Computations on Milnor K_2
of integer rings

Romyar Sharifi

Max Planck Institute of Mathematics

May 17, 2004
Milnor K_2 of integer rings:

F number field, S finite set of primes of F
$\mathcal{O}_{F,S}$ ring of S-integers of F

We define Milnor K_2 of $\mathcal{O}_{F,S}$ as

$$K_2^M(\mathcal{O}_{F,S}) = \frac{\mathcal{O}_{F,S}^\times \otimes \mathbb{Z} \mathcal{O}_{F,S}^\times}{\langle x \otimes (1 - x) \mid x, 1 - x \in \mathcal{O}_{F,S}^\times \rangle}.$$

For $x, y \in \mathcal{O}_{F,S}^\times$, let $\{x, y\}$ denote the image of $x \otimes y$ in $K_2^M(\mathcal{O}_{F,S})$.

Let k_v = the residue field of F at a prime v.

We have a commutative diagram

$$K_2^M(\mathcal{O}_F,S) \to K_2^M(F)$$

$$0 \to K_2(\mathcal{O}_F,S) \to K_2(F) \to \bigoplus_{v \notin S} k_v^\times \to 0,$$

where the upper horizontal map is induced by the natural map on symbols and the right-hand lower horizontal map is given by tame symbols. The map $K_2^M(\mathcal{O}_F,S) \to K_2(\mathcal{O}_F,S)$ given by the natural map on symbols need not be injective/surjective.
Example: $F = \mathbb{Q}(\sqrt{-d})$, $d \geq 5$, d square free
$\mathcal{O}_{F,\emptyset}^\times = \mathcal{O}_F^\times = \langle -1 \rangle$

$$K_2^M(\mathcal{O}_F) = \langle \{-1, -1\} \rangle \cong \mathbb{Z}/2\mathbb{Z}$$

For $d = 5$, Tate showed that
$$K_2(\mathcal{O}_F) = 0.$$

For $d = 39$, Browkin-Belabas-Gangl showed that
$$K_2(\mathcal{O}_F) \cong \mathbb{Z}/6\mathbb{Z}.$$
Our focus:
p an odd prime, \(\zeta \) a primitive \(p \)th root of 1
\(F = \mathbb{Q}(\mu_p), \ S = \{(1 - \zeta)\}, \ O_{F,S} = \mathbb{Z}[\frac{1}{p}, \zeta] \)
\(\mathcal{C} = \langle 1 - \zeta^i \mid 1 \leq i \leq p - 1 \rangle \) cyclotomic \(p \)-units
\[
\mathcal{C} \cong \mathbb{Z}^{(p-1)/2} \oplus \mathbb{Z}/2p\mathbb{Z}
\]
\([\mathcal{O}_{F,S}^\times : \mathcal{C}] = h^+ = \) class number of \(\mathbb{Q}(\zeta + \zeta^{-1}) \)

Vandiver’s Conjecture. \(p \nmid h^+ \)

Vandiver’s conjecture is known for \(p < 12,000,000 \) (BCEMS).

When \(p \nmid h^+ \), the group \(K_2^M(\mathcal{O}_{F,S}) \otimes_{\mathbb{Z}} \mathbb{Z}_p \) is generated (over \(\mathbb{Z}_p \)) by symbols of the form \(\{x, y\} \) with \(x, y \in \mathcal{C} \).

Unless \(h^+ = 1 \), it is possible that there could exist \(x, y \in \mathcal{O}_{F,S}^\times \) with \(x + y = 1 \) and \(x \notin \mathcal{C} \).
Specialization:

Consider the set of polynomials

\[P = \{X\} \cup \{\Phi_n(X) \mid n \geq 1, n \neq p\}. \]

where \(\Phi_n = n\)th cyclotomic polynomial. \(R = \mathbb{Z}[X][P^{-1}] \).

\(\text{Spec } R = \left((\mathbb{G}_m - \mu_{\neq p})_{\mathbb{Z}},\right)\) where \(\mu_{\neq p} = \) non-\(p\)th roots of 1. The surjection \(R \twoheadrightarrow \mathbb{Z}[\zeta, \frac{1}{p}], \) \(X \mapsto \zeta \) induces

\[K_2^M(R) \rightarrow K_2^M(\mathcal{O}_{F,S}). \]

To put bounds on the size of \(K_2^M(\mathcal{O}_{F,S}) \), one can first try to find solutions of \(f + g = h \) with \(f, g, h \in R^\times \cap \mathbb{Z}[X] \).

Question. Given \(x, y \in \mathcal{C} \) with \(x+y = 1 \), do there exist \(f, g \in R^\times \) with \(f + g = 1 \)?
Some relations in Milnor K_2:

a. $\zeta^a + (1 - \zeta^a) = 1$

b. $\zeta^a(\zeta^b - 1) + (\zeta^a - 1) = \zeta^{a+b} - 1$

c. $\zeta^{b+f}(\zeta^{b+d} - \zeta^{c+e})(\zeta^a - \zeta^d) + \zeta^a(\zeta^{b+d} - \zeta^{e+f})(\zeta^{b+c} - \zeta^{d+f})$
 \[= \zeta^d(\zeta^a + e - \zeta^{b+c})(\zeta^{a+b} - \zeta^{e+f})\]

d. $(\zeta^{a+b} - 1)(\zeta^{2a} - 1) + \zeta^a(\zeta^{a-1})(\zeta^b - 1)(\zeta^{a+b} - 1) = (\zeta^a - 1)(\zeta^{2(a+b)-1})$

e. $\zeta^b(\zeta^{3a} - 1)(\zeta^{a+b} - 1) + (\zeta^{a-1})(\zeta^b - 1)(\zeta^{a+b} - 1)(\zeta^{2a+b} - 1) = (\zeta^{a} - 1)(\zeta^{3(a+b)} - 1)$

f. $\zeta^a(\zeta^{4b-1})(\zeta^{a+b} - 1)(\zeta^{a+2b} - 1) + (\zeta^{a-1})(\zeta^b - 1)(\zeta^{a+b} - 1)(\zeta^{a+2b} - 1)(\zeta^{a+3b} - 1)$
 \[= (\zeta^{2a+4b} - 1)(\zeta^{2a+2b} - 1)(\zeta^b - 1)\]

g. $(\zeta^{a-1})(\zeta^{2(a+b)} - 1)(\zeta^{a+c} - 1)(\zeta^c - 1) + \zeta^a(\zeta^{a-1})(\zeta^b - 1)(\zeta^{2c} - 1)(\zeta^{a+b} - 1) = (\zeta^{a+b+c} - 1)(\zeta^{2a} - 1)(\zeta^c - 1)(\zeta^{a+b} - 1)$

h. $\zeta^a(\zeta^{2b} - 1)^2(\zeta^{a+b} - 1)^2 + (\zeta^{a-1})(\zeta^b - 1)^2(\zeta^{a+b} - 1)^2(\zeta^{a+2b} - 1)$
 \[= (\zeta^b - 1)^2(\zeta^{2a+2b} - 1)^2\]
Eigenspaces:

\[\Delta = \text{Gal}(F/Q) \cong (\mathbb{Z}/p\mathbb{Z})^\times \]

\[\omega: \Delta \to \mathbb{Z}_p^\times, \text{ Teichmüller character} \]

For \(i \in \mathbb{Z} \), we have idempotents:

\[\epsilon_i = \frac{1}{p-1} \sum_{\delta \in \Delta} \omega(\delta)^{-i} \delta \in \mathbb{Z}_p[\Delta]. \]

Given a \(\mathbb{Z}_p[\Delta] \)-module \(A \), we define the \(\omega^i \)-eigenspace of \(A \):

\[A^{(i)} = \langle a \in A \mid \delta a = \omega(\delta)^i a, \delta \in \Delta \rangle, \]

We have an eigenspace decomposition

\[A = \bigoplus_{i=0}^{p-2} A^{(i)}. \]
Cyclotomic p-units:

$$(C \otimes \mathbb{Z}_p)^{(i)} = \begin{cases}
0 & i \text{ odd, } i \neq 1 \\
\mathbb{Z}/p\mathbb{Z} & i = 1 \\
\mathbb{Z}_p & i \text{ even}
\end{cases}$$

For i odd, let $\eta_i \in C$ with

$$\eta_i \equiv (\zeta - 1)^{c_{1-i}} \mod C^p.$$

Then η_i generates $(C/C^p)^{(1-i)}$.

For $c \in \mathbb{Z}$ with $p \nmid c$,

$$(\zeta^c - 1)^{c_{1-i}} \equiv \eta_i^{c_{1-i}} \mod C^p.$$
Milnor K_2 modulo p:

Vandiver at $p \Rightarrow (K_2^M(\mathcal{O}_{F,S})/p)^- = 0$.

Fix an even integer $k \geq 2$. Let $\alpha, \beta \in \mathcal{O}_{F,S}^\times$. Set $\{\alpha, \beta\}_k = \text{image of } \{\alpha, \beta\} \text{ in } (K_2^M(\mathcal{O}_{F,S})/p)^{(2-k)}$.

Eigenspace considerations yield

\[\{\eta_i, \eta_j\}_k = 0 \text{ if } i + j \not\equiv k \mod p - 1 \]
\[\{\zeta, \eta_j\}_k = 0 \text{ for all odd } j \]

Thus, Vandiver's conjecture at p implies that the $\{\eta_i, \eta_{k-i}\}_k$ generate $(K_2^M(\mathcal{O}_{F,S})/p)^{(2-k)}$.

10
Identities:

One has

\[\{ \alpha, \beta \}_k = \sum_{i=1}^{p-2} \{ \alpha^{e_1-i}, \beta^{e_1+k-i} \}_k. \]

In particular,

\[\{ \zeta^a - 1, \zeta^b - 1 \}_k = \sum_{i=1}^{p-2} a^{1-i} b^{1-k+i} \{ \eta_i, \eta_{k-i} \}_k. \]
Applying the relations:

Consider, for example, the relations (d) with \(b = 1 - a \) and \(p \nmid a - 1, a \):

\[
\frac{(\zeta - 1)(\zeta^{2a} - 1)}{(\zeta^a - 1)(\zeta^2 - 1)} - \zeta \frac{(\zeta^{a-1} - 1)(\zeta - 1)}{\zeta^2 - 1} = 1
\]

These yield relations on the \(x_i = \{\eta_i, \eta_{k-i}\}_k \):

\[
\sum_{i=1}^{p-2} (1 + (a - 1)^{1-i} - 2^{1-i})(a^{1+k-i} - 1)(2^{1+k-i} - 1)x_i = 0 \quad (1)
\]

We can calculate the solution space in \(\mathbb{F}_p^{(p-1)/2} \) of the equations resulting from (a)–(h) and \(x_i = -x_{k-i} \) to bound the \(p \)-rank of \((K_2^M(\mathcal{O}_F,S)/p)^{(2-k)} \).
Table of solutions \((x_1 \ x_3 \ \ldots \ x_{p-1})\):

\(p = 37, \ k = 32\)
\((1 \ 26 \ 0 \ 36 \ 1 \ 35 \ 31 \ 34 \ 3 \ 6 \ 2 \ 36 \ 1 \ 0 \ 11 \ 36 \ 11 \ 26)\)

\(p = 59, \ k = 44\)
\((1 \ 45 \ 21 \ 30 \ 14 \ 35 \ 5 \ 0 \ 48 \ 57 \ 7 \ 52 \ 2 \ 11 \ 0 \ 54 \ 24 \ 45 \ 29 \ 38 \ 14 \ 58 \ 27 \ 32 \ 15 \ 0 \ 44 \ 27 \ 32)\)

\(p = 67, \ k = 58\)
\((1 \ 45 \ 38 \ 56 \ 0 \ 47 \ 62 \ 9 \ 29 \ 15 \ 65 \ 26 \ 45 \ 57 \ 0 \ 10 \ 22 \ 41 \ 2 \ 52 \ 38 \ 58 \ 5 \ 20 \ 0 \ 11 \ 29 \ 22 \ 66 \ 2 \ 24 \ 43 \ 65)\)

\(p = 73, \ k = 38\)
\((1 \ 0 \ 72 \ 0)\)

\(p = 97, \ k = 50\)
\((1 \ 0)\)

\(p = 101, \ k = 68\)
\((1 \ 56 \ 40 \ 96 \ 26 \ 63 \ 0 \ 61 \ 81 \ 71 \ 35 \ 92 \ 73 \ 64 \ 6 \ 88 \ 0 \ 0 \ 13 \ 95 \ 37 \ 28 \ 9 \ 66 \ 30 \ 20 \ 40 \ 0 \ 38 \ 75 \ 5 \ 61 \ 45 \ 100 \ 17 \ 17 \ 12 \ 66 \ 72 \ 53 \ 86 \ 31 \ 70 \ 15 \ 48 \ 29 \ 35 \ 89 \ 84 \ 84)\)
Except for (73, 38) and (97, 50), the pairs \((p, k)\) on the previous slide are all irregular pairs, i.e., \(2 \leq k \leq p - 3\) even, \(p \mid B_k\), where \(B_k = k\)th Bernoulli number.

Exceptional pairs:
If 2 and 3 are squares mod \(p\), there is a solution of the form listed above for \((p, \frac{p+3}{2})\).
(These are not the only exceptional solutions.)

Conjecture. Let \(R_1 = \mathbb{Z}[X][P_1^{-1}]\) and \(R_2 = \mathbb{Z}[X][P_2^{-1}]\) with
\[
P_1 = \{X\} \cup \{\Phi_n(X) \mid n \geq 1\}
\]
\[
P_2 = \{X\} \cup \{\Phi_n(X) \mid n \geq 1, (n, 6) = 1\}.
\]

There do not exist \(f \in R_1^\times\) and \(g \in R_2^\times\) with \(f + g = 1\), \(f(1) = 0\), and \(g \notin \langle X \rangle\).

Question. For \(p = 73\), is \(K_2^M(\mathcal{O}_{F,S})^{(36)} \cong \mathbb{Z}/p\mathbb{Z}\)?
As for the irregular pairs, we used the relations (1) (for a odd) and the antisymmetry relations to obtain:

Theorem (McCallum-S.). *For all irregular pairs* (p,k) *with* $p < 10,000$, *one has*

$$|(K_2^M(O_F,S)/p)^{(2-k)}| \leq p.$$

In fact, we computed:

Proposition. *For all irregular pairs* (p,k) *with* $p < 4,000$, *one has*

$$|(K_2^M(O_F,S) \otimes \mathbb{Z}_p)^{(2-k)}| \leq p.$$
Relationship with cohomology:

For now, let F be any number field. Assume $S \supset \{v | n\infty\}$ for some $n \geq 1$. $G_{F,S}$ = Galois group of the maximal extension of F unramified outside S.

Theorem (Tate, Soulé). *There is a canonical isomorphism*

$$K_2(O_{F,S})/n \sim H^2(G_{F,S}, \mu_n \otimes^2).$$

Assume that $\mu_n \subset F$. Then

$$H^2(G_{F,S}, \mu_n \otimes^2) \cong H^2(G_{F,S}, \mu_n) \otimes \mu_n.$$
Cohomology groups:

\[\text{Cl}_{F,S} = S\text{-class group of } F \text{ (class group } \text{Cl}_F \text{ modulo classes of finite primes in } S) \]

\[\text{Br}_S(F') = \ker(\bigoplus_{v \in S} \text{Br}(F_v) \to \mathbb{Q}/\mathbb{Z}) \]

Kummer theory yields an exact sequence

\[0 \to \text{Cl}_{F,S}/n \to H^2(G_{F,S}, \mu_n) \to \text{Br}_S(F')[n] \to 0. \]

Cup product:

\[H^1(G_{F,S}, \mu_n) \otimes H^1(G_{F,S}, \mu_n) \xrightarrow{\cup} H^2(G_{F,S}, \mu_n \otimes_n 2) \]

Kummer theory yields a natural injection

\[\mathcal{O}_{F,S}^\times/\mathcal{O}_{F,S}^\times n \hookrightarrow H^1(G_{F,S}, \mu_n) \]
We define a pairing:

$$(\ , \)_{S} = (\ , \)_{n,F,S} : \mathcal{O}_{F,S}^\times \times \mathcal{O}_{F,S}^\times \cup H^2(G_{F,S}, \mu_n \otimes 2)$$

Theorem (Soulé). The diagram

$$\mathcal{O}_{F,S}^\times \otimes \mathcal{O}_{F,S}^\times \xrightarrow{(\ , \)_{S}} H^2(G_{F,S}, \mu_n \otimes 2)$$

$$\downarrow \quad \quad \downarrow $$

$$K^M_2(\mathcal{O}_{F,S})/n \quad \quad \quad K_2(\mathcal{O}_{F,S})/n$$

of canonical maps is commutative.

The projection of $(\ , \)_{S}$ to $\text{Br}_S(F)[n] \otimes \mu_n$ is the sum of norm residue symbols at $v \in S$.

18
Now take $F = \mathbb{Q}(\mu_p)$ again.

Since $\text{Cl}_{F,S} = \text{Cl}_F$ and $\text{Br}_S(F) = 0$, we have

$$H^2(G_{F,S}, \mu_p^{\otimes 2}) \cong \text{Cl}_F \otimes \mu_p.$$

Vandiver’s conjecture implies the following:

Cyclicity conjecture. $(\text{Cl}_F \otimes \mathbb{Z}_p)^{(i)}$ is cyclic for all i.

The cyclicity conjecture was a question of Iwasawa’s.

$(\text{Cl}_F \otimes \mathbb{Z}_p)^{(1-k)} \neq 0$ if and only if $p \mid \frac{B_k}{k}$.

Cyclicity conjecture \Rightarrow for (p, k) irregular,

$$(K_2(O_{F,S})/p)^{(2-k)} \cong \mathbb{Z}/p\mathbb{Z}.$$
A surjectivity conjecture:

Conjecture (McCallum-S.). *The map*

\[
(K_2^M(O_{F,S} \otimes \mathbb{Z}_p))^+ \to (K_2(O_{F,S} \otimes \mathbb{Z}_p))^+
\]

is surjective.

Remarks:
1. If \(p \) violates Vandiver’s conjecture and one of the even eigenspaces of the \(p \)-part of the class group has \(p \)-rank \(\geq 2 \), then the map cannot be surjective on \((-1)\)-eigenspaces.
2. Injectivity: unlikely?
3. One always has \(\{\eta_{1-k}, \eta_{2k-1}\}_k = 0 \) for \((p, k)\) irregular.
An approach to surjectivity:
Let $H = F(\eta_{p-k}^{1/p})$, an unramified cyclic degree p extension of F.

Let $\text{Gal}(H/F) = \langle \sigma \rangle$ and $N = \sum_{i=1}^{p-1} \sigma^i$, $D = \sum_{i=1}^{p-1} i \sigma^i \in \mathbb{Z}[\text{Gal}(H/F)]$.

p_0 prime of H above p, $\Delta_0 = $ subgroup of $\text{Gal}(H/F)$ fixing p_0.

Proposition. Let (p, k) be an irregular pair with $p \nmid B_{p+1-k}$. Assume $p = \beta^N$, with $\beta \in \mathcal{O}_{H,S}^\times$ such that its image in $\mathcal{O}_{H,S}^\times / \mathcal{O}_{H,S}^{\times p}$ is fixed by Δ_0. Then

$$(\eta_{k-1}, p)_S \neq 0 \iff (\eta_{k-1}, \beta^D)_{p,H_{p_0}} \neq 1 \iff \beta^D \notin H_{p_0}^\times p.$$

For $p = 37$, this is computationally verifiable.

Theorem (McCallum-S.). The surjectivity conjecture holds for $p = 37$.

21
Sketch of proof.
With the help of W. Stein and C. Fieker, we determined the \(p \)-unit group of the fixed field \(E \) of \(\Delta_0 \) as follows.

\[
\begin{array}{c}
\Delta_0 \\
E \\
Q
\end{array}
\quad H \quad
\begin{array}{c}
\Delta \\
F
\end{array}
\]

The field \(E \) is generated by the trace \(x \) of a 37th root of \(\eta_5 \), and we found a minimal polynomial for this element using CRT. Various Magma routines then took 5 days on a 2GHz processor to produce an optimal representation of the integer ring of \(E \), from which its \(p \)-unit group was computable. One of the \(p \)-units \(\beta \) had norm \(p \). By computing the various embeddings of \(x \) in the \(H_p \), we were able to verify the condition of the proposition for \(\beta^D \).
The minimal polynomial of x:
\[x^{37} - 6483584x^{34} - 118234637824x^{33} - 123335506765824x^{32} - 7894900273815552x^{31} - 25584896141781024768x^{30} - 1961278666613992009728x^{29} - 2221784070205669762924544x^{28} - 33628014249666292632903483392x^{27} - 48057116976091024421471201472x^{26} - 2249002615426863992005848511545344x^{25} - 13099755496539209311468832290825568256x^{24} - 3171787436319383501703813676940597919744x^{23} + 476259323830076662111107898811789814530048x^{22} - 1396232608839552259966984463923520026947092480x^{21} - 331493134727514939719441018060252656606965137408x^{20} - 802686380624350745599184759300711777564488630272x^{19} - 872057565672136492561824204817812097995282872168087552x^{18} + 1772659418875854490177280483057352783210247369401565184x^{17} + 37244222236334875481641252538596552828631758622687299108864x^{16} - 20651404785477501467881895153357983415526349942938256921329664x^{15} + 311835441256087157637746419559980783743744537079124122814696652x^{14} + 28547054494846244416795330612386811215415869973011706932441160613888x^{13} - 18557314583560485308211477301528775481854373440798991639264756844462080x^{12} + 3087405021478910646130093242279350919332930043815268747163999299543498752x^{11} - 844861169134880185162881813189113039529594781451540816736236726469132320768x^{10} - 181305918878969636874702964809165511398336363048146870204995155207780939936x^9 + 484965911395764970871665544609840479278207020589886844109688505883361242049937408x^8 + 551140497767821995852622334540957461483624433957263207123073326516074293876028866560x^7 - 106850589825632789894896612887329721094911179135082410100519870323032421196184294522880x^6
A better polynomial for E:
\[
y^{37} + 4y^{36} + 12y^{35} + 36y^{34} - 336y^{33} - 268y^{32} - 3912y^{31} - 7555y^{30} + 60363y^{29} - 254771y^{28} + 1584299y^{27} - 4912687y^{26} + 17776688y^{25} - 51189497y^{24} + 135760742y^{23} - 339845565y^{22} + 729194231y^{21} - 1823351247y^{20} + 2954679204y^{19} - 7136330744y^{18} + 14870105096y^{17} - 19798475744y^{16} + 63485328194y^{15} - 69489469832y^{14} + 240906930339y^{13} - 130150428853y^{12} + 883058481925y^{11} - 525666202335y^{10} + 1336924708802y^9 - 2790390347185y^8 + 2312809893723y^7 - 300537388911y^6 + 6491297663291y^5 - 2826510585529y^4 + 4902736951337y^3 - 6453741855514y^2 + 3673618997547y - 1546779831802
\]

The embedding of β^D:
\[-445 + 13 \cdot 37t - 3t^{31} - 9t^{32} + 18t^{33} + 14t^{34} + 2t^{35} + O(t^{38}), \; t = \zeta - 1\]
A few consequences for $p = 37$:

The group $K_2^M(\mathcal{O}_{F,S}) \otimes \mathbb{Z}_{37}$ has order 37.

The product maps

$$K_{2i-1}(\mathbb{Z}) \otimes K_{63+72k-2i}(\mathbb{Z}) \rightarrow K_{62+72k}(\mathbb{Z}) \otimes \mathbb{Z}_{37}$$

are nontrivial for a given odd i and any k if $i \not\equiv 5, 27 \mod 36$ and nonsurjective otherwise.

(Under the Quillen-Lichtenbaum conjecture, we have surjectivity and triviality in the two respective cases.)

Let M/F be a cyclic extension of degree 37 that is unramified outside 37. Then $|\text{Cl}_{M,S} \otimes \mathbb{Z}_{37}| = 37$ if and only if

$$M \not\subset \mathbb{Q}(\zeta_{37^2}, \eta_5^{1/37}, \eta_2^{1/37}).$$

Furthermore, only $M = F(\eta_5^{1/37})$ has trivial 37-class number.
Another approach to surjectivity: \(\chi_j : G_F \to \mathbb{Z}/p\mathbb{Z} \) Kummer character for a \(p \)th root of \(\eta_j \).

Fix \(i \) odd and let \(L \) be the field defined by \(\chi_i \).

Let \(H \) be defined by \(\chi_{p-k} \).

Then there exists a representation of \(G_{\mathbb{Q},S} \) in \(\text{Gl}_3(\mathbb{F}_p) \) such that for \(\sigma \in G_{F,S} \), we have

\[
\rho(\sigma) = \begin{pmatrix}
1 & \chi_i(\sigma) & \kappa(\sigma) \\
0 & 1 & \chi_{p-k}(\sigma) \\
0 & 0 & 1
\end{pmatrix}
\]

Let \(M \) denote the fixed field of the kernel of \(\rho \).

Proposition. Assume that \((\text{Cl}_F \otimes \mathbb{Z}_p)^{1-k} \) is cyclic and that \(p \nmid B_{p-i} \). Then \((\eta_i, \eta_{k-i})_S = 0 \) if and only if \(M/HL \) is completely split at all (any) primes above \(p \).
Hecke algebras:

Let \((p,k)\) be an irregular pair.

\(\mathbf{T}\) = the ordinary cuspidal Hecke algebra (over \(\mathbb{Z}_p\)) of weight 2, level \(p\), and character \(\omega^{k-2}\).
(By ordinary, we mean the maximal subfactor in which \(U_p\) is unit.)

\(\mathbf{T}\) is generated by Hecke operators \(T_l\) with \(l \neq p\) prime and \(U_p\)

Eisenstein ideal:

\[
\mathcal{I} = (U_p - 1) + (T_l - 1 - l\omega(l)^{k-2} | l \neq p).
\]

Idea: study \(Y = \text{eigenspace of } H^{1}_{\text{ét}}(X_1(p),\mathbb{Z}_p)^{\text{ord}}\) on which \(\langle i \rangle\) acts as \(i^{k-2}\) for \(i \in \mu_{p-1}(\mathbb{Z}_p)\) “modulo \(\mathcal{I}^2\).
The modular representation (following Ohta):
The action of G_Q on Y provides

$$\rho: G_Q \rightarrow \text{Aut}_T(Y).$$

Fix a decomposition group D_p in G_Q at p.
Let I_p be the inertia subgroup of D_p.
Fix $\Delta_p \leq I_p$ with $\omega: \Delta_p \xrightarrow{\sim} (\mathbb{Z}/p\mathbb{Z})^\times$.
Under Δ_p, we have $Y = Y^+ \oplus Y^-$.

For $\sigma \in G_Q$, we write

$$\rho(\sigma) = \begin{pmatrix} a(\sigma) & b(\sigma) \\ c(\sigma) & d(\sigma) \end{pmatrix},$$

$a(\sigma) \in \text{End}_T(Y^-), b(\sigma) \in \text{Hom}_T(Y^+, Y^-), \ldots$
For $\sigma \in I_p$, we have

$$\rho(\sigma) = \begin{pmatrix} a(\sigma) & 0 \\ c(\sigma) & 1 \end{pmatrix},$$

Note: $\text{End}_T(Y^\pm) \hookrightarrow T \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$.

For $\sigma, \tau \in G_Q$, we have

$$d(\sigma) \equiv 1 \mod I,$$

$$b(\sigma)c(\tau) \equiv 0 \mod I.$$

In fact, let B (resp., C) denote the T-module generated by all $b(\sigma)$ (resp., $c(\sigma)$) with $\sigma \in G_Q$.

One has $BC = I$ (Ohta, following Kurihara, Harder-Pink).
Let $m = \mathcal{I} + pT$.

Consider the maps

\[
\bar{a}: G_Q \to (T/m)^\times \quad \text{and} \quad \bar{b}: G_Q \to B/mB
\]
\[
\bar{c}: G_Q \to C/mC \quad \text{and} \quad \bar{d}: G_Q \to (T/\mathcal{I}m)^\times
\]

We remark that $\bar{a} = \omega^{1-k}$.

$H = \text{fixed field of the kernel of } \bar{b} \text{ on } G_F$.
H is an unramified abelian p-extension of F with an ω^{1-k}-action of Galois.

$L = \text{fixed field of the kernel of } \bar{c} \text{ on } G_F$.
If $p \nmid B_{p+1-k}$, then $L = F(\eta_{k-1})$.
Consider the homomorphism (note: $BC = I$)

$$
\phi_D(\sigma) = \begin{pmatrix}
\bar{a}(\sigma) & \bar{b}(\sigma) \\
\bar{c}(\sigma) & \bar{d}(\sigma)
\end{pmatrix}.
$$

We also have a homomorphism

$$
\psi(\sigma) = \begin{pmatrix}
1 & \bar{c}(\sigma) & \bar{d}(\sigma) - 1 \\
0 & \omega^{1-k}(\sigma) & \bar{b}(\sigma) \\
0 & 0 & 1
\end{pmatrix}
$$

defining the same extension M/HL as ϕ_D.

$\bar{d}(\varphi_p^{-1}) = U_p$ for a Frobenius $\varphi_p \in D_p$

M/HL is non-split at primes above p if and only if

$$
I = Im + (U_p - 1)
$$

By the earlier proposition, we have:
Theorem (S.). Assume that $p \nmid B_{p+1-k}$ and $(\Cl_F \otimes \mathbb{Z}_p)^{(1-k)}$ is cyclic. Then $U_p - 1$ generates the group $\mathcal{I}/\mathcal{I}^2$ if and only if $(p, \eta_{k-1})_S \neq 0$.

Theorem (S.). For any irregular pair (p, k) with $p < 1000$, we have $\mathcal{I} = (U_p - 1) + \mathcal{I}^2$.

Corollary. For $p < 1000$, the map

$$K_2^M(\mathcal{O}_F, S) \otimes \mathbb{Z}_p \to K_2(\mathcal{O}_F, S) \otimes \mathbb{Z}_p$$

is surjective.
Sketch of proof.
Let \mathcal{H} denote the full cuspidal Hecke algebra for $\Gamma_1(p)$ and ω^{k-2}. We used built-in Magma routines for modular symbols (W. Stein) to compute the U_p and T_i in \mathcal{H} for all i with $1 \leq i < p/6$, viewed in $M_d(\mathbb{Z}_p)$ for some d. These T_i generate \mathcal{H} as a \mathbb{Z}-module. Let \bar{T}_i and \bar{U}_p be the images in $M_d(\mathbb{Z}/p^2\mathbb{Z})$. Let M be the submodule of $M_d(\mathbb{Z}/p^2\mathbb{Z})$ spanned by the \bar{T}_i.

We computed N minimal such that the \bar{T}_i with $1 \leq i \leq N$ generate M. Then p and the $T_i - \sum_{0 < e | i} \omega(e)^{k-2} e$ with $1 \leq i \leq N$ generate \mathcal{I} over \mathbb{Z}_p, provided that

$$\mathcal{H}/\mathcal{I} \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong \mathcal{T}/\mathcal{I} \cong \mathbb{Z}_p/L_p(-1, \omega^k)$$

is p-torsion, which we checked. We computed the images I and J of \mathcal{I} and \mathcal{I}^2 in M using these elements and their products. We verified that $I = J + (\bar{U}_p - 1)$. 33