a cocycle with target in K2(Q(µN))/ZN .
The same argument goes through for ℓ= 2 if N is odd by multiplying everything by 2.

4.3 Maps on the homology of X1(N)

In this section, we compare our constructions with others in the literature. We show how the
cocycle ΘN induces a map on the homology of the usual closed modular curve X1(N) over C,
which is to say the quotient of the extended upper half-plane H∗ by the congruence subgroup

10In fact, one can verify by explicit computation that at least the restriction of (T2−2−σ2)ΘN to Γ1(N) is trivial.
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Γ1(N) of SL2(Z). This agrees with the map constructed independently by Busuioc [Bus] and
the first author [Sha1], which can be defined explicitly on Manin symbols on a slightly larger
homology group of X1(N), taken relative to some of its cusps. We show that this induced map
factors through the quotient of homology by an Eisenstein ideal away from the level, providing
a complement to a result of Fukaya and Kato [FuKa] on p-parts for p | N that was a conjecture
of the first author.

4.3.1 Maps defined on Manin symbols

Let us suppose that N ≥ 4. Let C1(N) = Γ1(N)\P1(Q) denote the cusps in the modular curve
X1(N), which is taken over C in this section. For α,β ∈ P1(Q), let {α→ β} denote the class in
the relative homology group H1(X1(N),C1(N),Z) of the geodesic in H∗ from α to β . If α and
β are equivalent cusps, then {α → β} lies in the homology of X1(N).

Let us set
γ⃗ = {0→ γ ·0} ∈ H1(X1(N),Z)

for γ ∈ Γ1(N). This class is independent of the choice of element 0 ∈H∗, and there is a commu-
tative diagram

Γ1(N) H1(Y1(N),Z)

H1(X1(N),Z),
γ 7→γ⃗

where the horizontal and vertical arrows are the standard maps, and all three maps are surjec-
tions.

For an abelian group M with an action of complex conjugation, we let M+ denote the maxi-
mal quotient on which complex conjugation acts trivially.

Proposition 4.3.1. There is a unique (Z/NZ)×-equivariant homomorphism

ΠN : H1(X1(N),Z)+→ K2(Z[µN ])/ZN .

that sends the image of γ⃗ to ΘN,γ for all γ ∈ Γ1(N).

Proof. Since the action of Γ̃0(N) on K2(Q(µN)) is trivial on Γ̃1(N), the restriction of ΘN to
Γ1(N) induces a (Z/NZ)×-equivariant homomorphism

H1(Y1(N),Z) ∼−→ H1(Γ1(N),Z)→ K2(Z[µN ,
1
N ])/ZN , (4.12)

where d ∈ (Z/NZ)× acts by diamond operators on the first term and by the Galois element
σd with σd(ζN) = ζ d

N on the last. This homomorphism actually takes values in the subgroup
K2(Z[µN ])/ZN by Lemma 4.2.7.

The composition in (4.12) factors through H1(Y1(N),Z)→H1(Y1(N),Z)+, since it is invari-
ant by the natural action Q := Γ̃1(N)/Γ1(N) on the left-hand side. This Q is a group of order 2,
and its nontrivial element acts on H1(Y1(N),Z) by complex conjugation z 7→ −z̄.
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Finally, the composition in (4.12) also factors through H1(Y1(N),Z)→ H1(X1(N),Z). That
is, the cocycle ΘN is a coboundary, hence trivial, on all parabolic subgroups of Γ1(N), which
are right stabilizers of nonzero elements of P1(Q). These parabolics are also left stabilizers of
elements of P1(Q) inside H∗ and thereby generate the kernel of Γ1(N)ab→ H1(X1(N),Z).

Let C◦1(N) ⊂C1(N) denote the set of cusps not lying over ∞ ∈ Γ0(N)\P1(Q). Given u,v ∈
Z/NZ with (u,v) = (1), let

[u : v] =
{

b
d
→ a

c

}
= γ{0→ ∞},

where
(

a b
c d

)
∈ SL2(Z) with (u,v) = (c,d) mod NZ2. These Manin symbols for u,v ̸= 0 generate

H1(X1(N),C◦1(N),Z). In fact, this relative homology group has a presentation on the Manin
symbols with relations

[u : v] =−[−v : u] and [u : v] = [u : u+ v]+ [u+ v : v], (4.13)

the latter for u ̸= −v (cf. [FuKa, 3.3.7] and [Sha2, §5.4]). It also has an action of diamond
operators ⟨ j⟩ for j ∈ (Z/NZ)×, given explicitly by

⟨ j⟩[u : v] = [ ju : jv].

Let us set Z′ = Z[1
2 ]. In general, for an abelian group M with an action of complex con-

jugation, let us use m+ to denote the image of m ∈ M in (M⊗Z Z′)+. The presentation of
H1(X1(N),C◦1(N),Z′)+ as a Z′-module on the generators [u : v]+ has the additional relations
[u : v]+ = [−u : v]+ for all u,v ̸= 0.

The following construction is due to Busuioc [Bus] and the first author [Sha1, Proposition
5.7]. We give a proof that also gives some idea of where it becomes necessary to invert 2.

Proposition 4.3.2 (Busuioc, Sharifi). There is a (Z/NZ)×-equivariant homomorphism

Π
◦
N : H1(X1(N),C◦1(N),Z′)+→ (K2(Z[µN ,

1
N ])⊗ZZ′)+, [c : d]+ 7→ {1−ζ

c
N ,1−ζ

d
N}+.

Proof. For α,β ∈ Z[µN ,
1
N ]
×, we denote by {α,β}+ the projection of the Steinberg symbol to

(K2(Z[µN ,
1
N ])⊗ZZ′)+. Since we kill 2-torsion, we have

{−1,α}+ = {ζN ,ζN}+ = 0. (4.14)

Now take x,y ∈ µN−{1}. Then

{1− x,y}+ =
1
2
({1− x,y}++{1− x−1,y−1}+) =

1
2
{−x,y}+

(4.14)
= 0,

where the first equality is from invariance under complex conjugation and the second uses bilin-
earity. Therefore, {1−ζ a

N ,1−ζ b
N}+ is invariant under changing the sign of either a or b, whence

the first relation of (4.13). The second relation of (4.13) follows from this invariance and

{1− x,1− x−1y−1}+{1− xy,1− y−1}= {1− x,1− y−1}
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for xy ̸= 1, this equality holding without inverting 2 and taking quotients trivial under complex
conjugation. In turn, this follows from the relation {η ,1−η}= 0 with

η =
1− x
1− xy

and 1−η =
1− y−1

1− x−1y−1 .

The restriction of Π◦N to H1(X1(N),Z)+ agrees with the map induced by our cocycle ΘN .
The first statement in the following is due to Fukaya and Kato [FuKa, Theorem 5.3.3] for p | N,
after taking Zp-coefficients, and in general, a direct proof can be found in [Sha2, Lemma 5.4.1].
For us, the first statement follows from the second, as ΠN takes values in K2(Z[µN ])/ZN by
Proposition 4.3.1 (following Lemma 4.2.7, which is related to the aforementioned results).

Proposition 4.3.3. The restriction of Π◦N to H1(X1(N),Z)+ takes values in (K2(Z[µN ])⊗ZZ′)+
and agrees with the composition of ΠN with the quotient map from K2(Z[µN ])/ZN .

Proof. We may write any element of H1(X1(N),Z) as γ⃗ for some γ ∈ Γ1(N). Let (bi,di)
k
i=0 be

an N-connecting sequence for this γ , so in particular (b0,d0) = (0,1) and (bk,dk) = (b,d). Then

γ⃗ =

{
0→ b

d

}
=

k

∑
i=1

{
bi−1

di−1
→ bi

di

}
=

k

∑
i=1

[di : di−1]+ =
k

∑
i=1

[di :−di−1]+

is sent by Π◦N to ∑
k
i=1{1− ζ

di
N ,1− ζ

−di−1
N }+. By Proposition 4.2.4, this sum is the image of

ΘN,γ = ΠN (⃗γ).

4.3.2 Eisenstein property

For a prime ℓ, we define the Hecke operator Tℓ (denoted Uℓ if ℓ | N) on H1(X1(N),C1(N),Z) to
be that arising from a right coset decomposition of Γ1(N)

(
1
ℓ

)
Γ1(N). Its adjoint, or dual, T ∗ℓ is

similarly the right Hecke operator for
(
ℓ

1

)
(denoted U∗ℓ if ℓ | N).

Remark 4.3.4. The operators Tℓ on relative homology are dual to the corresponding right coset
operators on compactly supported cohomology H1

c (Y1(N),Z), which project to operators that
agree with the (left coset) operators Tℓ on H1(Γ1(N),Z) previously defined by Remark 3.4.2.

Note that H1(X1(N),C1(N),Z) is the left Γ1(N)-coinvariant group of the group of degree
zero divisors in Z[P1(Q)] under the standard left (M2(Z)∩GL2(Q))-action. Thus, if we choose
a set of right coset representatives for the double coset of

(
1
ℓ

)
and define Tℓ on Z[P1(Q)] by

the sum of their actions, then this induces the Tℓ-action on relative homology.

The adjoint operators preserve the subgroup H1(X1(N),C◦1(N),Z), but the operators Uℓ for
ℓ | N do not. Let us consider the adjoint Hecke algebra

T∗N ⊂ EndZ(H1(X1(N),C◦1(N),Z)), (4.15)
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which also acts on H1(X1(N),Z). Inside this algebra, we have the prime-to-level and full Eisen-
stein ideals

I′N = (T ∗ℓ −1− ℓ⟨ℓ⟩∗ | ℓ ∤ N prime) and IN = I′N +(U∗ℓ −1 | ℓ | N prime).

Since ⟨ℓ⟩∗ = ⟨ℓ⟩−1 and T ∗ℓ = ⟨ℓ⟩−1Tℓ for ℓ ∤ N in T∗N , note that

T ∗ℓ −1− ℓ⟨ℓ⟩∗ = ⟨ℓ⟩−1(Tℓ− ℓ−⟨ℓ⟩). (4.16)

The first author has frequently floated the following conjecture that ΠN is Eisenstein, so
factors through the quotient of homology by the action of IN (or equivalently, that ΠN(T x) = 0
for all T ∈ IN and x ∈ H1(X1(N),Z′)+) and, moreover, induces an isomorphism on the quotient
by IN .

Conjecture 4.3.5 (Sharifi).

a. The map ΠN factors through a map

ϖN : H1(X1(N),Z′)+⊗T∗N T
∗
N/IN → (K2(Z[µN ])⊗ZZ′)+.

b. The map ϖN is an isomorphism.

Part a of Conjecture 4.3.5 is a stronger form of an earlier conjecture [Sha1, Conjecture 5.8]
that the tensor product of ΠN with the identity on Zp for a prime p | N is Eisenstein. The earlier
conjecture was proven by Fukaya and Kato in [FuKa, Theorem 5.3.5].11 In fact, they showed
the following stronger result.

Theorem 4.3.6 (Fukaya-Kato). For p | N, the map Π◦N⊗Z idZp factors through a map

ϖ
◦
N : H1(X1(N),C◦1(N),Zp)+⊗T∗N T

∗
N/IN → (K2(Z[µN ,

1
N ])⊗ZZp)+.

Though we expect that Π◦N is Eisenstein in general, the induced map ϖ◦N is not always an
isomorphism. A special case of this conjecture is considered by Lecouturier in [Lec, Conjecture
4.32] (see also Conjecture 4.33 therein, which follows from the latter conjecture).

The proof of the result of Fukaya and Kato arises through a description of ΠN as the compo-
sition of two maps: first, a Hecke-equivariant map zN that takes Manin symbols to cup products
of Siegel units (i.e., Beilinson-Kato elements), and second, a specialization map induced by
pullback at the cusp 0. The proof of the Hecke equivariance of zN goes through a string of
Iwasawa-theoretic and Hida-theoretic constructions and the computation of a p-adic regulator.
Their result then follows from the fact that the specialization at zero factors through I′N and is
also trivial on the operators U∗ℓ −1 applied to Beilinson-Kato elements.

11In fact, [Sha1], the first author constructed a conjectural inverse to ϖN ⊗ idZp on most primitive eigenspaces in
the case that p ∤ ϕ(N), and Fukaya and Kato proved an important result in its direction in [FuKa].
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Though we do not use it to study ΠN , we give a construction of a motivic version of the map
zN and prove its prime-to-level Hecke equivariance in Section 7.2. Instead, as a consequence
of what we have already done, we obtain a result over Z′ for the prime-to-level Eisenstein ideal
without any use of Beilinson-Kato elements.12 In fact, by Theorem 4.2.11, we have the follow-
ing.

Theorem 4.3.7. The map ΠN factors through a map

ϖN : H1(X1(N),Z)+⊗T∗N T
∗
N/I′N → K2(Z[µN ])/ZN .

Proof. From Theorem 4.2.11, we have that TℓΘN = (ℓ+σℓ)ΘN as homomorphisms from Γ1(N)

to K2(Z[µN ])/ZN . Since σℓ ◦ΠN = ΠN ◦⟨ℓ⟩ and noting (4.16), it suffices by Proposition 4.3.2 to
check that

(TℓΘN)γ = ΠN(Tℓ⃗γ).

For g =
(
ℓ

1

)
, we may choose left coset representatives of Γ1(N)gΓ1(N) as in (3.4) with

bottom-right entry 1 modulo N as follows: for 0 ≤ j < ℓ, set g j =
(
ℓ j

1

)
, and set gℓ = δℓ

(
1
ℓ

)
with δℓ ∈ Γ0(N) having image ℓ−1 in (Z/NZ)×. These agree with the matrices in (3.6) aside
from gℓ. For the map ΠN constructed in Proposition 4.3.1, for γ ∈ Γ1(N), we then have

(TℓΘN)γ =
ℓ

∑
j=0

g∗
σ( j)ΘN,γ j =

ℓ

∑
j=0

ΘN,γ j =
ℓ

∑
j=0

ΠN (⃗γ j),

where γg j = gσ( j)γ j for σ a permutation of {0, . . . , ℓ} and γ j ∈ Γ1(N).
On the other hand, let h j =

(
ℓ
ℓ

)
g−1

j be the adjoint of g j so that h jγ
−1 = γ

−1
j hσ( j). Since

{α → β}+{β → ε}= {α → ε} for α,β ,ε ∈H∗ and {0→ µ−1 ·0}=−µ⃗ for µ ∈ Γ1(N), we
have

Tℓ⃗γ =−Tℓ{0→ γ
−10}=−

ℓ

∑
j=0
{h j0→ γ

−1
j hσ( j)0}=−

ℓ

∑
j=0
{hσ( j)0→ γ

−1
j hσ( j)0}=

ℓ

∑
j=0

γ⃗ j,

hence the result.

5 The G2
m-cocycle via toric geometry

This section exists to provide a different viewpoint on the above results and minor improvements
upon some of them. We will describe a map

chain complex of S1 −→ [K2→ K1]

in the derived category of abelian groups with GL2(Z)-action. This map can be used to recover
the previous cocycle, and even lift it to K2. Moreover it allows us to outline the connection of

12The unpublished manuscript [Ste] of Stevens contains another approach through which it may be possible to
obtain this result.
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our results with equivariant motivic cohomology, as discussed in §1.2.3. The key point in the
argument is to utilize the behavior of K2 classes along the boundary of toric compactifications.

The geometric construction that we give is closely related to joint work in progress of the
second named author with Bergeron, Charollois and Garcia (although that work does not deal
with K-theory, rather with differential forms). However, the viewpoint of this section is also
close to that taken by numerous other authors on related questions, among which we mention
Nori, Sczech, Stevens, Solomon, and Garoufalidis–Pommersheim [Nor, Scz, Sol, Ste, GaPo].
Particularly relevant is a recent paper of Lim and Park [LiPa], which completes the work of
Stevens and lifts a “Shintani cocycle” to the “Stevens cocycle” along a dlog map. As with
several of the named references, [LiPa] works with cocycles for GLn(Q) valued in a module of
distributions; as such, it does not directly relate to the type of toric geometry that we emphasize
here but nonetheless seems very closely related to an infinite level version of our construction.

At certain points one could proceed by symbols and relations, but we have tried to avoid
this. Our point of view would extend without complication to higher dimensions, for instance.

5.1 Residues on K2 of the function field of a torus

5.1.1 Some toric geometry

It will be helpful to proceed a bit more canonically. Let T = G2
m, let X = X∗(T ) be the cochar-

acter group of T , and set XR = X ⊗Z R ∼= R2. Fix an orientation on XR, which in particular
allows us to make the identification

∧2 X ∼= Z; for x,y ∈ X , we accordingly write x∧ y ∈ Z. Let
X∗ = X∗(T ) be the character group of T , and denote by

⟨ , ⟩ : X×X∗→ Z

the pairing that describes the composition Gm→Gm.
Let us view the torus G2

m as T = SpecQ[X∗], and let Q(T ) be the function field of T . For
each primitive λ ∈ X , let Vλ ⊂ X∗ be the dual cone of characters which pair non-positively with
λ . Let Q[Vλ ] be the monoid algebra of Vλ . Since each element ν of Vλ is a regular function on
T , we have inclusions

Q[Vλ ] ↪→Q[X∗] ↪→Q(T ).

In particular, the first inclusion induces an open immersion T → Tλ , where

Tλ = SpecQ[Vλ ].

The toric variety Tλ has the following properties, all of which are readily proven by choosing
coordinates.13 The limit Qλ = limx→∞ λ (x) exists in the partial compactification Tλ of T . In
other words, the map t 7→ λ (t), considered as a morphism Gm→ Tλ , extends over ∞ ∈ P1. The

13For instance, we may suppose that λ is the cocharacter t 7→ (t−1,1) of G2
m, that Vλ is the set of characters

(z1,z2) 7→ zi
1z j

2 with i≥ 0, and that Tλ is the compactification A1×Gm.
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complement Dλ = Tλ −T is a divisor on Tλ , and Qλ belongs to this divisor. The vanishing order
of any χ ∈ X∗ along Dλ is given by −⟨λ ,χ⟩. The stabilizer of Qλ under the torus action of T
on Tλ is precisely λ (Gm), and this provides a T -equivariant identification

Dλ
∼= T/λ (Gm)

under which Qλ is taken to the identity. Moreover, any choice of µ ∈ X with µ ∧λ = 1 induces
an isomorphism Gm

µ−→ T → T/λ (Gm) which permits us to identify Dλ with Gm.

5.1.2 Residues of classes in K2(Q(G2
m))

We continue with the notation of §5.1.1. Our key result, Proposition 5.1.1 below, describes the
boundary behavior of classes in K2 of the function field of T along toric boundary divisors.

Let S1 denote the circle, viewed as the quotient of XR−{0} by positive scalings:

S1 = (XR−{0})/R+.

We shall identify points of S1 with rays R+x ⊂ XR for x ∈ XR nonzero (i.e., half-lines with
boundary the origin). A point in S1 is rational if it is the image of an element of X , i.e., if the
associated ray passes through a point of X .

Proposition 5.1.1. For κ ∈ K2(Q(T )), there is a locally constant function n = nκ : S1−Σ→ Z
with Σ a finite set of rational points, having the following property:

if n is defined on the ray R+λ , then the residue of κ along Dλ
∼= Gm has the form

czn(λ ) for some scalar c ∈Q×.

Proof. It is sufficient to analyze the case that κ = { f ,g}, where f and g are nonzero elements
of Q[X∗], for such symbols generate K2(Q(T )).

We may write any f ∈Q[X∗] as a finite sum

f = ∑
χ∈X∗

aχ( f )χ

with aχ( f ) ∈Q. Let supp( f ) denote the finite set

supp( f ) = {χ ∈ X∗ | aχ( f ) ̸= 0}. (5.1)

For a nonzero λ ∈ X⊗ZR, consider the function φ f ,λ : supp( f )→ R given by

φ f ,λ (χ) = ⟨λ ,χ⟩

on χ ∈ supp( f ). If φ f ,λ is injective on the finite set supp( f ), then we let χ f ,λ be the unique
element χ ∈ supp( f ) maximizing ⟨λ ,χ⟩. It is invariant under rescaling λ by a positive real
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number. Letting Σ f denote the (finite!) collection of rays R+λ for which φ f ,λ is not injective,
we then have a locally constant function

S1−Σ f → X∗, R+λ 7→ χ f ,λ .

Now fix a rational point of S1−Σ f , corresponding to the ray R+λ for some primitive λ ∈ X ,
and write

χ f = χ f ,λ , a f = aχ f ( f ), and v f =−⟨λ ,χ f ⟩.

As above, v f is the vanishing order of f along Tλ ; it may be negative. Note that f · χ−1
f extends

to Tλ , because for any χ ∈ supp( f ), the ratio χχ
−1
f has non-positive pairing with λ . Since χχ

−1
f

vanishes on Dλ for χ ∈ supp( f ) with χ ̸= χ f , the value of f · χ−1
f along Tλ −T is the constant

a f .
Now suppose that R+λ /∈ Σ f also does not belong to the set Σg for g ∈Q[X∗]. The image of

{ f ,g} in K1(Q(Dλ )) is therefore the tame symbol given by

(−1)v f vg
gv f

f vg
= c

χ
v f
g

χ
vg
f
,

where c is the constant (−1)v f vgav f
g a−vg

f ∈ Q×. The right-hand side defines a function on T ,
constant on λ (Gm), which extends over Tλ , and thus can be restricted to Dλ .

Note that the value of χ
v f
g χ

−vg
f ∈ X∗ on a cocharacter µ is given by

⟨µ,χ f ⟩⟨λ ,χg⟩−⟨λ ,χ f ⟩⟨µ,χg⟩= (µ ∧λ )(χ f ∧χg).

Recall that we are identifying Dλ with Gm via any cocharacter µ : Gm→ T with µ∧λ = 1; with
respect to this identification, the tame symbol above is identified with czn, where n = χ f ∧ χg.
In particular, n = n(λ ) is locally constant on the set S1−Σ f ∪Σg of rays.

Example 5.1.2. Take f = 1− z1 and g = 1− z2. The sets supp( f ) and supp(g) in (5.1) are
{0,(1,0)} and {0,(0,1)}, respectively. Then Σ f consists of the ray R+(0,1) together with its
negative, and Σg is the ray R+(1,0) together with its negative. For λ = (a,b), we have

χ f =

(1,0) if a > 0

0 if a < 0
and χg =

(0,1) if b > 0

0 if b < 0.

Therefore, if we choose the standard orientation where (1,0)∧ (0,1) = 1, then n = χ f ∧ χg is
given by the function

(a,b) 7→

1 if a > 0 and b > 0,

0 if a < 0 or b < 0,

which is to say, the characteristic function of the counterclockwise arc from (1,0) to (0,1) on
S1, or equivalently of the first quadrant in R2.
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5.1.3 Values on symbols

The map n of Proposition 5.1.1 can be described as a homomorphism from K2(Q(T )) to the set
of locally constant functions on S1, defined on the complement of a finite set of rational points.
If we identify two such functions when they agree off of a finite set, then the target becomes a
group under pointwise addition, and the map n a group homomorphism. Call this group Ch1:

Ch1 = {Z-valued locally constant functions on S1−Σ, with Σ⊂ S1
Q finite}/∼,

where ∼ is the equivalence relation of agreeing off of a finite set.

Example 5.1.3. For any ℓ,ℓ′ ∈ S1
Q. let [ℓ,ℓ′] be the counterclockwise arc from ℓ to ℓ′, which we

identify with an element of Ch1 via its characteristic function. (Thus, if ℓ= ℓ′, then [ℓ,ℓ′] is the
zero element.)

Observe that the group Ch1 has a presentation with generators the elements [ℓ,ℓ′] and rela-
tions

[ℓ,ℓ′′] = [ℓ,ℓ′]+ [ℓ′, ℓ′′] (5.2)

for ℓ′ lying on the counterclockwise arc from ℓ to ℓ′′ (including both endpoints). Indeed, writing
G for the abstract group so presented, the homomorphism G→ Ch1 is readily seen to be surjec-
tive. On the other hand, by recursive use of (5.2), any element of G can be written as a finite
sum ∑i mi[ai,bi] where mi ∈ Z and where the intervals are disjoint except at their endpoints, and
the condition of vanishing in Ch1 then implies that the sum must be empty.

We can then reformulate Example 5.1.2 as saying that {1−z1,1−z2} 7→ [(1,0),(0,1)] under
n. More generally, if ν1,ν2 form a positively oriented basis of X (i.e., ν1∧ν2 = 1), then

n : {1−ν
∗
1 ,1−ν

∗
2} 7→ [R+ν1,R+ν2], (5.3)

where ν∗1 ,ν
∗
2 ∈ X∗ are the dual basis elements.

Remark 5.1.4. For later use, we note that for any ℓ1, ℓ2, ℓ3 ∈ S1
Q we have

[ℓ1, ℓ3] = [ℓ1, ℓ2]+ [ℓ2, ℓ3]−δ (ℓ1, ℓ2, ℓ3), (5.4)

where δ = 0 when ℓ2 lies on the counterclockwise arc from ℓ1 to ℓ3 including endpoints, and
δ = 1 otherwise. (In particular, [ℓ1, ℓ2]+ [ℓ2, ℓ1] = 1 unless ℓ1 = ℓ2). Note that it follows from
this that δ satisfies the (homogeneous) cocycle relation

δ (ℓ1, ℓ2, ℓ3)−δ (ℓ0, ℓ2, ℓ3)+δ (ℓ0, ℓ1, ℓ3)−δ (ℓ0, ℓ1, ℓ2) = 0. (5.5)

5.2 Comparison of chain complexes

We continue to suppose that T = G2
m, providing an identification X = Z2. The right automor-

phism group of T is an algebraic group which, consistent with our prior conventions, we consider
as acting on the right on T . By functoriality, we obtain the usual right action of GL2(Z) on X
regarded as row vectors.

42



5.2.1 Alternate description of the chain complex for S1

The group Ch1 introduced above fits into a chain complex that computes the homology of S1:

Lemma 5.2.1. Let Ch0 be the group of finitely supported Z-valued functions on the rational
points of S1, and define ∇ : Ch1→ Ch0 via

∇ f (x) = f (x−)− f (x+),

where f (x+) (resp., f (x−)) is the limit of f (y) as y approaches x clockwise (resp., counterclock-
wise). Then there is an isomorphism

[Ch1
∇−→ Ch0]

∼−→ Chains∗(S1)

in the derived category of Z[GL2(Z)]-modules, where Chains∗(S1) denotes the singular chain
complex of S1. Here, the left GL2(Z)-action on both sides is induced by the right GL2(Z)-action
on X.

Proof. Indeed, the complex

· · · → Chains2(S1)
d2−→ Chains1(S1)

d1−→ Chains0(S1)→ 0.

of singular chains is quasi-isomorphic to its truncation coker(d2)→ Chains0(S1). There is an
obvious injection Ch0 → Chains0(S1), as well as a GL2(Z)-equivariant map Ch1 → coker(d2)

which sends [ℓ,ℓ′] to the singular simplex [0,1]→ S1 that proceeds at constant speed from ℓ to
ℓ′; to verify this is well defined one just checks the relation (5.2).

Since
∇[ℓ,ℓ′] = 1ℓ′−1ℓ, (5.6)

these maps provide a morphism of complexes. To see that is a quasi-isomorphism, note that
the homology of the complex [Ch1

∇−→ Ch0] is Z in both degrees. That is, the cokernel of ∇ is
generated by the image of any function that assigns a single rational point on S1 the value 1,
and the kernel of ∇ is generated by the constant function with value 1 in Ch1. These map to
generators of H0(S1,Z) and H1(S1,Z), respectively.

5.2.2 The motivic complex via toric geometry

For v ∈ X primitive, let [R+v] denote the characteristic function of the image of R+v in S1. The
indexing of symbols in the following proposition differs from our prior indexing of symbols in
K, which was effectively done by characters, rather than cocharacters.

Proposition 5.2.2. There is a morphism

f : [Ch1→ Ch0→ Z]→ [K2→ K1→ K0],
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of complexes of Z[GL2(Z)]-modules, where the right-hand complex K is the coniveau complex
computing H∗(G2

m,2) of §3.2. More explicitly, there is a commutative diagram

Ch1 Ch0 Z

K2(Q(T ))
⊕

D K1(Q(D))
⊕

x K0(k(x)),

∇

f2 f1

g7→∑P g(P)

f0

∂

where f0(1) = e (as in §3.2),
f1([R+ν ]) = 1−ν

†|ν(Gm),

where ν ∈ X is primitive and ν† : ν(Gm)→Gm denotes the inverse of ν , and

f2([R+ν1,R+ν2]) = {1−ν
∗
1 ,1−ν

∗
2} (5.7)

for ν1,ν2 ∈ X with ν1∧ν2 = 1 and ν∗1 ,ν
∗
2 ∈ X∗ the dual basis to ν1,ν2. Moreover, f2 sends the

constant function with value 1 to the symbol {−z1,−z2}.

Proof. It is clear that unique f0 and f1 exist having the specified values and that the right-hand
square is commutative. For the GL2(Z)-equivariance of f1, we compute

f1(γ · [R+ν ]) = f1([R+νγ
−1]) = (1− (νγ

−1)†)|νγ−1(Gm) = γ
∗ f1([R+ν ]),

where, on the right, γ acts as usual by pullback of the right Γ-action on T . Since ∇ is injective,
it remains only to construct f2 satisfying (5.7), and to verify that the left-hand square commutes.

Observe that if ν1,ν2 ∈ X ∼= Z2 satisfy ν1∧ν2 = 1 and have dual basis ν∗1 , ν∗2 , then by (2.4),
we have

∂{1−ν
∗
1 ,1−ν

∗
2}= (1−ν

†
2 )|ν2(Gm)− (1−ν

†
1 )|ν1(Gm). (5.8)

which, together with (5.6), shows that the left-hand square formally commutes on [R+ν1,R+ν2]∈
Ch1, given the property (5.7).

Let Symb2 be the subgroup of K2(Q(T )) generated by all symbols {1− ν∗1 ,1− ν∗2} with
ν∗i ∈ X∗(T ) and ν1∧ν2 = 1. Then by (5.3) we have a commutative diagram:

Symb2
⊕

D K1(k(D)) {1−ν∗1 ,1−ν∗2} (1−ν
†
2 )|ν2(Gm)− (1−ν

†
1 )|ν1(Gm)

Ch1 Ch0 [R+ν1,R+ν2] [R+ν2]− [R+ν1].

nProp.5.1.1

∂

∇

We claim that the map n of Proposition 5.1.1 restricts to an isomorphism Symb2
∼−→ Ch1.

Once this is proved, it follows from (5.8) that we can take f2 to be the inverse of n.
By (5.3) again (and the Euclidean algorithm), the image of n on Symb2 contains all [ℓ,ℓ′],

so n is surjective. For injectivity, take κ ∈ Symb2 with n(κ) = 0; then the diagram shows that
∂κ = 0. It follows, then, that κ lies inside the image of H2(T,2). Since κ is [m]∗-fixed by Lemma
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4.1.3, it follows from Lemma 4.1.2 that κ is a multiple of {−z1,−z2}. But as in Example 5.1.2,
the symbol

{−z1,−z2}=

{
1− z1

1− z−1
1

,
1− z2

1− z−1
2

}
maps under n to the sum of of the characteristic functions of the four (strict) quadrants of R2,
which agrees in Ch1 with the constant function 1. Therefore, f2(1)= {−z1,−z2}, and κ = 0.

Remark 5.2.3. The morphisms fi are degreewise injective, and the image of f is the symbol
complex Symb of §3.2 and Remark 4.1.5. By said remark, the complex [Ch2 → Ch1 → Z] is
thereby quasi-isomorphic to the fixed part of the small complex k under the trace maps of §4.1.

5.3 The cocycle and Laurent series

We relate our discussion to an invariant of rational cones that has appeared in the literature, and
we recover the cocycle Θ from the considerations of the prior subsection.

5.3.1 Connection to cocycles valued in Laurent series

We use “exponential coordinates” near the identity. That is, given the coordinate functions
z1, z2 on G2

m, we introduce formal coordinates u1, u2 at the identity satisfying zi = eui . For
ν = zm

1 zn
2 ∈ X∗, we then formally have ν = emu1+nu2 . We will also regard the ui as being linear

functions on the Lie algebra Lie(G2
m) via the isomorphism of formal groups

(G2
m,1)

∼−→ (Lie(G2
m),0). (5.9)

Consider the composite map

θL : Ch1
f2−→ K2(Q(G2

m))→{meromorphic 2-forms on G2
m}→Q((u1,u2)), (5.10)

where the second map sends a Steinberg symbol { f ,g} to d f
f ∧

dg
g , and the third map takes a

meromorphic form ω to ω

du1∧du2
in the Laurent series field Q((u1,u2)), which we take to be the

quotient field of QJu1,u2K.
In particular, given ν1,ν2 ∈ X with ν1∧ν2 = 1 and dual basis written as ν∗1 = eλ1 ,ν∗2 = eλ2

(with the λi linear forms in the ui), we calculate θL on [R+ν1,R+ν2] as follows:

[R+ν1,R+ν2] 7→ {1−ν
∗
1 ,1−ν

∗
2} 7→

dν∗1
1−ν∗1

∧ dν∗2
1−ν∗2

7→ 1
(1− e−λ1)(1− e−λ2)

(5.11)

We then regard the last term as the element ∑µ∈Z≥0λ1+Z≥0λ2 e−µ of 1
λ1λ2

QJu1,u2K⊂Q((u1,u2)).
In fact we have:

Lemma 5.3.1. Suppose that ℓ1, ℓ2 ∈ S1 with ℓ1∧ ℓ2 > 0; then

θL([ℓ1, ℓ2]) = ∑
µ∈X∗
⟨µ,ℓi⟩≥0

e−µ . (5.12)
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Proof. To verify this, we note that it is possible to choose a sequence (xi)
k
i=0 in X with ℓ1 =R+x0

and ℓ2 =R+xk and xi∧xi+1 = 1 for all 0≤ i < k and, moreover, with xi on the counterclockwise
arc from ℓ0 to ℓ1.

We then apply (5.4) and (5.11) recursively to obtain

θL([ℓ1, ℓ2]) =
k−1

∑
i=0

θL([xi,xi+1]) =
k−1

∑
i=0

∑
µ∈C∗k

e−µ ,

where C∗k is the dual cone to the cone spanned by xi,xi+1. Now it was observed by Brion [Bri, 2.4,
Théorème] (see [BaPo, Prop 8.2(b)] for exposition and exact definitions) that the rule associating
a cone C to ∑µ∈C∗ e−µ is additive with respect to decompositions of cones into subcones, and
therefore the right-hand side is given by (5.12) as claimed.

5.3.2 Recovering the cocycle Θ : GL2(Z)→ K2

Now, and in the remainder of this section, we also work with the left action of Γ = GL2(Z) on S1

via the rule γ ·R+ν := R+νγ−1, where we continue to think of X as row vectors. (Equivalently,
if we regard X as column vectors, then γ ∈ Γ acts by left multiplication by its inverse transpose.)

Set ℓ0 = R+(−1,0) so that f1(ℓ0) is given by the function 1− z−1
1 on the subtorus {(x,1) |

x ∈Gm}, which is to say the symbol ⟨0,1⟩ of §3.2. Consider the function

Θ̃ : Γ→ K2(Q(G2
m)), Θ̃(γ) = f2([ℓ0,γℓ0]). (5.13)

Its composition with the quotient map to K2 is a cocycle by virtue of (5.4). In fact, this compo-
sition coincides with Θ, as Proposition 5.2.2 and (5.6) yield that the residue of Θ̃(γ) is

∂ f2([ℓ0,γℓ0]) = f1(∇([ℓ0,γℓ0])) = f1(1γℓ0−1ℓ0) = (γ∗−1) f1(ℓ0) = (γ∗−1)⟨0,1⟩.

Example 5.3.2. Let us recover the formula for Θγ of Proposition 3.3.2, where γ =
(

a b
c d

)
∈ Γ.

Here, for ν ∈ X , we abbreviate R+ν by ν . Given a connecting sequence (vi)
k
i=0 for γ as in

§3.3, we can write [(−1,0),(detγ)(−d,b)] as a sum ∑
k
i=1[Wvi−1,Wvi] with W =

(
0 −1
1 0

)
. Now

if ν1∧ν2 = 1, then f2 sends [ν1,ν2] to ⟨−Wν2,Wν1⟩ in the notation of our previous section. So

Θ̃(γ) = f2([(−1,0),(detγ)(−d,b)]) =
k

∑
i=1

f2([Wvi−1,Wvi]) =
k

∑
i=1
⟨vi,−vi−1⟩.

In effect, the notation of this section absorbed the negative signs by working with the character
group of G2

m, rather than its cocharacter group.

5.4 Lifting the cocycle

Let Θ be the cocycle of Proposition 3.3.1. The obstruction to lifting the class of Θ to K2 lies in
the torsion group H2(GL2(Z),Z). It follows that a multiple of Θ lifts. Here, we will show how
to write down an explicit lift of the restriction of 12Θ to SL2(Z) using Proposition 5.2.2.
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To lighten notation, let us write f2(ℓ1, ℓ2) for f2([ℓ1, ℓ2]) and θL(ℓ1, ℓ2) for θL([ℓ1, ℓ2]). By
(5.4) and the fact that f2(1) = {−z1,−z2} proven in Proposition 5.2.2, we have

f2(ℓ1, ℓ2)+ f2(ℓ2, ℓ3)− f2(ℓ1, ℓ3) = δ (ℓ1, ℓ2, ℓ3){−z1,−z2}, (5.14)

and therefore by the definition (5.10) of θL, we have

θL(ℓ1, ℓ2)+θL(ℓ2, ℓ3)−θL(ℓ1, ℓ3) = δ (ℓ1, ℓ2, ℓ3). (5.15)

We will introduce a “correction” term to θL to eliminate the right-hand side of (5.15).14 Here
is the basic idea in a primitive form that does not quite work. Suppose there were a reasonable
way to evaluate a value of θL at the origin (u1,u2) = (0,0). Let θ 0

L denote the resulting function
from pairs (ℓ1, ℓ2) to Z, which again satisfies (5.15). Then by the latter property and (5.14), the
corrected function

f ′2(ℓ1, ℓ2) = f2(ℓ1, ℓ2)−θ
0
L(ℓ1, ℓ2){−z1,−z2}

would be a homogeneous cocycle, i.e., f ′2(ℓ1, ℓ2)+ f ′2(ℓ2, ℓ3) = f ′2(ℓ1, ℓ3). Since {−z1,−z2} has
trivial image in K2, the resulting 1-cocycle γ 7→ f ′2(ℓ0,γℓ0) would lift Θ from K2 to K2, as in
(5.13).

We will not be able to implement this precisely as stated, but we will be able to do it after
replacing the role of the rays ℓ1, ℓ2 by elements of SL2(Z). To make sense of the evaluation of a
value of θL ∈Q((u1,u2)) at the origin (u1,u2) = (0,0), we need the auxiliary data of the second
column of the matrices in SL2(Z); this allows us to take a limit as (u1,u2)→ 0 in a specified
direction.

Elements in the image of θL have the form L−1P, with P ∈ QJu1,u2K and L a product of
linear forms. Accordingly, we can unambiguously speak of its “degree zero” component θ 0

L ,
namely P(degL)

L with P(degL) the homogeneous component of P of degree the degree of L. This
degree zero component is now valued in the rational functions Q(u1,u2), or more intrinsically
via (5.9) as rational functions on the Lie algebra Lie(G2

m).
For example, using (1− e−x)−1 = x−1 + 1

2 +
x

12 +O(x2), we deduce that the degree zero
component in (5.11) for ν1,ν2 ∈ X with ν1∧ν2 = 1 and dual basis ν∗1 = eλ1 ,ν∗2 = eλ2 is given
by

θ
0
L(ν1,ν2) =

1
4
+

1
12

(
λ1

λ2
+

λ2

λ1

)
∈Q(u1,u2). (5.16)

Now given auxiliary vectors ν ′1 and ν ′2 that are linearly independent from ν1 and ν2 respec-
tively, we define a regularized value of θL by choosing a decomposition of θ 0

L(ν1,ν2) as a sum

θ
0
L(ν1,ν2) = A1 +A2,

14One can extract the correction term from the literature by computing explicitly with Dedekind-Rademacher sums
(compare Remark 5.4.2), but let us see how it comes out of our existing constructions.
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where Ai is a homogeneous rational function in (u1,u2) with poles only along the image of νi;
that is to say, if νi(t) = (ta1 , ta2), then Ai has poles along the line spanned by (a1,a2). In the
example above, for instance, we may take A1 =

1
4 +

1
12

λ1
λ2

and A2 =
1
12

λ2
λ1

. We now define

θ
0
L(ν1,ν

′
1,ν2,ν

′
2) = A1(ν

′
1)+A2(ν

′
2) ∈ 1

12Z (5.17)

Here Ai(ν
′
i ) means that if ν ′i (t) = (ta1 , ta2), then we evaluate Ai at (a1,a2). The decomposition

A1 +A2 is not unique, but it is unique up to the constant terms, so the right-hand side of (5.17)
does not depend on the choice of decomposition. We should regard this as a “regularized value
of θ 0

L(ν1,ν2) at zero”, where ν ′1 and ν ′2 are used to perform the regularization.

Proposition 5.4.1.

(i) There is a unique function φ : SL2(Z)× SL2(Z)→ 1
12Z which is left SL2(Z)-invariant

and satisfies
φ(γ1,γ2)+φ(γ2,γ3)−φ(γ1,γ3) = δ (γ1ℓ0,γ2ℓ0,γ3ℓ0) (5.18)

for all γ1,γ2,γ3 ∈ SL2(Z).

(ii) For γ1,γ2 ∈ SL2(Z), set νi = R+γi(−1,0) and ν ′i = R+γi(0,−1) for i ∈ {1,2}. If Rν1 ̸=
Rν2, then

φ(γ1,γ2) = θ
0
L(ν1,ν

′
1,ν2,ν

′
2).

15

(iii) The function SL2(Z)→ K2 given by

γ 7→ 12 f2(ℓ0,γℓ0)−12φ(I2,γ){−z1,−z2}

is a cocycle lifting 12Θ|SL2(Z) from K2 to K2, where I2 denotes the 2-by-2 identity matrix.

Proof. For the uniqueness in (i), note that the difference between any two such functions φ

is a homogeneous cocycle. The group of such cocycles is H1(SL2(Z), 1
12Z) = 0, since the

abelianization of SL2(Z) is torsion. Part (iii) follows from the discussion at the beginning of the
section, the cocycle being well defined since 12φ is Z-valued.

Take γ1,γ2,γ3 ∈ SL2(Z), and define νi,ν
′
i for i ∈ {1,2,3} accordingly, as in the discussion

preceding the proposition. If the lines Rν1,Rν2,Rν3 are all distinct (i.e., not merely the rays,
but the lines themselves), then we claim that

θ
0
L(ν1,ν

′
1,ν2,ν

′
2)+θ

0
L(ν2,ν

′
2,ν3,ν

′
3)−θ

0
L(ν1,ν

′
1,ν3,ν

′
3) = δ (R+ν1,R+ν2,R+ν3). (5.19)

Let us denote the right-hand side of (5.19) more simply by δ . We are going to deduce
the equality of (5.19) from (5.15), replacing the role of ℓi therein by νi. Splitting θ 0

L(νi,ν j) =

Ai j +A ji, where Ai j has poles along νi = 0 and A ji has poles along ν j = 0, the left-hand side of
(5.15) is

(A12−A13)+(A21 +A23)+(−A31 +A32),

15One can also readily compute a formula in the other cases ν1 =±ν2, but we do not do so here for brevity.

48



and since each of the three quantities in parentheses has a distinct polar locus, each must be a
constant ci, where these constants values add up to c1 + c2 + c3 = δ . A fortiori, the same is true
after evaluating each parenthesized quantity thus:

(A12−A13)(ν
′
1)+(A21 +A23)(ν

′
2)+(−A31 +A32)(ν

′
3) = c1 + c2 + c3 = δ ,

which proves (5.19).
Define φ on pairs (γ1,γ2) with Rν1 ̸= Rν2 by the formula in (ii). The identity (5.19)

then expresses precisely that the coboundary computation (5.18) is valid when the νi are non-
proportional. It also uniquely specifies a way to extend this φ to all pairs (γ1,γ2): we just choose
γ3 in generic position with respect to both of them and use (5.18) to define φ(γ1,γ2). That this
is independent of choice of γ3 follows from the cocycle identity (5.5) for δ . This proves the
remainder of (i) and (ii).

Remark 5.4.2. The function φ(I2,γ) is closely related to the Rademacher ϕ-function (see [KiMe]
as a reference on the latter). We evaluate it in the generic case to illustrate this.

Suppose that the inverse transpose of γ equals
(

p p′

q q′

)
with q > 0. To compute φ(I2,γ), we

must first of all compute θ 0
L((−1,0),(−p,−q)), recalling (ii) of Proposition 5.4.1. By (5.12),

we must compute the sum

∑
(n1,n2)∈Z2∩C

e−n1u1−n2u2 , (5.20)

where C is the cone spanned by the dual basis (−1, p
q ),(0,−

1
q) to (−1,0),(−p,−q). Now

Z2∩C = {α(1,− p
q )+β (0, 1

q) | β ≡ pα mod q, α,β ∈ Z≥0}.

Writing λ1 = u1− p
q u2 and λ2 =

1
q u2 we compute (5.20) as

∑
(α,β )∈Z2

≥0
β≡pα mod q

eαλ1+βλ2 = ∑
(α,β )∈Z2

≥0

q−1

 ∑
ζ∈µq

ζ
β−pα

eαλ1+βλ2 = q−1
∑

ζ∈µq

1
(1−ζ−peλ1)(1−ζ eλ2)

.

All terms above except the term for ζ = 1 are already regular at (0,0); the ζ = 1 term contributes
1
4 +

1
12(λ1λ

−1
2 +λ2λ

−1
1 ) by the same computation as (5.16), and thus the degree zero term equals

1
q

(
1
4
+

1
12

(
λ1

λ2
+

λ2

λ1

))
+

1
q ∑

ζ∈µq−{1}

1
(1−ζ )(1−ζ−p)

The second term equals 1
4−

1
4q +s(p,q), where s(p,q) is the standard Dedekind sum: see [RaGr,

(18a) and (33a)]. Noting that

λ1

qλ2

∣∣∣
(0,−1)

=− p
q

and
λ2

qλ1

∣∣∣
(−p′,−q′)

=
q′/q

qp′− pq′
=−q′

q
,

we get

φ(I2,γ) =
1
4
+ s(p,q)− 1

12
p+q′

q
=

ϕ(γ)

12
+

1
4

if q > 0 by [KiMe, Theorem 2.2].

49



5.5 Interpretation via equivariant motivic cohomology

Let us explain how the constructions of this section should be regarded as providing a class in
equivariant motivic cohomology, and outline how one recovers our cocycle directly from this.
Our construction is ad hoc; a suitable theory of equivariant motivic cohomology is not (to our
knowledge) developed in the literature.

To simplify our discussion, we take coefficients in Z′ :=Z[1
6 ]; all cohomology groups should

be understood with Z′-coefficients. Let DΓ be the derived category of Z′[Γ]-modules for Γ =

GL2(Z). Let K◦ be defined analogously to the complex K of (3.1), but taking Z′-coefficients and
replacing G2

m by G2
m−{1}; we grade it cohomologically so that it becomes supported in degrees

[−2,0]. This complex computes the motivic cohomology of G2
m−{1} with Z(2)-coefficients in

degrees [2,4]. With our grading, the motivic cohomology in degree 4+ i is the cohomology of
K◦ in degree i for i ∈ [−2,0].

As a provisional definition of a particular equivariant motivic cohomology group, we set

H3
Γ(G2

m−{1},2) = HomDΓ
(Z′,K◦[−1]).

Now K◦ does not compute the motivic cohomology of G2
m−{1} in full, only its truncation

to degrees 2 and greater. In place of K◦, a proper definition of motivic cohomology would
employ a complex (e.g., of Bloch or Voevodsky) which computes the full motivic cohomology
of G2

m−{1}.16 However, since Γ has no cohomology in degrees greater than 2 upon inverting
6, the above would be isomorphic to a more reasonable definition of equivariant H3.

Let us produce a class in this H3
Γ

. Lemma 5.2.1 and Proposition 5.2.2 together furnish a map

h : Chains∗(S1)→ K◦[−1]

in DΓ. Since Chains∗(S1) has cohomology in degrees −1,0, the standard action of Γ on S1

induces an exact triangle
Z′(det)[1]→ Chains∗(S1)→ Z′

in DΓ, where (det) refers to twisting the action by det : Γ→ ⟨−1⟩. Had we taken Z-coefficients,
the resulting extension class in H2(Γ,Z(det)) would have been the equivariant Euler class of R2

(i.e., the Euler class of the vector bundle on the classifying space EGL2(Z)/GL2(Z) of GL2(Z)
given by (EGL2(Z)×R2)/GL2(Z)). On the other hand, since H i(Γ,Z′(det)) = 0 for i ∈ {1,2},
there is a unique splitting in DΓ:

Chains∗(S1)∼= Z′⊕Z′(det)[1]

compatible with the above sequence. In this way, h splits into components h = h−1+h−2[1] with
h−i ∈ HomDΓ

(Z′(deti−1),K◦[−i]) for i ∈ {1,2}. This h−1 gives a class in H3
Γ
(G2

m−{1},2), and

16In fact, K◦ is the image of a morphism from a complex which does compute motivic cohomology, i.e., the total
complex of a quasi-isomorphic truncation of the double complex underlying the coniveau spectral sequence.
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the class of Θ should be (we did not check details) recovered via

H3
Γ(G2

m−{1},2)
restrict−−−→ H3

Γ(Q(G2
m),2)

s.s.−→ H1(Γ,K2Q(G2
m)),

where the last map comes out of a spectral sequence H i(Γ,H j(Q(G2
m),2))⇒ H i+ j

Γ
(Q(G2

m),2)
computing equivariant cohomology in terms of Γ-cohomology on motivic cohomology.

6 The square of a universal elliptic curve

In the present section we construct the big cocycles nΘ of (1.5) for primes n ∤ N. Here, the role
of G2

m is played by the self-product E 2 of the universal elliptic curve over a modular curve. As in
the Gm-case, our analysis is based on a homological complex K in degrees [2,0] that computes
the motivic cohomology H4−i(E 2,2). Two key differences are:

• The motivic cohomology of E 2 is more complicated than that of G2
m. However, through

the theory of the Fourier-Mukai transform, one can obtain a reasonable understanding of
various isotypical pieces under trace maps. We employ work of Deninger and Murre,
taking care with the coefficients.

• The complex K is not exact in degree zero (even after taking fixed parts). This has the
following consequence. In the Gm-case, we made use of an element e∈K0 that is the class
of the identity of G2

m. The analogue here arises from the identity section of E 2, but this is
no longer a boundary from K1. The element en ∈K0 that we use is supported on n-torsion
for an auxiliary integer n; see (6.7). The symbols we work with have correspondingly
more involved definitions but do satisfy the same relations as before.

The contents of the various subsections are as follows. In §6.1, we give an integral refine-
ment of a result of Deninger and Murre [DeMu] on the decomposition of the motivic coho-
mology of an abelian variety into isotypical components for the action of trace maps, with a
particular view towards the fixed parts that we employ. In §6.2, we give an abstract construction
of a cocycle ΘZ as in (1.7) attached to a trace-fixed, GL2(Z)-invariant, degree zero formal sum
Z of points. In §6.3, we define our explicit symbols in the terms of the big complex and show
that they are trace-fixed. Section 6.4 contains the construction of the cocycles nΘ. In §6.5, we
consider the compatibility of nΘ with two types of prime-to-level Hecke operators, those act-
ing on GL2(Z)-cocycles and those arising from as correspondences on motivic cohomology. In
Theorem 6.5.4, we prove that the two resulting actions agree on the class of nΘ.

6.1 Fixed parts via the Fourier-Mukai transform

Let Y be a smooth, separated, connected scheme of finite type over a field F of characteristic 0,
and let A be a family of abelian varieties of relative dimension g over Y . Set d = dimY .
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Let Z′ = Z[ 1
(2g+1)! ]. For any integer i, we set

H i(A,Z′(g)) = H i(A,g)⊗ZZ′.

As in Section 2.3, there are trace maps [m]∗ on H i(A,Z′(g)). There are also pullback maps [m]∗,
and since multiplication by m has degree m2g on A, we have the relation

[m]∗[m]∗ = m2g. (6.1)

We next prove that H i(A,Z′(g)) is the sum of its isotypic components for pullback maps.
(We are eventually interested in trace maps [m]∗ as these can also be defined for open sub-
schemes, but we will deduce such results from those on pullbacks.) The argument follows
[DeMu, Theorem 2.19], with an appeal to the integral Grothendieck-Riemann-Roch of Pappas
[Pap] to allow us to work over Z′.

Theorem 6.1.1. For i ∈ Z, each class α ∈ H i(A,Z′(g)) is the sum of components α = ∑
2g
s=0 αs

where [m]∗αs = m2g−sαs for all m ∈ N.

Proof. Let A∨ be the dual abelian scheme that represents Pic0
A/Y . Let P be the Poincaré bundle

on A×Y A∨. We may form the Chern character in motivic cohomology:

ec1(P) :=
2g+d

∑
r=0

c1(P)r

r!
∈

2g+d⊕
r=0

H2r(A×Y A∨,Z[ 1
r! ](r)).

Note that the powers of c1(P) beyond 2g+ d vanish, because they lie in a Chow group that is
evidently zero. Since (1× [m]∗)P∼= P⊗m, we have

(1× [m]∗)c1(P)r = mrc1(P)r.

The diagram
A π1←− A×Y A∨ π2−→ A∨

provides a morphism defined on α ∈ H i(A,Q(g)) by

F (α) = (π2)∗(π
∗
1 α ∪ ec1(P)),

known as the Fourier-Mukai transform. By its definition, F breaks up as a sum of operators,
with the rth component Fr corresponding to c1(P)r

r! . That is, F = ∑
2g+d
r=0 Fr, where, paying

attention to denominators, we have

Fr : H i(A,Z(g))→ H i+2(r−g)(A∨,Z[ 1
r! ](r)).

Any element of the image of Fr transforms under the image of each [m]∗ by mr.
Now, let F∨ be defined dually, with the dual abelian variety A∨ in place of A. For motivic

cohomology with Q-coefficients, Deninger and Murre show in [DeMu, Corollary 2.22] that

F∨ ◦F = (−1)g[−1]∗ (6.2)
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(for usual Chow groups, but the argument applies equally to higher Chow groups).17

The use of rational coefficients in [DeMu] is mandated not just by the denominators in the
Chern character, but by two applications of the Grothendieck-Riemann-Roch theorem (GRR),
both of which arise from [DeMu, Lemma 2.8] and are used in the subsequent proposition. The
first and most consequential application is for the projection morphism A∨×S A→ A, and the
second is for the identity section eA : S→ A.

Recall that GRR concerns the behavior of the cup product CT(G ) = ec1(G ) ∪ td(TX) of the
Chern character of a coherent sheaf G on a smooth quasi-projective variety X over F and the
Todd class of the tangent bundle TX of X under pushforward by a projective morphism f : X→Y ,
where Y is another such variety. For e the relative dimension, it says more precisely regarding
the degree 2r component that

CTr( f∗(G )) = f∗CTr+e(G ) ∈ H2r(Y,Q(r)).

By [Pap, Theorem 2.2], GRR remains true integrally if F has characteristic 0 upon inverting
the primes dividing (e+ r + 1)! if e ≥ 0 and (r + 1)! if e < 0. In the two cases of interest to
us, we are concerned with CTr for r ≤ g, and e = g and e = −g, respectively. In particular,
both applications of GRR go through with coefficients in Z′ = Z[ 1

(2g+1)! ]. Consequently, (6.2)
remains valid with coefficients in Z′, and we will use it, as such, in what follows.

Now let us return to the equality of (6.2), which we examine when restricted to H i(A,Z′(g)).
We may write F∨ ◦F = ∑

2g+d
s=0 ∑

2g+d
t=0 F∨

t ◦Fs, and by definition the composition F∨
t ◦Fs,

restricted to H i(A,Z′(g)), has image in H i+2(t−g)+2(s−g)(A,Z′[ 1
s!t! ](s+ t− g)). Therefore (6.2)

implies that each such term with t + s ̸= 2g must vanish. In other words,

F∨ ◦F |H i(A,Z′(g)) =
2g

∑
s=0

F∨
2g−s ◦Fs = (−1)g[−1]∗|H i(A,Z′(g)),

where we now understand all the operators to act on motivic cohomology with Z′-coefficients.
Take α ∈ H i(A,Z′(g)), and apply F∨ ◦F to α ′ := (−1)g[−1]∗α . Now (6.2) implies that

the result is α , so writing αs = F∨
2g−sFsα

′ ∈ H i(A,Z′(g)), we have

α =
2g

∑
s=0

αs. (6.3)

Then [m]∗ acts as m2g−s on αs for all m≥ 1, as required.

17It may be helpful to note that (6.2) is not a formality as it is, for example, at the level of coherent sheaves.
After applying Grothendieck-Riemann-Roch to the coherent sheaf equality, one needs to verify certain equalities of
Todd classes; these classes vanish with rational cohomology over C because they arise from flat bundles, but these
arguments do not apply in the current setting. Rather, Deninger and Murre first show this [DeMu, Proposition 2.13]
on H i(A,Q(g)) up to terms in cohomological degree greater than i. That equality holds on the nose follows from the
less precise statement without any appeal to the coefficients used.
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We can now compute the fixed parts of motivic cohomology groups under trace maps for
integers relatively prime to a fixed positive integer n. Let Nn denote the monoid of positive
integers prime to n. We consider the groups H i(A,Z′(g)) as Z′[Nn]-modules for the trace maps.
For s≥ 0, set

H i(A,g)(s) = {ξ ∈ H i(A,Z′(g)) | ([m]∗−ms)ξ = 0 for all m ∈ Nn}.

Proposition 6.1.2. We have a direct sum decomposition

H i(A,Z′(g)) =
2g⊕

s=0

H i(A,g)(s)

of Z′[Nn]-modules, which is natural in A over Y . The group H i(A,g)(0) is zero unless i = 2g, and
H2g(A,g)(0) is naturally isomorphic to Z′ as a Z′[Nn]-module.

Proof. Write α ∈ H i(A,Z′(g)) as α = ∑
2g
s=0 αs as in Theorem 6.1.1. It follows from (6.1) that,

for any prime ℓ ∤ n, we have (ℓ2g−s[ℓ]∗− ℓ2g)αs = 0 for each s. For each 0≤ t ≤ 2g, let

φt(ℓ) =
2g

∏
s=0
s̸=t

ℓ2g([ℓ]∗− ℓs)

so that φt(ℓ)α = φt(ℓ)αt . Then φt(ℓ) acts on αt by the scalar

rt(ℓ) =
2g

∏
s=0
s ̸=t

ℓ2g(ℓt − ℓs).

There exist primes ℓ1, . . . , ℓh not dividing n and c1, . . . ,ch ∈ Z′ such that ∑
h
j=1 c jrt(ℓ j) = 1. (If

p > 2g+1, then p does not divide rt(ℓ) whenever ℓ is a primitive root modulo p.) The element

φt =
h

∑
j=1

c jφt(ℓ j) ∈ Z′[Nn] (6.4)

then satisfies φt(α) = αt . This element φt defines a projection of H i(A,Z′(g)) onto H i(A,g)(t),
so H i(A,g)(t) is a Z′[Nn]-module direct summand of H i(A,Z′(g)).

Suppose now that α ∈ H i(A,g)(0). Then α = φ0(α) = α0. Referring to (6.3), this α is
necessarily of the form F∨

2gβ0, where β0 ∈ H i−2g(A∨,Z′). Since H i−2g(A∨,Z′) = 0 for i ̸=
2g, we actually have α = 0 unless i = 2g. For i = 2g, we have the canonical identification
H0(A∨,Z′)∼= Z′, and F∨

2g carries 1 ∈ Z′ (up to sign) to the fundamental class of the zero section
in H2g(A,Z′(g)). To verify the final statement, we have by (6.2) that F0 carries the fundamental
class of the zero section to a generator for H0(A∨,Z′). In summary, H2g(A,g)(0) is a free Z′-
module of rank one, generated by the fundamental class of the zero section.
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6.2 The abstract cocycles

Let us now specialize to the case of an elliptic curve E over a smooth, separated, connected
scheme S of finite type over a field F . We will apply Theorem 6.1.1 to A = E2 over S. For the
remainder of this section, we set

Z′ = Z[ 1
30 ].

Just as in the case of Gm, we write down a complex computing the cohomology of E2. Recall
from Example 2.2.2 that the complex K given in homological degrees 2 to 0 by

K2k(E2)→
⊕

D

K1k(D)→
⊕

x
K0k(x),

the sums being taken over irreducible divisors and codimension 2 points of E2 respectively,
computes (from left to right) the cohomology H∗(E2,2) in degrees 2 to 4.

Unlike the case of G2
m, none of these cohomology groups of E2 need vanish. However, by

Remark 2.3.3, the complex admits trace maps [m]∗. Set

K(0) = {α ∈ K⊗ZZ′ | ([p]∗−1)α = 0 for all but finitely many primes p}.

Then K(0) can be regarded as the direct limit lim−→n
(nK

(0)), over integers n ordered by divisibility,
of complexes nK

(0) defined by the fixed part of K⊗ZZ′ under all m ∈ Nn.

Lemma 6.2.1. The sequence 0→ K
(0)
2 → K

(0)
1 → K

(0)
0 is exact.

Proof. It is enough to prove the same assertion for nK
(0), since the claim then follows by taking

the direct limit. In the following discussion, “fixed parts”, or a superscript “(0)”, refers to being
fixed under Nn.

Consider the exact sequence

0→ H2(E2,Z′(2))→ K2
∂2−→ ker(K1→ K0)→ H3(E2,Z′(2))→ 0

of Z′[Nn]-modules. The map on fixed parts induced by ∂2 is injective as H2(E2,2)(0) is trivial
by Proposition 6.1.2.

If y ∈ nK
(0)
1 has trivial residue (i.e., dies in K0), then it maps to H3(E2,2)(0), which equals 0

by Proposition 6.1.2. Thus, there exists x ∈ K2 with ∂2(x) = y. For any m ∈ Nn, since [m]∗−1
annihilates y, the element ([m]∗− 1)x lies in the kernel of ∂2. So, there in turn exists zm ∈
H2(E2,Z′(2)) that maps to ([m]∗− 1)x. Equation (6.4) provides an element φ0 ∈ Z′[Nn] that
projects any H i(E2,Z′(2)) onto its fixed subspace. For i = 2, the fixed part is trivial, so

([m]∗−1)φ0x = φ0([m]∗−1)x = φ0zm = 0.

In other words, we have φ0x ∈ nK
(0)
2 . Moreover, φ0 fixes any element of nK

(0)
1 , so φ0y = y. Since

∂2(φ0x) = φ0y = y,

the sequence is exact at nK
(0)
1 .
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Now there is a surjective degree map

deg: K(0)
0 → Z′,

obtained by composing K
(0)
0 → H4(E2,0)(0) with the isomorphism of the latter group with Z′

furnished by Proposition 6.1.

Proposition 6.2.2. Let Z ∈K(0)
0 be a GL2(Z)-fixed class with deg(Z) = 0 such that there exists18

η ∈ K
(0)
1 with ∂η = Z. Then there is a 1-cocycle

Θ
Z : GL2(Z)−→ K

(0)
2 , γ 7→Θ

Z
γ ,

where ΘZ
γ is uniquely characterized by the property that

∂Θ
Z
γ = (γ∗−1)η .

Moreover, the class of ΘZ is independent of the choice of η .

Proof. By Lemma 6.2.1, a unique ΘZ
γ ∈ K

(0)
2 with residue (γ∗− 1)η exists. That the resulting

function ΘZ is a cocycle follows just as in Proposition 3.3.1.
If η ′ ∈ K

(0)
1 also satisfies ∂η ′ = Z, then η ′ gives rise to another cocycle Θ′. By the left

exactness in Lemma 6.2.1, there exists ψ ∈K(0)
2 with ∂ψ = η−η ′. The cocycles ΘZ and Θ′ are

cohomologous since ΘZ
γ −Θ′γ = (γ∗−1)ψ .

Note that if we can also choose η to be fixed by a parabolic subgroup of GL2(Z), then the
argument of Proposition 3.3.4 implies that ΘZ is parabolic (with the same meaning as in that
proposition).

In the remaining sections, we specialize to the case that E is the universal elliptic curve over
a modular curve Y1(N). In this setting, we will proceed more computationally and produce not
only a particularly nice choice of Z (supported on torsion) but also nice choices of η entirely
parallel to the Gm-case. To do this, we first of all set up a class of natural symbols in K with
which we can compute.

6.3 Symbols

Fix an integer N ≥ 4. We will work over the base scheme Y :=Y1(N) over Q whose S-points for
a Q-scheme S parameterize pairs (E,P) of an elliptic curve E/S and a section P of E[N] that is
everywhere of exact order N (i.e., the associated map from Z/NZ to E[N] is a closed immersion
of group schemes over S). Though we often omit N from the notation, it should be understood
throughout the remainder of this section that we are working at level Γ1(N).

18We must assume the existence of η because it is not clear that the resulting sequence 0→K
(0)
2 →K

(0)
1 →K

(0)
0 →

Z′→ 0 should be exact at K(0)
0 .
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Our elliptic curve will be taken to be the universal elliptic curve E over Y . Let π : E →Y be
the structure morphism. We shall write, for short,

E 2 = E ×Y E

for the square of the universal elliptic curve over Y . We let πi : E 2→ E for i ∈ {1,2} denote the
ith projection map.

It will often be useful to add auxiliary Γ0(m)-structure to Y . For a positive integer m prime to
N, let Ym denote the modular curve over Q corresponding to level structure Γ1(N)∩Γ0(m). For a
Q-scheme S, the points of Ym(S) are equivalence classes of triples (E,P,K), where (E,P)∈Y (S)
and K is an étale-locally cyclic S-subgroup scheme of order m.

6.3.1 Symbols on E

Fix a prime number n ∤ N. Denote by E ′ the pullback of E from Y to the modular curve Y ′ =Yn.
The curve E ′ is equipped with a canonical cyclic subgroup scheme K of order n.

We first define some auxiliary divisors and rational functions on E ′ and E that we use to
construct our symbols in the big complex K. Note that any S-subgroup scheme G⊂ E[n] of the
n-torsion of an elliptic curve E over a base variety S defines a class in H0(E[n],0)(0). Namely, G
is a union of connected components of E[n], and we associate to G the sum of these components
considered in H0(E[n],0); this is automatically [m]∗-fixed for m relatively prime to n.

• Set

δ = nδ = n2(0)−E [n] ∈ H0(E [n],0)(0) and δ
′ = nδ

′ = nK −E ′[n] ∈ H0(E ′[n],0)(0).
(6.5)

Note that we have an exact sequence

0→ H1(E ,1)→ H1(E −E [n],1)→ H0(E [n],0)→ H2(E ,1)→ 0.

Since H2(E ,1)(0) ∼= Z′ by Theorem 6.1.1, and any element of H1(E ,1) is necessarily an invert-
ible local constant, a variant of an argument of Kato [Kat, 1.10]19 yields an exact sequence

0→ H1(E −E [n],1)(0) div−→ H0(E [n],0)(0)
deg−−→ Z′→ 0,

where the degree map is surjective since the class defined by the zero section has degree 1 ∈ Z′.
We also have the analogous sequence for E ′. Since δ and δ ′ have degree zero, we may make
the following definition.

19Kato works with Z-coefficients but avoids n∈ {2,3}. Uniqueness of a trace fixed element with a given trace fixed
degree zero divisor follows from H1(E ,1)(0) = 0. Existence follows from the stronger statement that H1(E ,1) =
H1(E ,1)(2) (see the proof of Lemma 6.4.3), the commutativity of trace maps, and the fact that the greatest common
divisor of all ℓ2−1 for ℓ prime to n divides 24 ∈ (Z′)×.
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• Let

θ = nθ ∈ H1(E −E [n],1)(0) and θ
′ = nθ

′ ∈ H1(E ′−E ′[n],1)(0)

be the unique “theta functions” with divisors given by δ and δ ′:

∂θ = δ and ∂θ
′ = δ

′. (6.6)

The morphisms Y ′→ Y and E ′→ E , as well as (E ′)2→ E 2, where we write

(E ′)2 = E 2×Y Y ′,

are finite étale of degree n+ 1.20 Let us denote the norm (i.e., pushforward) maps on motivic
cohomology induced by these morphisms by N. Not only do these norms act only on the motivic
cohomology of E ′, but by Lemma 2.1.3 they also give a map of complexes K′→K, with K′ being
the analogue of K for (E ′)2. For example, in the direct sum of zero K-groups of residue fields
of codimension 1 points on E , we have N(K ) = E [n]+n(0) and N(E ′[n]) = (n+1)E [n]. (For
the first, for example, the norm of K gives on each elliptic curve fiber of E → Y the sum of all
cyclic subgroups of order n, which counts the origin with multiplicity n+1 and all other points
with multiplicity 1.) Thus, we have

N(δ ′) = nN(K )− (n+1)E [n] = n2(0)−E [n] = δ .

6.3.2 Symbols on E 2

We continue to fix an auxiliary prime n ∤ N. We are going to define symbols ⟨a,c⟩n ∈ K
(0)
1 for

primitive pairs (a,c) ∈ Z2−{0} and ⟨γ⟩n ∈ K
(0)
2 for γ ∈GL2(Z) satisfying relations identical to

(3.2), but now with the degree zero element e in the G2
m-setting replaced by a special GL2(Z)-

fixed and trace-fixed cycle en that depends on our choice of n. The symbols, which also depend
on n, allow us to give an explicit description of the abstract cocycle ΘZ of Proposition 6.2.2 in
the case that Z = en.

As before, an element of ∆ = M2(Z)∩GL2(Q) provides a morphism E 2→ E 2 over Y via
right multiplication. We denote by TK

n the operator on K given by the sum of pullbacks by the
representatives g j of (3.6) (replacing ℓ by n). While the operator TK

n depends on the choice of
these coset representatives, its action on GL2(Z)-invariant elements does not.

• In K0, we form the element

en = n
(

n3(0)−nTK
n (0)+E [n]2

)
. (6.7)

20This is the first point where we use that n is prime. Though it should be possible to extend our constructions
below to general n, from our point of view it would unnecessarily complicate the discussion.
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Here, we view H0(E [n]2,0) as a subgroup of K0 by the map taking a formal sum of
irreducible cycles in E [n]2 to the corresponding element of the direct sum of copies of Z
given by the zeroth K-groups of those cycles. The element en is GL2(Z)-fixed as a sum of
fixed terms.21 Note that en =VK

n (0), where

VK
n = n4−n2TK

n +n[n]∗. (6.8)

The element en has degree zero as TK
n has degree n(n+1) and [n]∗ has degree n2. We will

explain the significance of this particular choice of en in Remark 6.3.2.

• In K1, we form
⟨1,0⟩n = δ ⊠θ −N(δ ′⊠θ

′). (6.9)

The external product δ ⊠θ here should be understood to mean the restriction of the func-
tion π∗2 θ on E ×Y (E − E [n]) to the divisor defined by π

−1
1 (δ ). This defines a class in

the direct sum of the multiplicative groups of function fields of the irreducible divisors
composing E [n]×Y E , so also an element of K1. Similarly, δ ′⊠ θ ′ ∈ K′1 is the external
product with respect to (E ′)2 = E ′×Y ′ E

′.

More generally, we set
⟨a,c⟩n = γ

∗⟨1,0⟩n ∈ K1.

where γ =
(

a b
c d

)
∈ SL2(Z) is arbitrary with first column (a,c).

• In K2, we form
⟨
(

1 0
0 1

)
⟩n = θ ⊠θ −N(θ ′⊠θ

′). (6.10)

Here, θ ⊠θ denotes the Steinberg symbol {π∗1 θ ,π∗2 θ}, and θ ′⊠θ ′ ∈ K′2 is defined anal-
ogously.

In general, for γ =
(

a b
c d

)
∈ GL2(Z), we set

⟨γ⟩n = γ
∗⟨
(

1 0
0 1

)
⟩n ∈ K2. (6.11)

In Lemma 6.4.3, we will show that ⟨a,c⟩n is independent of the second column of γ used in
defining it. For now, let us fix such a choice and show that our symbols are [m]∗-fixed for all
m ∈ Nn.

Lemma 6.3.1. The symbols en, ⟨a,c⟩n, and ⟨γ⟩n defined above satisfy

en ∈ K
(0)
0 , ⟨a,c⟩n ∈ K

(0)
1 , and ⟨γ⟩n ∈ K

(0)
2 .

21To see this for TK
n (0), recall that left multiplication of g j by an element of GL2(Z) is right multiplication of

some g j′ by an element of GL2(Z), and (0) is GL2(Z)-fixed.
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Proof. Let m ∈ Nn. First, note that δ , θ , δ ′, θ ′ are [m]∗-fixed, and therefore their exterior
products are as well (see Example 2.3.2). Since E ′→ E commutes with the multiplication-by-m
map [m], the norm maps N in (6.9) and (6.10) commute with [m]∗. The Hecke operator TK

n in
(6.7) commutes with [m]∗ in that each

E 2 E 2

E 2 E 2

[m]

g j

[m]

g j

for 0 ≤ j ≤ n is a Cartesian square. Also, E [n]2 and each g∗j(0) are [m]∗-fixed since [m] is an
automorphism of the corresponding subgroup schemes. It follows that all of the symbols are
[m]∗-fixed.

Remark 6.3.2. Let us explain where the strange definition of en in (6.7) comes from. The main
issue at hand is that one cannot find a function on E with a single pole at the origin, and therefore
(if one is to produce explicit formulas) one needs to choose a GL2(Z)-fixed element of K

(0)
0

somewhat carefully. We will sketch the important feature that this particular formula has.
Take a geometric point s of Y with associated elliptic curve E = Es, and fix a basis for E[n],

i.e., an isomorphism of abelian groups E[n] ∼= (Z/nZ)2. This then identifies E[n]×E[n] with
(Z/nZ)2× (Z/nZ)2; regarding the two copies of (Z/nZ)2 as the top and bottom rows of a 2×2
matrix, we may thus regard E[n]×E[n]∼= M2(Z/nZ).

Using these coordinates, the fiber of e above s is the formal sum ∑M∈M2(Z/nZ) φn(M)M,
where

φn(M) =


n4−n3−n2 +n if rank(M) = 0,

n−n2 if rank(M) = 1,

n if rank(M) = 2.

In detail, this function φn is the sum of three functions φ 0
n , φ 1

n , and φ 2
n corresponding to the three

terms in (6.7): φ 0
n , arising from the term n4(0), equals n4 in rank zero and is otherwise zero; φ 1

n ,
arising from the term −n2TK

n (0), equals −n2deg(Tn) = −n3− n2 in rank 0 and −n2 in rank 1,
and finally φ 2

n , arising from the term nE[n]2, is simply the constant function with value n.
The significance of this particular function φn is that if we push it forward to a Z-valued

function on (Z/nZ)2 along any of the maps

M2(Z/nZ)→ (Z/nZ)2

which come by taking product with a fixed element of (Z/nZ)2, then the result is zero. This
characterizes it up to a scalar amongst GL2(Z/nZ)-invariant functions.

Let us explain why this is a natural property to ask for. In the context of Proposition 6.2.2,
if one wants an explicit formula for ΘZ as an external product of θ -functions, it is natural to
ask that Z be an external product of the divisors of those θ -functions. In the coordinates just
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introduced, these correspond to functions on M2(Z/nZ) of the form Φ(M) = f1(M1) f2(M2),
where M1 and M2 are the rows of M and the fi : (Z/nZ)2→ Z both satisfy ∑x∈(Z/nZ)2 fi(x) = 0.
If such a function Φ is additionally GL2(Z/nZ)-invariant, then its pushforward to (Z/nZ)2

along any map M→ vM with v ∈ (Z/nZ)2 is zero.

6.4 The explicit cocycle for n

We turn to the construction of our cocycle for a prime n ∤ N and the verification of its explicit
formula in terms of the symbols of §6.3. Recall from §3.3 that a cocycle is parabolic if it has
trivial image in the cohomology of all stabilizers of nonzero elements of Z2 under the right
action of GL2(Z). Much as in Proposition 3.3.2, for γ ∈ GL2(Z) with columns v1 and v2, we
write ⟨v1,v2⟩n for ⟨γ⟩n. Recall also that we defined the notion of a connecting sequence in §3.3.

Theorem 6.4.1. Let n be a prime not dividing N.

a. There is a parabolic 1-cocycle nΘ : GL2(Z)→ K
(0)
2 uniquely characterized by

∂ (nΘγ) = (γ∗−1)⟨0,1⟩n

for all γ ∈ GL2(Z).

b. For γ =
(

a b
c d

)
∈ GL2(Z) and a connecting sequence (vi)

k
i=0 for γ , we have

nΘγ =
k

∑
i=1
⟨vi,−vi−1⟩n. (6.12)

In order to prove Theorem 6.4.1, we first compute the residues of our symbols.

Lemma 6.4.2. The residue of ⟨1,0⟩n is en.

Proof. By (6.6), we have

∂ (δ ⊠θ) = δ ⊠∂θ = δ ⊠δ and ∂ (δ ′⊠θ
′) = δ

′⊠∂θ
′ = δ

′⊠δ
′,

where for instance δ ⊠δ denotes the evidently defined external product. By Lemma 2.1.3, taking
residues commutes with norms, and therefore

∂ ⟨1,0⟩n = δ ⊠δ −N(δ ′⊠δ
′).

For the norm N corresponding to (E ′)2→ E 2, we have

N(E ′[n]2)= (n+1)E [n]2, N(K ⊠E ′[n])=E [n]2+n(0)⊠E [n], and N(K ⊠K )=TK
n (0),

where each of the equalities is inside K0. (The final identity is a straightforward computation.
See the comparison of (6.17) and (6.18) in the proof of Theorem 6.5.4 below.) For δ ′ = nK −
E ′[n] as in (6.5), we then compute that

N(δ ′⊠δ
′) = n2 N(K ⊠K )−nN(K ⊠E ′[n])−nN(E ′[n]⊠K )+N(E ′[n]2)

= n2TK
n (0)−n2((0)⊠E [n]+E [n]⊠ (0))+(−n+1)E [n]2.
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Recalling that δ = n2(0)−E [n] from (6.5), we have

δ ⊠δ = n4(0)−n2((0)⊠E [n]+E [n]⊠ (0))+E [n]2,

and we conclude from the formula (6.7) defining en that δ ⊠δ −N(δ ′⊠δ ′) = en.

Lemma 6.4.3. Let γ =
(

a b
c d

)
∈ SL2(Z). The symbol ⟨a,c⟩n = γ∗⟨1,0⟩n does not depend on the

choice of (b,d) in γ , and its residue is en.

Proof. Since the residue map K1 → K0 is GL2(Z)-equivariant and en is GL2(Z)-invariant, the
symbol γ∗⟨1,0⟩ has residue en by Lemma 6.4.2.

For the first statement, it is enough to see that
(

1 1
0 1

)∗ fixes ⟨1,0⟩n. For this, recall that
(

1 1
0 1

)
acts on points of E 2 via the recipe (E,P,Q) 7→ (E,P,P+Q). Both

(
1 1
0 1

)∗ ⟨1,0⟩n and ⟨1,0⟩n are
meromorphic functions on E [n]×Y E with the same residue en. Moreover, they are both invariant
under all maps [m]∗ with m ∈ Nn by Lemma 6.3.1. They differ, then, by a regular function f on
E [n]×Y E that is fixed under all such [m]∗. Now any regular function on E [n]×Y E is necessarily
constant along fibers of the map E → Y in the second variable, and thus f is pulled back from a
function f̄ on E [n]. Then the fact that f is fixed implies that ([m]∗ f̄ )m2

= f̄ (where the exponent
m2 arises from the degree of the map [m] in the second variable).

Now, if one takes m≡ 1 mod n, then [m] fixes E [n], and one deduces that f̄ m2
= f̄ for such

m. In particular, the value of f̄ at any complex point is an (m2− 1)th root of unity, so f̄ is a
constant on both of the geometric components of E [n] (the identity section and its complement).
Since both of these components are preserved by every [m], we have f̄ m2

= f̄ for all m ∈ Nn.
Such a function necessarily satisfies f̄ 24 = 1, and the class it induces in H1(E [n]×Y E ,Z′(1)) is
therefore trivial.

Lemma 6.4.4. Let γ =
(

a b
c d

)
∈ GL2(Z). Then the residue of ⟨γ⟩n is given by

∂ ⟨γ⟩n =

⟨a,c⟩n−⟨−b,−d⟩n if det(γ) = 1,

⟨−a,−c⟩n−⟨b,d⟩n if det(γ) =−1.
.

Proof. We omit the subscripts n in this proof for brevity of notation, and handle the case det(γ)=
1, the other case being similar. By definition (2.4) of the tame symbol, we have

∂θ ⊠θ = δ ⊠θ −θ ⊠δ

and similarly for θ ′⊠θ ′ in K′. Taken together with the compatibility of residues with norms of
Lemma 2.1.3, these imply

∂ ⟨
(

1 0
0 1

)
⟩n = (δ ⊠θ −θ ⊠δ )−N(δ ′⊠θ

′−θ
′⊠δ

′).

We then compute

⟨−b,−d⟩n =

(
−b a
−d c

)∗
⟨1,0⟩n =

(
a b
c d

)∗(
0 1
−1 0

)∗
(δ ⊠θ −N(δ ′⊠θ

′))︸ ︷︷ ︸
θ⊠δ−N(θ ′⊠δ ′)

.
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The step under the braces follows readily from the fact that θ ,δ ,θ ′,δ ′ are all invariant under
[−1]∗. We also used the fact that N commutes with

(
0 1
−1 0

)∗, which follows by Lemma 2.1.1.

With the residues of the symbols attached to n computed, the main theorem follows as in the
case of G2

m.

Proof of Theorem 6.4.1. The existence and uniqueness of nΘ in part b follow from Lemma 6.4.3
as in the proof of Proposition 6.2.2. That it is parabolic follows as in Proposition 3.3.4 from
the fact that γ∗⟨0,1⟩n = ⟨0,1⟩n for γ =

(
1 0
c ±1

)
, again by Lemma 6.4.3. Part c then follows as

∂ ∑
k
i=1⟨vi,−vi−1⟩n = (γ∗−1)⟨0,1⟩n by Lemma 6.4.4, as in the proof of Proposition 3.3.2.

6.5 Hecke actions

We study Hecke operators on the complex K arising from correspondences, and we compare
their action on the class of the cocycle nΘ with that of the previously defined Hecke operators
on group cohomology (see Lemma 3.4.1).

6.5.1 Hecke operators via correspondences

Let us define Hecke operators using correspondences on E . We restrict ourselves to mth Hecke
operators T ′m for m≥ 1 prime to the level N. We have a commutative diagram

E E ×Y Ym E

Y Ym Y,

π (π,id)

Φ Ψ

π

φ ψ

(6.13)

where the effect of φ and ψ on points is given by

φ(E,P,K) = (E,P) and ψ(E,P,K) = (E/K,P+K). (6.14)

The morphisms Φ and Ψ are then defined on fibers by the identity on E for Φ and taking the
image under E → E/K for Ψ. We also then have morphisms Φ2 and Ψ2 sending E 2×Y Ym to
E 2. All these maps are finite étale.

We define Hecke operators T ′m on the motivic cohomology of Y and E 2 by the respective
rules

T ′m = φ∗ψ
∗ and T ′m = Φ

2
∗(Ψ

2)∗. (6.15)

We also have operators [m]′ acting on motivic cohomology of Y and E 2, given by pullback
under multiplication by m: i.e., by the morphisms given by m(E,P) = (E,mP) on points of Y
and given on E 2 by taking a point x in the fiber E2 of (E,P) to the point mx in the fiber E2

of (E,mP).22 Note that the operators [m]′ arise from diagrams of the same form as (6.13), but

22In particular, while the operators [m]∗ arise from a fiber-preserving map over Y , the operators [m]′ do not.
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replacing Ym by Y , taking φ to be the identity map, and defining ψ by ψ(E,P) = (E,mP). In
this way, arguments given for T ′m will usually adapt to [m]′ without change.

The reader might ask why we use the notation T ′m, as opposed to Tm. The point is this: when
we deal with cocycles

congruence subgroup of GL2(Z)−→ K-group of function field of E 2, (6.16)

there are two reasonable definitions of Hecke operators (both of which preserve coboundaries).

• The fiberwise GL2(Z)-action on K2(k(E 2)) extends to an action of M2(Z)∩GL2(Q).
Therefore, we can define the mth Hecke operator Tm on 1-cocycles valued in K2(k(E 2))

as in Section 3.4.

• The definition (6.15) also defines operators T ′m on the K-group of the function field of E 2.
This induces an operator on cocycles as in (6.16), also denoted T ′m.

We note that the action of Tm would exist if we replaced E → Y by any other family of
elliptic curves, whereas T ′m requires that we work with the universal elliptic curve. The primary
result of this subsection, Theorem 6.5.4 below, is that the these two operators coincide on the
class of the cocycle nΘ.

6.5.2 Hecke equivariance of the cocycle

We can also define Hecke operators T ′m : Ki → Ki on the terms of K via Φ2
∗(Ψ

2)∗. These give
∆-equivariant morphisms of complexes, where again ∆ = M2(Z)∩GL2(Q).

Lemma 6.5.1. For each m ≥ 1 prime to N, both T ′m : K→ K and [m]′ : K→ K are maps of
complexes which are equivariant for the pullback action of ∆ for its right action on E 2.

Proof. The maps T ′m and [m]′ are compositions of étale pullbacks and finite pushforwards (trans-
fers) in the K-theory of fields, and as such commute with residue maps (see Lemma 2.1.3). Thus
T ′m and [m]′ define maps of complexes.

The ∆-action on E2 for an elliptic curve E is equivariant for the reduction E2→ (E/H)2 for
any finite subgroup scheme H, so (Ψ2)∗ is equivariant for the pullback action of ∆. The operators
[m]′ are ∆-equivariant, in particular since multiplication by m commutes with the ∆-action on E2.
For Φ, we note that

E 2×Y Ym E 2

E 2×Y Ym E 2

δ

Φ2

δ

Φ2

is Cartesian for any δ ∈ ∆ in that the morphism Φ2 is flat and the identity on fibers. Therefore,
(Φ2)∗ commutes with pullback by δ , again employing Lemma 2.1.1. Thus, the Hecke actions
and pullback ∆-actions commute.
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For m ≥ 1 prime to N, let us use TK
m to denote any sum of pullbacks by representatives of

the double coset of (m
1), as in §3.4. (The choice is unimportant, but there is a standard one.)

Lemma 6.5.2. Let m≥ 1 be prime to N.

a. The Hecke operators T ′m and [m]′ on K commute with [µ]∗ for all µ prime to m, and in
particular they preserve K(0).

b. The Hecke operators TK
m and [m]∗ on K commute with all [µ]∗ for µ prime to m, and in

particular they preserve K(0).

Proof. The commutativity of [µ]∗ with the pushforward map Φ2
∗ is automatic because [µ] and

Φ2 commute. To see the commutativity with (Ψ2)∗, we note that

E 2×Y Ym E 2

E 2×Y Ym E 2

[µ]

Ψ2

[µ]

Ψ2

is a cartesian diagram, which in turn amounts to the fact that the degree m isogenies E → E/K
underlying Ψ (see (6.14)) induce isomorphisms on µ-torsion. Then we apply Lemma 2.1.1. A
similar argument applies to both [m]′ and [m]∗, in that they are also isomorphisms on µ-torsion.
Finally, the argument for TK

m was already given in the course of Lemma 6.3.1.

The action of ∆ on the complex K provides Hecke operators Tm on H1(GL2(Z),K
(0)
2 ) for

m ∤ N, following the recipe of §3.4 for the double coset of (m
1). The various Hecke operators

all commute with one another.

Lemma 6.5.3. Every pair of Hecke operators in the collection of operators Tm, T ′m, [m]∗, and
[m]′ for m≥ 1 prime to N commute with each other in their actions on H1(GL2(Z),K

(0)
2 ).

Proof. First, note that these operators all act on H1(GL2(Z),K
(0)
2 ) since they (or, in the case of

Tm, the operators TK
m ) preserve fixed parts by Lemma 6.5.2. Commutativity between operators

of the form Tm or [m]∗ and commutativity between operators of the form T ′m or [m]′ for various
m are standard. The operators [m]∗ already commute with the operators T ′m or [m]′ on K2 by
Lemma 6.5.1.

Given a 1-cocycle θ : GL2(Z)→ K2, the cocycle Tmθ is defined by the formula of (3.5) for
g = (m

1). It is a sum of terms of the form [δ ]∗θ(γ ′) with γ ′ ∈ GL2(Z) and δ ∈ ∆. Any T ′µ or
[µ]′ for µ ∈NN commutes with each [δ ]∗ by Lemma 6.5.1, so also commutes with Tm on θ .

We now proceed to the main result of this section, which unlike the preceding lemmas is not
a formality.

Theorem 6.5.4. For each prime ℓ ∤ N, the actions of Tℓ and T ′ℓ coincide on the class of nΘ in
H1(GL2(Z),K

(0)
2 ). The same is true for the actions of [ℓ]∗ and [ℓ]′.
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Proof. Let us say that a cocycle θ : GL2(Z)→ K
(0)
2 is associated to Z ∈ K

(0)
0 if ∂θ(γ) = (γ∗−

1)η with η ∈ K
(0)
1 such that ∂η = Z. Recall that, by Proposition 6.2.2, any two cocycles associ-

ated to Z are cohomologous. To show that the classes of T ′ℓ (nΘ) and Tℓ(nΘ) coincide, it therefore
suffices to show that Tℓ(nΘ) and T ′ℓ (nΘ) are associated to the same cycle. Let us consider the
two cases:

• The cocycle Tℓ(nΘ) is associated to TK
ℓ en. Indeed, ∂ (TK

ℓ ⟨0,1⟩n) = TK
ℓ en as TK

ℓ is a map
of complexes, and TK

ℓ ⟨0,1⟩n belongs to K
(0)
1 by Lemma 6.5.2. Moreover, for γ ∈GL2(Z),

we have
(γ∗−1)TK

ℓ ⟨0,1⟩n = ∂ (TℓΘ)γ

exactly as in equation (3.8) in the proof of Proposition 3.4.4.

• The cocycle T ′ℓ (nΘ) is associated to T ′ℓ en, since T ′ℓ : K→ K is a map of complexes that
commutes with the GL2(Z)-action by Lemma 6.5.1 and preserves fixed parts by Lemma
6.5.2.

We must therefore show that T ′ℓ en = TK
ℓ en. We claim that it is enough to show the same

assertion but replacing en by the GL2(Z)-fixed class (0)∈K0. Indeed, en =VK
n (0), with notation

as in (6.8), and TK
ℓ and VK

n commute in their action on the GL2(Z)-invariant subgroup of K0,
whereas T ′ℓ and VK

n commute by Lemma 6.5.1 (noting VK
n is a sum of various pullback maps).

It remains therefore only to show that T ′ℓ (0) = TK
ℓ (0). We will describe the fibers of T ′ℓ (0)

and TK
ℓ (0) over a geometric point s of Y and show that they coincide.

• The fiber of T ′ℓ (0) is the union of the kernels of all ϕ2 : E2
s → (E ′)2, where Es is the fiber

of E over s and ϕ : Es → E ′ is an ℓ-isogeny. In other words, it is the sum of all K×K
where K is a cyclic subgroup scheme of Es of order ℓ:

T ′ℓ (0) = ∑
K

K×K. (6.17)

• The fiber of TK
ℓ (0) above s is given by those points of Es in the kernel of some matrix g j as

in (3.6). Regarding j as valued in P1(Fℓ), the kernel of g j is the set of pairs (P,Q)∈ Es[ℓ]
2

such that Q/P =− j (by which we mean that if we write j = a/b, then aP+bQ = 0), and
thus

TK
ℓ (0) = ∑

j∈P1(Fℓ)

{(P,Q) ∈ Es[ℓ]
2 | P/Q = j}. (6.18)

One easily checks that (6.17) and (6.18) coincide. For example, if we choose a basis to
identify Es[ℓ] with F2

ℓ and use this to identify Es[ℓ]
2 with M2(Fℓ) with the columns giving the

coordinates, then (6.17) and (6.18) become identified with the formal sums of matrices with
linearly dependent rows and linearly dependent columns, respectively, in both cases counting
the zero matrix with multiplicity ℓ+1.
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Finally, to see that the classes of [ℓ]∗(nΘ) and [ℓ]′(nΘ) are equal, it is similarly enough to
show that [ℓ]∗(0) = [ℓ]′(0). This is immediate: both amount to pullback of the zero section by
the matrix

(
ℓ 0
0 ℓ

)
, so equal E [ℓ]2.

7 Cocycles for modular curves

In this section, we pull back the cocycles of Section 6 to the modular curve via a torsion section.
As before, we fix N ≥ 4 and a prime n ∤ N, and we write Y = Y1(N) and E for the universal

elliptic curve above Y . The surjection π : E → Y has a canonical N-torsion section ιN : Y →
E [N]. In §7.1, we pull back the cocycle nΘ of Theorem 6.4.1 by the section of π2 : E 2 → Y
given by

s = (0, ιN) : Y → E 2.

We denote the result as nΘN . In order to make sense of such a pullback, we must, as in the
case of G2

m described in §4.2, restrict our cocycle to the congruence subgroup Γ̃0(N) of GL2(Z)
defined in (4.4) to consist of matrices with lower-left entry divisible by N.

In §7.2, we describe modifications that enable us to obtain a universal cocycle ΘN that should
be thought of as the “n = 1” version of the construction: see Theorem 7.2.2. Much as with
theta functions, we do not know how to make sense of this on the universal elliptic curve, but
we can after pullback. The characterizing property of ΘN is that it gives rise to each nΘN upon
application of the Hecke operator Vn = n4−n2Tn+n[n]∗ or its counterpart V ′n = n4−n2T ′n +n[n]′.
In §7.3, we prove an explicit formula for this universal cocycle ΘN modulo a subgroup that
vanishes under standard regulator maps.

Finally, in §7.4, we construct the zeta map zN of (1.2) and compare with the prior work of
Goncharov, Brunault, and Fukaya-Kato. The map zN is constructed in Theorem 7.4.1, where
we show that it is Hecke equivariant and takes values in the motivic cohomology of X1(N)

(over Z[ 1
N ]), as opposed to Y1(N). We also describe an integral, ordinary p-adic analogue in

Proposition 7.4.2.
We suppose that Z′ = Z[ 1

30 ] throughout this section.

7.1 Specialization via an N-torsion section

In this subsection, we pull back our cocycles nΘ for primes n ∤ N via the N-torsion section
s : Y → E 2 to obtain cocycles nΘN : Γ̃0(N)→ H2(Y,Z′(2)).

7.1.1 Comparison of Hecke operators upon restriction

As in the case of G2
m, the section s is not defined on all of K2 but at least on classes “regular

along s”. Writing
K2(N) = lim−→

(Z/NZ)×s⊂U

H2(U,Z′(2))⊂ K2,
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where U runs over the open Y -subschemes of E 2 containing all prime-to-N multiples of the
image of s, we have a specialization map

s∗ : K2(N)→ H2(Y,Z′(2)),

and similarly we can pull back by any prime-to-N multiple of s.23

Now, for γ =
(

a b
c d

)
∈ Γ̃0(N), we have in fact nΘγ ∈ K2(N). Indeed, write Uγ = E 2−S0,n∪

Snb,nd , that is to say, Uγ is the complement in E 2 of the kernels of the maps E 2→ E defined by
(P,Q) 7→ nQ and (P,Q) 7→ n(bP+ dQ). Then ∂ (nΘγ) = (γ∗− 1)⟨0,1⟩n lies in H1(S0,n,1)(0)⊕
H1(Snb,nd ,1)(0) inside K(0)

1 . Since s and its multiples do not lie on either S0,n or Snb,nd , it follows
that nΘγ ∈ H2(Uγ ,2). Moreover, the image of any prime-to-N multiple of s is contained in Uγ

as N ∤ d. In this way, the cocycle nΘ restricted to Γ̃0(N) takes values in K2(N)⊂ K2.24

The operators Tℓ and T ′ℓ act on H1(Γ̃0(N),K2) and lift naturally to H1(Γ̃0(N),K2(N)). For
Tℓ, this is simply because the action of ∆0(N), as defined in (4.6), sends the section s to a multiple
of itself and therefore preserves K2(N). For T ′ℓ = Φ2

∗(Ψ
2)∗ as in §6.5.1, consider the diagram

E 2 E 2×Y Yℓ E 2

Y Yℓ Y,

Φ2 Ψ2

s

φ

(s,id)
ψ

s

and note that Ψ2 preserves s, whereas the preimage of the image of s under Φ2 is again the image
of (s, id).

Lemma 7.1.1. For primes ℓ ∤N, the classes of T ′ℓ (nΘ) and Tℓ(nΘ) coincide in H1(Γ̃0(N),K2(N)),
as do the classes of [ℓ]′(nΘ) and [ℓ]∗(nΘ).

Proof. Theorem 6.5.4 implies that T ′ℓ (nΘ) and Tℓ(nΘ), as well as [ℓ]′(nΘ) and [ℓ]∗(nΘ), are
cohomologous when considered with target K2. So it is enough to check the following claim
regarding the inclusion K2(N) ↪→ K2:

for any H ⩽ Γ̃0(N) of finite index, H1(H,K2(N))→ H1(H,K2) is injective. (7.1)

This injectivity will follow from the Gysin sequence analogous to (4.11) into which the
above inclusion fits if one proves the infinitude of all GL2(Z)-orbits of irreducible divisors on
E 2 containing the image of s. Such a divisor induces a divisor on the fiber E2 of E 2 over the
generic point of Y1(N). Restricting to this fiber, it is enough to prove that, for a non-CM elliptic
curve over a field K (in our case, the function field of Y1(N)) and an irreducible K-divisor D on
E2, the SL2(Z)-orbit of D is infinite. In fact, this is even true at the level of the Néron-Severi
group: by [RoSh, Theorem 4.2], the Q-vector space NS(E2)⊗ZQ realizes the representation

23In the case of G2
m, the point (1,ζN) was defined over Q(µN), whereas the subschemes U were defined over Q,

so the containment of (Z/NZ)×s for s ∈U(Q(µN)) was automatic.
24At this point, we have no further need for trace fixed parts, but of course nΘ takes values in K2(N)∩K(0)

2 .
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of SL2(Z) on binary quadratic forms. In this representation, all nonzero orbits are infinite, and
the class of D in the Néron-Severi group is nonzero because its intersection with a suitable
hyperplane section is nonzero.

7.1.2 Specialization of the cocycles

Through the right action of ∆=M2(Z)∩GL2(Q) on E 2, which preserves fibers, any δ =
(

a b
c d

)
∈

∆0(N) acts on the N-torsion sections of E 2 → Y . This action of ∆0(N) does not preserve the
section s. Indeed, let us agree to write points of E 2 as triples ((E,P),x,y), where E is an elliptic
curve and P is an N-torsion point on E (so that (E,P) defines a point of Y ) and x, y are points of
E. With this notation, we compute δ ◦ s:

(E,P) s7−→ ((E,P),0,P) δ7−→ ((E,P),0,dP).

This does not coincide with s◦ [d]′, where [d]′ for d prime to N is the diamond operator on Y1(N)

that sends (E,P) to (E,dP). Rather,

δ ◦ s = φ
−1
d ◦ s◦ [d]′, (7.2)

where φd : E 2→ E 2 sends ((E,P),x,y) to ((E,dP),x,y).
Consider the action of ∆0(N) on H2(Y1(N),Z(2)) whereby

(
a b
c d

)
∈ ∆0(N) acts as [d]′, i.e.,

∆0(N) acts through its lower right-hand map to (Z/NZ)×.

Lemma 7.1.2. The restriction of the pullback map

s∗ : K2(N)→ H2(Y,Z′(2))

to the Z[∆0(N)]-span of the image of nΘ on Γ̃0(N) is ∆0(N)-equivariant.

Proof. In fact, if x ∈ K2(N) is fixed by φ ∗d with φd as defined above, then by (7.2) we have

s∗ ◦δ
∗(x) = [d]′ ◦ s∗ ◦ (φ−1

d )∗(x) = [d]′s∗(x).

Thus, we need only show that
φ
∗
d (nΘγ) = nΘγ

for all γ ∈ Γ̃0(N).
By the characterization of nΘ in part a of Theorem 6.4.1, it is sufficient to verify that φ ∗d

preserves K
(0)
2 and fixes ⟨0,1⟩n. It preserves K

(0)
2 as the relevant diagram with φd and [m] is

evidently Cartesian, and it fixes ⟨0,1⟩n since the latter is “pulled back from level 1”; in particular,
it restricts to the same function on the fiber E2 over (E,P) and (E,dP).

Recall that Tℓ acts on the group of cocycles Γ̃0(N)→ H2(Y,Z′(2)) as in (3.5) (where we
view H2(Y,Z′(2)) as a Z[∆0(N)]-module as above), preserving coboundaries, whereas T ′ℓ acts
on such cocycles through its action on the motivic cohomology of Y defined in (6.15). The
foregoing lemmas, taken together, have established the following.
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Proposition 7.1.3. For γ ∈ Γ̃0(N), set

nΘN,γ = s∗(nΘγ) ∈ H2(Y,Z′(2)). (7.3)

a. The map

nΘN : Γ̃0(N)→ H2(Y,Z′(2)), γ 7→ nΘN,γ

is a parabolic cocycle.

b. For each prime ℓ ∤ N, the cocycles Tℓ(nΘN) and T ′ℓ (nΘN) are cohomologous.

Proof. For part a, that nΘN is a cocycle is clear from Lemmas 7.1.1 and 7.1.2. That it is parabolic
at all but the parabolic Q = {

(±1 n
0 1

)
| n ∈ Z} follows from a nearly identical argument to that

of Proposition 4.2.1, using the parabolicity of nΘ in Theorem 6.4.1b and the equivariance of
s∗ of Lemma 7.1.2. However, to see that nΘN is a coboundary on the exceptional parabolic Q,
we argue differently. Since 2 is invertible in Z′ and Q ∼= Z⋊Z/2Z, it suffices to see that nΘN

vanishes on the generator γ0 =
(

1 −1
0 1

)
of the unipotent subgroup of Q. Using (6.12) for the

connecting sequence v0 = (0,1), v1 = (−1,1) for γ0 and then applying (6.10) and (6.11), we
obtain

nΘN,γ0 = s∗(nΘγ0) = s∗(⟨(−1,1),(0,−1)⟩) = s∗⟨
(−1 0

1 −1

)
⟩∗(θ ⊠θ −N(θ ′⊠θ

′)).

Since ⟨
(−1 0

1 −1

)
⟩ applied to the section s = (0, ιN) gives (ιN ,−ιN), this becomes

ι
∗
Nθ ∪ (−ιN)

∗
θ −N((ι ′N)

∗
θ
′∪ (−ι

′
N)
∗
θ
′),

where ι ′N : Y ′→ (E ′)2 is the canonical N-torsion section and the norm is from Y ′ to Y . The two
terms in the above expression vanish by the evenness of θ and θ ′ and the skew-symmetry of the
cup product with Z′-coefficients (cf. [MVW, Theorem 15.9]).

As for part b, let ℓ be a prime not dividing N. By Lemma 7.1.2, we have s∗Tℓ(nΘ) = Tℓ(nΘN).
Moreover, ι∗NΦ∗Ψ

∗ = φ∗ψ
∗ι∗N since in the diagram

E E ×Y Ym E

Y Ym Y,

Φ Ψ

ιN

φ

(ιN ,id)
ψ

ιN

the right-hand square commutes and the left-hand square is cartesian. The analogue for E 2 then
holds with ιN replaced by s, and therefore we have s∗T ′ℓ (nΘ) = T ′ℓ (nΘN) as well. Again recalling
Lemma 7.1.1, we conclude that the cohomology classes of Tℓ(nΘN) and T ′ℓ (nΘN) are equal.

There is also a formula for nΘN,γ as a sum of cup products of Siegel units that follows in the
obvious way by specializing (6.12); we do not write it down here, but we will discuss its “n = 1”
analogue in the next section.
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7.2 The universal “n = 1” cocycle

The cocycle

nΘN : Γ̃0(N)→ H2(Y1(N),Z′(2))

constructed above depends on the choice of an auxiliary prime n in addition to the level N.
As we shall detail, it satisfies a simple distribution relation in n that permits us to construct an
“n = 1” version rationally.

7.2.1 Relation between cocycles and statement of the result

Suppose that ℓ is a prime with ℓ ∤ N. Set

V ′ℓ = ℓ4− ℓ2T ′ℓ + ℓ[ℓ]′ and Vℓ = ℓ4− ℓ2Tℓ+ ℓ[ℓ]∗.

As in §6.5, the operator V ′ℓ acts on K, and the operator Vℓ acts on cocycles valued in K2. (Strictly
speaking, the action of Vℓ depends on choice of representatives for the double coset of

(
ℓ

1

)
, but

recall that we made a particular choice in defining Tℓ in §3.4.) For example, one has by (6.8)
the equality en = Vn(0) in H0(GL2(Z),K0). Beyond this, these operators act on several closely
related groups; for convenience, we summarize some of these actions and their relationships:

(i) As in the discussion prior to Lemma 7.1.1, the operator V ′ℓ acts directly on K2(N), and Vℓ

acts on H∗(GL2(Z),K2(N)).

(ii) Using double cosets of Γ̃0(N) inside ∆0(N), the operator Vℓ acts on H1(Γ̃0(N),K2) com-
patibly with the restriction map H1(GL2(Z),K2)→ H1(Γ̃0(N),K2).

(iii) As in Proposition 7.1.3, the operators Vℓ and V ′ℓ both act on H1(Γ̃0(N),H2(Y1(N),Z′(2))).
The specialization map K2(N)→ H2(Y1(N),Z′(2)) is equivariant for both operators; this
is argued just as in the proof of said proposition.

The “distribution relation” between our cocycles is then as follows.

Lemma 7.2.1. For any prime ℓ ∤ N, the classes of Vℓ(nΘN) and Vn(ℓΘN) are equal.

Proof. The lemma follows by specialization via s∗, noting point (iii) above, from the claim that

the classes of Vℓ(nΘ) and Vn(ℓΘ) coincide, considered with target K2(N).

By (7.1), it suffices to prove this instead with target K2. Noting point (ii) above, it is moreover
sufficient to prove the equality inside H1(GL2(Z),K2) rather than H1(Γ̃0(N),K2), and then,
by Theorem 6.5.4 it is sufficient to prove it with the V -operators replaced by the V ′-operators.
But just as in the proof of Theorem 6.5.4, this is a consequence of the fact that V ′ℓen = V ′neℓ =
V ′ℓV

′
n(0).
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Let us state the main theorem of this section.

Theorem 7.2.2. There exists a parabolic cocycle

ΘN : Γ̃0(N)→ H2(Y,Z′[ 1
N ](2))

with class uniquely specified by the property that the classes of Vℓ(ΘN) and ℓΘN are equal for
each ℓ not dividing N. Moreover Tn and T ′n coincide on the class of ΘN for all primes n ∤ N.

The proof requires the following statement about the ring-theoretic structure of the Hecke
algebra.

Proposition 7.2.3. Write M = H2(Y,Z′[ 1
N ](2)), and let TM be the subalgebra of the Z′[ 1

N ]-
endomorphism ring of H1(Γ̃0(N),M) generated by all Tℓ for primes ℓ ∤ N and [d]′ for d prime to
N. Then the operators Vn for primes n ∤ N generate TM.

We will prove Proposition 7.2.3 in the remainder of this section. Namely, we show in Lemma
7.2.5 that the algebra TM is a quotient of the Z′[ 1

N ]-Hecke algebra T of weight 2 modular forms
for Γ1(N), with Tℓ mapping to Tℓ and ⟨d⟩mapping to [d]′, and we will show in Proposition 7.2.6
that the Vn-operators generate T. This last statement uses the structure of Galois representations
attached to level N eigenforms.

We now prove Theorem 7.2.2 assuming Proposition 7.2.3.

Proof of Theorem 7.2.2. To construct ΘN , let us choose operators ri ∈ TM and primes ni ∤ N
for 1 ≤ i ≤ t for some t such that ∑

t
i=1 riVni = 1. We then set ΘN = ∑

t
i=1 ri(niΘN), a parabolic

cocycle. By Lemma 7.2.1, we see immediately that, as cohomology classes, we have

Vℓ(ΘN) =
t

∑
i=1

riVni(ℓΘN) = ℓΘN .

Uniqueness follows as, if θ is a cocycle with Vℓθ = ℓΘN as cohomology classes for all ℓ ∤ N,
then θ = ∑

t
i=1 riVniθ = ΘN . To show that Tn and T ′n coincide, it is enough by Proposition 7.2.3

to show the same for VℓTn and VℓT ′n . This follows by Lemma 7.1.1 and the commutativity of the
two types of Hecke operators on H1(Γ̃0(N),M), which is proved just as in Lemma 6.5.3.

7.2.2 Normalizations of Hecke operators

Our conventions regarding Hecke operators on cocycles differ slightly from standard conven-
tions in the literature due to issues of left versus right actions. We briefly describe the precise
relationship, which will be useful in using results about Galois representations.

Let M2(Γ1(N)) denote the complex vector space of weight 2 modular forms for Γ1(N). Ele-
ments of M2(Γ1(N)) are Γ1(N)-invariant functions on H for a natural right action on functions,
namely,

f |γ(z) = (cz+d)−2 f (γz)
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for γ =
(

a b
c d

)
∈ SL2(Z). Similarly, elements of H1(Γ1(N)\H,C) are represented by Γ1(N)-

invariant cochains on H, where we regard SL2(Z) acting on the right on cochains in a fashion
dual to its obvious left action on chains. Correspondingly, it is natural to consider right Hecke
operators on these two groups, as is usually done in the literature (cf. Remark 3.4.2); when
extending the actions above to M2(Z)∩GL2(Q) we introduce an extra factor of det(γ).

Let us consider the Hecke equivariance of the following two maps:

M2(Γ1(N))→ H1(Γ1(N)\H,C)→ H1(Γ1(N),C),

where the first (Eichler-Shimura) sends f to f (z)dz and the second sends a cohomology class
to the cocycle that, given γ ∈ Γ1(N), evaluates the cohomology class on the homology class
of an arbitrary path from z to γz (for an arbitrarily chosen z ∈ H). These maps intertwine
the right Hecke T R(h)-actions on all three groups defined by a decomposition Γ1(N)hΓ1(N) =
∏t

j=1 Γ1(N)h j. For instance, T R(h) is defined on differential forms as ∑
t
j=1 h∗j , which is clearly

compatible with the sum of the actions of the representatives h j on a modular form.
Now take h =

(
1
ℓ

)
for ℓ ∤ N. The action of T R(h) on M2(Γ1(N)) is readily verified to

coincide with the Hecke operator denoted T ∗ℓ by Edixhoven in [Edi]. By Remark 3.4.2, the
corresponding operator on H1(Γ1(N),C) can also be described as T (h∗) (now defined with left
cosets), and this operator T (h∗) = T (

(
ℓ

1

)
) is exactly our definition of Tℓ.

For δ ∈ Γ0(N) with lower right-hand entry d, the T R(δ )-action on cusp forms is the dia-
mond operator ⟨d⟩ (denoted ⟨d⟩∗ in [Edi]). The T (δ−1) = T R(δ )-action on a cocycle becomes
precomposition with the conjugation γ 7→ δγδ−1 (since in this case t = 1 and γ1 = δγδ−1).

7.2.3 Comparison of Hecke algebras for Γ0 and Γ1

Let us view modules for (Z/NZ)× as having an action of ∆0(N) through the quotient map
∆0(N)→ (Z/NZ)× under which a matrix is sent to its lower right-hand corner modulo N. Recall
that Γ̃1(N) is the analogue of Γ1(N) for GL2(Z) defined in (4.5).

Lemma 7.2.4. Let R be a commutative ring, and let O = R[(Z/NZ)×]. Then Shapiro’s lemma
defines an isomorphism

H1(Γ̃0(N),O)
∼−→ H1(Γ̃1(N),R)

that is compatible with the action of Hecke operators T (g) as in (3.5) with g∈ ∆1(N). Moreover,
this map is (Z/NZ)×-equivariant for the action of d ∈ (Z/NZ)× on the right by precomposition
by γ 7→ δγδ−1 for any δ ∈ Γ̃0(N) with image d in (Z/NZ)×.

Proof. Let us denote the image of a cocycle θ : Γ̃0(N)→ R[(Z/NZ)×] under the Shapiro iso-
morphism by θ : it is obtained by restriction of cocycles together with the map φ : R[(Z/NZ)×]→
R that takes the coefficient of the identity element. For g ∈ ∆0(N) and γ ∈ Γ̃0(N), equation (3.5)
states that T (g)θ(γ) = ∑

t
j=1 gσ( j)θ(γ j), recalling the notation of §3.4. If in fact g ∈ ∆1(N) (as
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defined in (4.7)) and γ ∈ Γ̃1(N), then we may choose the representatives g j to also belong to
∆1(N), in which case the γ j belong to Γ̃1(N). We then have

T (g)θ(γ) =
t

∑
j=1

φ(gσ( j)θ(γ j)) =
t

∑
j=1

gσ( j)φ(θ(γ j)) =
t

∑
j=1

gσ( j)θ̄(γ j) = (T (g)θ)(γ).

In particular, taking g =
(
ℓ 0
0 1

)
exhibits equivariance for Tℓ.

Finally, take d ∈ (Z/NZ)× and a representative δ ∈ Γ̃0(N). Then for γ ∈ Γ̃1(N), we get

(δ · θ̄)(γ) = φ(θ(δγδ
−1)) = φ(δθ(γ))

so the Shapiro isomorphism is (Z/NZ)×-equivariant.

Now suppose 6 ∈ R×, and let T denote the R-Hecke algebra of weight 2 modular forms for
Γ1(N) generated by prime-to-level Hecke operators Tℓ and diamond operators ⟨ℓ⟩.

Lemma 7.2.5. Let M be a R[(Z/NZ)×]-module, where 6 ∈ R×. We equip M with the action
of ∆0(N) via the surjection ∆0(N) ↠ (Z/NZ)×. Let TM be the R-algebra of endomorphisms
of the cohomology group H1(Γ̃0(N),M) generated by Tn for primes n ∤ N and the elements of
(Z/NZ)×. Then there is a surjection

T→ TM

carrying Tn to Tn and the diamond operator ⟨d⟩ to the action of d ∈ (Z/NZ)×.

Proof. Write O for the group algebra of (Z/NZ)× over R, which we view as a quotient of the
R-monoid algebra of ∆0(N) through the lower right-hand corner map. Then M is isomorphic to
a quotient of O⊕J for some indexing set J. Since 2 is invertible in R, we have

H1(Γ̃1(N),M)∼= H1(Γ1(N),M)+

(see the proof of Proposition 4.3.1), so T acts on H1(Γ̃1(N),M). Consider the composition

H1(Γ̃1(N),R)⊕J ∼−→ H1(Γ̃0(N),O)
⊕

J → H1(Γ̃0(N),M), (7.4)

where the first map comes from Shapiro’s lemma as in Lemma 7.2.4, and the cokernel of the last
map injects into H2(Γ̃0(N),A), for A = ker(O

⊕
J→M). We claim that H2(Γ̃0(N),A) is zero, so

that the composition in (7.4) is surjective. Since this composition is compatible with the action
of Hecke and diamond operators as in Lemma 7.2.4, we will then have the lemma.

To see the claim, note that the restriction map

H2(Γ̃0(N),A)→ H2(Γ0(N)∩Γ(4),A)

is injective since the index h = [Γ̃0(N) : Γ0(N)∩Γ(4)] is invertible in R, and the composition of
restriction and corestriction is multiplication by h. The target of restriction is a second cohomol-
ogy group of an open 2-manifold, hence trivial.
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7.2.4 The Vn-operators generate

The following result implies Proposition 7.2.3, in view of the results of the previous subsection.

Proposition 7.2.6. Let T be the Hecke ring for Γ1(N) with Z′[ 1
N ]-coefficients. The operators Vn

for primes n ∤ N generate the unit ideal of T.

Proof. Let v be the ideal of T that the operators Vn for n ∤ N generate. Suppose by way of
contradiction that v ̸= T. Then T/v is a ring that is finite over Z′[ 1

N ] and admits a nontrivial
homomorphism to a field F that is algebraically closed of finite characteristic p ∤ N.

In this situation, there exists an associated continuous, semisimple Galois representation

ρ : GQ→ GL2(F)

such that the trace of a Frobenius element ϕℓ at any prime ℓ ∤ N p coincides with the image of Tℓ
in F , and the determinant of ϕℓ is given by the image of the diamond operator ⟨ℓ⟩ in F×, which
we’ll denote by the same symbol. Since Vℓ maps to zero in F , this implies that

Trρ(ϕℓ) = ℓ2 + ℓ−1⟨ℓ⟩ ∈ F

for ℓ ∤ N p.
By Čebotarev density, ρ is isomorphic to the direct sum ω2⊕ω−1ν , where ω denotes the

mod p cyclotomic character and ν : GQ → F× is the composition of the cyclotomic character
GQ→ (Z/NZ)× and the diamond operator map (Z/NZ)×→ F×. Restricted to the inertia group
above p, we get

ρ|Ip ≃ ω
2⊕ω

−1,

which contradicts well-known properties of the Galois representations attached to weight 2
eigenforms of level N: that is, the restriction of ρ to any inertia group Ip at p must be ω⊕1 or
the sum of two tame characters. It is enough to verify this separately for Eisenstein series and
cusp forms; in the Eisenstein case only the former case occurs, and in the cuspidal case the two
possibilities are distinguished by whether the image of Tp in F is zero or nonzero (see [Edi,
Theorems 2.5-2.6]).

Remark 7.2.7. If we are willing to work with Q-coefficients in place of coefficients in Z′[ 1
N ],

then Proposition 7.2.6 has a much simpler proof. Indeed each Vℓ with ℓ ∤ N is itself a unit in
the Hecke algebra acting on group cohomology. The key point is that the Tℓ-eigenvalues of any
weight 2 eigenform for Γ1(N) have complex absolute value at most ℓ+ 1, and the eigenvalues
of diamond operators are roots of unity, so Vℓ has eigenvalues of complex absolute value at least
ℓ3−1− ℓ(ℓ+1)> 0.
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7.3 Explicit formula for the universal cocycle

We cannot quite write down an explicit formula for a cocycle in the universal class of the previ-
ous section because of our lack of understanding of the motivic cohomology group H2(Y,Q(2)).
However, we can at least do it modulo a subgroup V which can be seen to vanish under any stan-
dard regulator map.

7.3.1 The explicit formula, in brief

For a prime n ∤ N, let Vn denote the kernel of V ′n on H2(Y,Q(2)), and let V =
⋂

n∤N Vn. Remark
7.2.7 implies that the group V maps to zero in any quotient of H2(Y,Q(2)) that factors through
the action of the Hecke algebra on H1(Γ1(N),Q).

Proposition 7.3.1. The class of ΘN modulo V equals the class of the cocycle

Γ̃0(N)→ H2(Y,Q(2))/V , γ 7→
k

∑
i=1

g di
N
∪g−di−1

N
mod V (7.5)

for (bi,di)
k
i=0 any N-connecting sequence for γ , where g a

N
for a prime to N is the standard Siegel

unit on Y (see §7.3.2).

Implicit in the statement is the assertion that the right-hand side of (7.5) is independent of
the choice of connecting sequence and defines a cocycle.25 We explain the proof modulo certain
explicit computations with Siegel units that are carried out in the rest of the section.

Proof. We will prove in Lemma 7.3.4 that for γ =
(

a b
c d

)
∈ SL2(Z) with both c and d relatively

prime to N, we have
s∗⟨γ⟩n =V ′n(g c

N
∪g d

N
). (7.6)

for each n ∤ N. For a given N-connecting sequence (bi,di)
k
i=0 for γ , let us set

fγ =
k

∑
i=1

g di
N
∪g−di−1

N
∈ H2(Y,Q(2))

with the understanding that this depends on the connecting sequence. From Proposition 6.4.1(c)
and (7.3), we know that

nΘN,γ = s∗
k

∑
i=1

〈(
bi −bi−1
di −di−1

)〉
n

(7.6)
=

k

∑
i=1

V ′n(g di
N
∪g−di−1

N
).

So, by (7.6), we have that

nΘN,γ =V ′n fγ .

25It is very likely that the proposition remains true without taking the quotient by V , but we do not know how to
prove it.
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This equality uniquely determines fγ as an element of H2(Y,Q(2))/Vn. From this and the fact
that nΘN is a cocycle, we see that the quantity fγ mod Vn is independent of choice of connecting
sequence, and γ 7→ fγ mod Vn is a cocycle. But then, the latter two facts are true modulo V =⋂

n Vn as well.
By Theorem 7.2.2, the cocycle V ′n(ΘN) is cohomologous to nΘN . In particular, the class of

γ 7→ ΘN,γ − fγ lies in the kernel of all V ′n acting on H1(Γ̃0(N),M) with M = H2(Y,Q(2))/V .
To see that this common kernel is zero, consider the injection ι : M ↪→

⊕
n∤N M induced by the

collection of operators V ′n. We must show that the map

H1(Γ̃0(N),M)→
⊕
n∤N

H1(Γ̃0(N),M)

induced by ι is injective. This follows from the surjectivity of the map⊕
n∤N

H0(Γ̃0(N),M)→ H0(Γ̃0(N),coker ι) (7.7)

which in turn is a consequence of the fact that Γ̃0(N)-action on the Q-vector space M factors
through the finite group (Z/NZ)×.

Aside from the change of modular curve, the following is a corollary of Proposition 7.3.1 and
its proof. In it, we use V to denote the intersection of kernels of the V ′n on H2(Y1(N),Z′[ 1

N ](2)).

Proposition 7.3.2. The cocycle ΘN restricts to a cocycle

ΘN : Γ̃1(N)→ H2(X1(N),Z′[ 1
N ](2)),

satisfying

ΘN,γ ≡
k

∑
i=1

g di
N
∪g−di−1

N
mod V

for γ ∈ Γ1(N).

Proof. To see that we can work with Z′[ 1
N ]-coefficients, note that the only place where we may

need to invert further primes (i.e., those dividing ϕ(N)) in the proof of Proposition 7.3.1 is for
the surjectivity of the map in (7.7), but if we replace Γ̃0(N) by Γ̃1(N), then this need is alleviated
as Γ̃1(N) acts trivially on H2(Y,2).

The second claim is immediate from Proposition 7.3.1, since both cocycles restrict to homo-
morphisms on Γ1(N), so are equal (modulo V ). Set X = X1(N) (over Q) and C = X −Y . We
have an exact Gysin sequence

0→ H2(X ,Z′[ 1
N ](2))→ H2(Y,Z′[ 1

N ](2))→ H1(C,Z′[ 1
N ](1))→ 0

Each V ′n for n not dividing N acts on H1(C,Z′[ 1
N ](1))

∼=O×C ⊗ZZ′[ 1
N ]. Since this is torsion-free as

a Z′[ 1
N ]-module, the argument of Remark 7.2.7 can be applied to show that no nonzero element

of H1(C,Z′[ 1
N ](1)) is killed by all V ′n with n ∤ N. From this, we see that V ⊆ H2(X ,Z′[ 1

N ](2)).
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It therefore suffices to show that ∑
k
i=1 g di

N
∪g−di−1

N
has trivial residue in O×C ⊗ZZ′[ 1

N ]. It fol-

lows from [FuKa, Lemma 3.3.12] that the tame symbol of this sum at the cusp ∞ : SpecQ(µN)→
X1(N) has image in Q(µN)

×⊗ZZ′[ 1
N ] equal to

k

∏
i=1

(
1−ζ

di
N

1−ζ
di−1
N

)1/12

= 1,

and similarly for the other cusps over the infinity cusp of X0(N). At the other, non-infinity cusps,
the same lemma tells us that the residues of the individual terms g di

N
∪g−di−1

N
are trivial.

7.3.2 Review of Siegel units

Let us consider units on the modular curve Y (M) for M ≥ 3, which is the moduli space of triples
(E,P,Q) with E an elliptic curve and (P,Q) an ordered basis of E[M]. The universal elliptic
curve E (M) has two canonical order M sections ιM,1, ιM,2 : Y (M)→ E (M) corresponding to P
and Q. For (c,d) ∈ Z2−MZ2 and m prime to M

(c,M) ·
M

(d,M) , let

mg c
M , d

M
= (cιM,1 +dιM,2)

∗(mθ) ∈ O×Y (M)⊗Z[1
6 ],

where mθ ∈ E (M)×⊗Z[1
6 ] is the theta-function defined analogously to (6.6): it has zeros of

multiplicity 1 along nonzero m-torsion points, and a pole of order m2−1 at the identity section.
Next let

g c
M , d

M
= mg c

M , d
M
⊗ (m2−1)−1 ∈ O×Y (M)⊗ZQ

for any m≡ 1 mod M and prime to 6, independent of the choice. (In fact, we may define g c
M , d

M

as an element of O×Y (M)⊗ZZ[ 1
6M ].) Then

mg c
M , d

M
= gm2

c
M , d

M
·g−1

mc
M ,md

M
.

For any m≥ 1 and (c,d) ∈ Z2−MZ2, the Siegel units satisfy the distribution relation

m−1

∏
i=0

m−1

∏
j=0

g c
Mm+ i

m , d
Mm+ j

m
= g c

M , d
M
.

The Siegel units mg0, d
M

and g0, d
M

are units rationally on Y1(M). We denote them more simply
by mg d

M
and g d

M
, respectively.

7.3.3 Some computations with Siegel units

Our goal here is to prove (7.6).

Lemma 7.3.3. Let us consider nθ ′ defined analogously to (6.6) as a rational function on the
universal elliptic curve En over the modular curve Y1(Nn). For d ∈ (Z/NZ)×, we have

(dιN)
∗(nθ

′) = g−1
nd
N
·

n−1

∏
j=0

gn
d
N + j

n
∈ O×Y ′⊗ZQ.
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Proof. For En→Y1(Nn), we have canonical order N and order n sections ιN and ιn, respectively.
Let φ : En→ En be translation by ιn, i.e., given on the fiber over (E,P,Q) with P of order N and
Q of order n by φ(x) = x+Q. Then

n2K −nE[n] =
n−1

∑
j=0

( jφ)∗(n2(0)−E[n]),

so

(nθ
′)n =

n−1

∑
j=0

( jφ)∗nθ ,

where we view nθ as the theta-function with divisor n2(0)−E[n] on En. Since, for d ∈ (Z/NZ)×,
the section dιN + jιn has order divisible by N, the pullback (dιN + jιn)

∗
nθ is well defined. We

then see that
(dιN)

∗( jφ)∗nθ = (dιN + jιn)
∗

nθ = ng d
N + j

n
= g−1

nd
N
·gn2

d
N + j

n
.

Taking the product over 0≤ j ≤ n−1 and the nth root gives the result.

Lemma 7.3.4. For γ =
(

a b
c d

)
∈ SL2(Z) with both c and d relatively prime to N, we have

s∗⟨γ⟩n =V ′n(g c
N
∪g d

N
) ∈ H2(Y,Q(2)).

Proof. Note that s∗⟨γ⟩n is the pullback of ⟨
(

1 0
0 1

)
⟩n by the section (cιN ,dιN). We have

(cιN ,dιN)
∗(nθ ⊠ nθ) =

gn2
c
N

g nc
N

∪
gn2

d
N

g nd
N

. (7.8)

For the N-torsion section of ιN : Y ′→ E ′ (with Y ′ = Yn as in §6.3.1), Lemma 7.3.3 tells us that

(cιN ,dιN)
∗(nθ

′⊠ nθ
′) =

∏
n−1
i=0 gn

c
N + i

n

g nc
N

∪
∏

n−1
j=0 gn

d
N + j

n

g nd
N

. (7.9)

The individual functions here are defined on Y1(Nn), but the product is defined on Y ′.
Given that we have a cartesian diagram

Y ′ (E ′)2

Y E 2,

(cιN ,dιN)

(cιN ,dιN)

Lemma 2.1.1 implies that the norms for Y ′→ Y and (E ′)2→ E 2 commute with pullback by the
N-torsion section (cιN ,dιN). Recalling now that ⟨

(
1 0
0 1

)
⟩n = nθ ⊠ nθ −N(nθ ′⊠ nθ ′), we then

obtain from (7.8) and (7.9) that

(cιN ,dιN)
∗⟨
(

1 0
0 1

)
⟩n =

gn2
c
N

g nc
N

∪
gn2

d
N

g nd
N

−

 ∑
⟨(α,β )⟩

∏
n−1
i=0 gn

iα
n , c

N + iβ
n

g nc
N

∪
∏

n−1
j=0 gn

jα
n , d

N + jβ
n

g nd
N

 , (7.10)
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where the sum runs over chosen generators of the n+1 cyclic subgroups of order n in (Z/nZ)2.
Note that in (7.10), we work with the cover Y ′′ of Y obtained by the additional data of a full level
n structure. The group H2(Y,Q(2)) injects into H2(Y ′′,Q(2)) under pullback, since Y ′′ → Y
is finite and these groups are Q-vector spaces. We can then compute the norm N(nθ ′⊠ nθ ′)

by taking a sum over the actions of coset representatives for GL2(Z/nZ) modulo the upper
triangular subgroup.

We now analyze the terms of (7.10). In the second term, we have the following.

• The numerators give n2T ′n(g c
N
∪ g d

N
). Indeed, by definition, T ′n(g c

N
∪ g d

N
) is obtained by

pulling back g c
N
∪g d

N
to Y ′ along ψ : (E,P,K) 7→ (E/K,P+K), and then taking the norm

φ∗ along Y ′/Y . The pullback ψ∗g c
N

is given by ∏
n−1
i=0 g c

N + i
n
, and the norm is as before.

• The cross terms are

−n2g nc
N
∪g d

N
−ng nc

N
∪g nd

N
and −n2g c

N
∪g nd

N
−ng nc

N
∪g nd

N

by the distribution relation.

• The denominators contribute (n+1)g nc
N
∪g nd

N
.

Subtracting this from the first term and noting that [n]′(g c
N
∪g d

N
) = g nc

N
∪g nd

N
, we obtain

s∗⟨γ⟩n = (n4−n2T ′n +n[n]′)(g c
N
∪g d

N
) =V ′n(g c

N
∪g d

N
).

7.4 Maps on the homology of X1(N)

We conclude by comparing our cocycle ΘN to related “zeta maps” on the homology of modular
curves.

7.4.1 Zeta maps with Z′[ 1
N ]-coefficients

Since ΘN restricts to a homomorphism on Γ̃1(N) which is trivial on parabolic subgroups, we
have the following analogue of Proposition 4.3.1. We note that H2(X1(N),2) is preserved by the
Hecke and diamond operators on H2(Y1(N),2).

Theorem 7.4.1. The map

zN : H1(X1(N),Z′)+→ H2(X1(N),Z′[ 1
N ](2))

sending the image of γ⃗ = {0→ γ · 0} to ΘN,γ for all γ ∈ Γ1(N) is a Hecke-equivariant homo-
morphism in the sense that zN(Tℓ⃗γ) = T ′ℓ · zN (⃗γ) for primes ℓ ∤ N and zN(⟨d⟩⃗γ) = [d]′ · zN (⃗γ) for
d ∈ (Z/NZ)×.
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Proof. The existence of a map to H2(X1(N),Z′[ 1
N ](2)) follows from Proposition 7.3.2 just as in

Proposition 4.3.1, since the induced Γ̃1(N)-action on the latter cohomology group is trivial. The
Hecke equivariance follows as in the argument of Theorem 4.3.7.

In [Gon1, Proposition 2.16], Goncharov outlined a construction of an analogue of zN for
Y (N) via a map from a complex computing the cohomology of the modular curve Y (N)(C) to a
certain “Euler complex” involving a Bloch group. In a recent preprint, Brunault [Bru2, Theorem
4.3] gives what amounts to an explicit construction of a well-defined homomorphism

z◦N : H1(X1(N),C◦1(N),Z)→ H2(Y1(N),Z[ 1
6N ](2)), [u : v]N 7→ g u

N
∪g v

N
,

directly verifying that Steinberg symbols of Siegel units satisfy the Manin relations, improving
earlier work in [Bru1].

The map z◦N agrees on H1(X1(N),Z) with the restriction to Γ1(N) of the explicit map f of
the proof of Proposition 7.3.1, showing it to be a homomorphism without the need to reduce
modulo V . However, that still leaves a needed argument to show f agrees with ΘN on Γ1(N) to
deduce the Hecke equivariance of f .

7.4.2 Ordinary zeta maps with Zp-coefficients

Fix a prime p≥ 5 dividing N. Let T∗N denote the full adjoint weight 2 Hecke algebra for Γ1(N)

over Zp (see (4.15)). We also view it as acting via adjoint operators on H2
ét(Y1(N),Qp(2)), and

let us use a superscript ord to denote the U∗p -ordinary part for this action. This U∗p -ordinary part
is canonically a direct summand via application of Hida’s idempotent in T∗N .

In [FuKa, Theorem 3.3.9] (see also Lemma 5.2.5 therein), Fukaya and Kato construct the
following Hecke-equivariant zeta map to the U∗p -ordinary part of cohomology (or more precisely,
the negative of this map precomposed with an Atkin-Lehner involution).

Theorem 7.4.2 (Fukaya-Kato). There is a T∗N-equivariant homomorphism

zord
N,ét : H1(X1(N),C◦1(N),Zp)→ H2

ét(Y1(N),Qp(2))ord, [u : v]N 7→ g u
N
∪g v

N
,

where we identify the cup product of Siegel units with its U∗p -ordinary projection.

The proof of Theorem 7.4.2 is quite involved but in particular uses a p-adic regulator compu-
tation of the values of a related map taken up the cyclotomic tower, which are norm-compatible
sequences of Beilinson-Kato elements in Iwasawa cohomology.26

The restriction of the ordinary zeta map zord
N,ét to H1(X1(N),Zp) is the étale realization of the

zeta map zN of Theorem 7.4.1. That is, the explicit formula for zN (⃗γ) = ΘN,γ given in Theorem
6.4.1 agrees in its étale realization with that of zord

N,ét. To see this, note that the group V providing

26They in fact obtain a map to the subgroup given by the cohomology of the integral model Y1(N)/Z[ 1
N ]. It is

also possible to see our zeta maps are similarly valued in the motivic cohomology of X1(N)/Z[ 1
N ], for instance using

explicit formulas for nΘN .
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the ambiguity in the explicit formula for ΘN of Theorem 6.4.1 vanishes in the étale realization,
since the prime-to-level Hecke operators on H2

ét(Y1(N),Qp(2)) factor through the Zp-Hecke
algebra of weight 2 modular forms, where each V ′ℓ has trivial kernel (see Remark 7.2.7).

Remark 7.4.3. The operators T ′ℓ on H2(Y,2) defined in §6.5.1 arise from the composition of the
operators [ℓ]′ and the dual (or adjoint) Hecke operators T ∗ℓ (or T (ℓ)∗) in [FuKa, 1.2.3]. On étale
cohomology, where we know that their actions factor through the usual weight 2 Hecke algebra,
we have that T ′ℓ acts as Tℓ = ⟨ℓ⟩T ∗ℓ . So, the Hecke equivariance at prime-to-level operators in
Theorem 7.4.1 matches that of Theorem 7.4.2.

Remark 7.4.4. Jun Wang [Wan, §5.1] (see also [LeWa, Theorem 3.7]) proved the analogue of
Theorem 7.4.2 for p ∤ N, in which case one need not take ordinary parts. His map is shown to
take values in the quotient of H2

ét(Y1(N),Zp(2)) by the finite subgroup H2
ét(Z[

1
N p ],Zp(2)). The

p-adic étale realization of our map zN takes image in H2
ét(Y1(N),Zp(2)) and induces Wang’s map

in the quotient.

In [FKS2], it is shown that if p ∤ ϕ(N), then there exists an integral version of zN to the
primitive part of H2

ét(Y1(N),Zp(2))ord for the action of (Z/NZ)× by diamond operators, after
excluding the ω−2-eigenspace for (Z/pZ)×. Let us describe a motivic version of this, without
some of these assumptions.

Let ι : (Z/pZ)×→ (Z/NZ)× denote the canonical map splitting reduction modulo p. We
have an idempotent

ε = 1− 1
p−1

p−1

∑
a=1

ω
2(a)ι(a) ∈ Zp[(Z/NZ)×].

This idempotent applied to H2(X1(N),Zp(2)) serves to remove the ω−2-eigenspace of (Z/pZ)×,
where a ∈ (Z/pZ)× acts as [ι(a)]′.

Proposition 7.4.5. There exists a unique homomorphism

zord
N : H1(X1(N),Zp)+→ ε ·H2(X1(N),Zp(2))

which

• factors through the Up-ordinary projection H1(X1(N),Zp)+→ H1(X1(N),Zp)
ord
+ and

• satisfies zord
N (Vn⃗γ)= ε ·nΘN,γ for all primes n ∤N and γ ∈Γ1(N) with γ⃗ ∈H1(X1(N),Zp)

ord.

It is Hecke equivariant for the prime-to-level Hecke operators in the sense of Theorem 7.4.1.

Proof. The proof mirrors that of Proposition 7.2.6. Consider the Zp-algebra of endomorphisms
TM generated by the Hecke operators of Tℓ for ℓ ∤ N, U∗ℓ for ℓ | N, and [d]′ for d ∈ (Z/NZ)×

acting on H1(Γ̃1(N),M) = H1(Γ1(N),M)+. The U∗p -ordinary part Tord
M of this Hecke algebra

acts on H1(Γ̃1(N),M)ord ∼= Hom(H1(Y1(N),Z)ord
+ ,M).

First, we note this Hecke algebra Tord
M is a quotient of the Hecke algebra Tord for Up-ordinary

modular forms of weight 2 for Γ1(N) that is generated by these operators, by a map taking an
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operator to its adjoint, i.e., via the map that sends T ∗ℓ to Tℓ, Uℓ to U∗ℓ , and ⟨d⟩−1 to [d]′ (see
§7.2.2). For the direct summand ε ·H1(Γ̃1(N),M)ord = H1(Γ̃1(N),ε ·M)ord, the corresponding
Hecke algebra is a quotient of ε ·Tord.

We claim that the operators V ∗ℓ = ℓ(ℓ3− ℓ⟨ℓ⟩−1Tℓ+ ⟨ℓ⟩−1) generate ε ·Tord, which will tell
us that the operators Vℓ generate Tord

M . Suppose they do not. We then have a nonzero homomor-
phism φ : ε ·Tord→ F to an algebraically closed field F of characteristic p such that V ∗ℓ ∈ kerφ

for all ℓ ∤ N.
Let N′ be the prime-to-p part of N. Hida theory (see [Hid, Theorem 1.2]) provides a Up-

ordinary eigenform f in M2(Γ1(N′p),F)ord such that φ(Tℓ) for ℓ ∤ N or φ(Uℓ) for ℓ | N is its ℓth
Fourier coefficient aℓ( f ) ∈ F . Let ω j for 1≤ j≤ p−1 be the restriction of the Nebentypus of f
to (Z/pZ)×, where ω denotes the mod p cyclotomic character. A result of Ohta [Oht, Proposi-
tion 1.3.5] implies that f arises from an eigenform f ′ in the Tp-ordinary part of M j+2(Γ1(N′),F)

with aℓ( f ) = aℓ( f ′) for ℓ ̸= p.
As in the proof of Proposition 7.2.6, we may associate to f ′ a semisimple Galois representa-

tion ρ : GQ→ GL2(F) satisfying ρ|Ip ≃ ω j+1⊕1 (again by [Edi, Theorem 2.5]). On the other
hand, since ℓTℓ−1− ℓ3⟨ℓ⟩ ∈ kerφ for all ℓ ∤ N p by assumption, we must have

ℓTrρ(ϕℓ) = 1+ ℓ j+3
χ(ℓ) ∈ F

for some F-valued Dirichlet character χ of modulus N′, where ϕℓ denotes the Frobenius at ℓ.
By Čebotarev density, we then have ρ ≃ ω−1⊕ω j+2χ . This in turn forces j = −2, but the
ω−2|Ip-eigenspace of ε ·Tord is trivial. Thus, we have the necessary contradiction.

Since the operators Vℓ generate Tord
M , as in the proof of Theorem 7.2.2 we may construct a U∗p -

ordinary parabolic cocycle Θord
N : Γ̃1(N)→ ε ·M as a TM-linear combination of the restrictions

of the cocycles nΘN to Γ̃1(N), where the coefficients sum to Hida’s ordinary idempotent in TM.
The class of VnΘord

N for a prime n ∤ N is the ordinary projection of the class of nΘN . This in turn
gives rise to the homomorphism zord

N in the statement of the proposition. In particular, note that
its image lands in H2(X1(N),Zp(2)) via the argument of Proposition 7.3.2.

We remark that we do not show that zord
N is equivariant for pth Hecke operators, as prior to

this point we only considered prime-to-level operators on our cocycles. It would be interesting
to prove this. Passing to étale cohomology, the explicit formula for ΘN,γ of Theorem 6.4.1 holds
in H2

ét(Y,Qp(2)) without ambiguity, since V vanishes there. From this, we see that the Qp-linear
extension of the p-adic étale realization of our ordinary zeta map zord

N induces ε applied to the
restriction of the zeta map zord

N,ét of Fukaya-Kato to H1(X1(N),Zp). This is Hecke equivariant for
the full Hecke algebra by Theorem 7.4.2.
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