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Abstract

We consider modifications of Manin symbols in first homology groups of modular

curves with Zp -coefficients for an odd prime p . We show that these symbols generate

homology in primitive eigenspaces for the action of diamond operators, with a certain

condition on the eigenspace that can be removed on Eisenstein parts. We apply this to

prove the integrality of maps taking compatible systems of Manin symbols to compatible

systems of zeta elements. In the work of the first two authors on an Iwasawa-theoretic

conjecture of the third author, these maps are constructed with certain bounded denom-

inators. As a consequence, their main result on the conjecture was proven after inverting

p , and the results of this paper allow one to remove this condition.

1 Introduction

1.1 Homology and (c , d )-symbols

Let p ≥ 5 be a prime, and let N be a positive integer. We let X1(N ) denote the compact

modular curve of level N over C and let C1(N ) denote its set of cusps. Consider the relative

homology group

H̃ =H1(X1(N ), C1(N ),Zp ).

Manin showed that H̃ is generated by elements [u : v ] attached to pairs (u , v ) with u , v ∈
Z/NZ and (u , v ) = (1) (see Section 3.1). For integers c and d greater than 1 and prime to 6N ,

we define the (c , d )-symbol for the pair (u , v ) by

c ,d [u : v ] = c 2d 2[u : v ]− c 2[u : d v ]−d 2[c u : v ] + [c u : d v ].

Let C̃ denote theZp -span in H̃ of all (c , d )-symbols as we vary c and d . We will examine the

difference between C̃ and H̃ .
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Now, let M a positive integer such that p - Mϕ(M ), and set N = M or M p . Let θ be

an even p -adic character of (Z/NZ)× of conductor divisible by M . Let H̃ (θ ) denote the θ -

eigenspace of H̃ under the action of inverse diamond operators, and similarly for C̃ . Let Oθ
denote the Zp -algebra generated by the values of θ . Letω denote the Teichmüller character

on (Z/pZ)×, and note that we can view both it and θ as characters on (Z/M pZ)×. We prove

the following result (and a counterpart for p = 3):

Theorem 1.1.1. If θ 6=ω2, then the Oθ -module H̃ (θ ) is spanned by C̃ (θ ) and the projection of

[1 : p ] to H̃ (θ ). Moreover, if θω−2|(Z/pZ)× 6= 1, then H̃ (θ ) = C̃ (θ ).

Let I denote the Eisenstein ideal of the Hecke algebra H in EndZp
(H̃ ) generated by T`−1−

`〈`〉 for primes ` -N and U`−1 for primes ` |N , and let m= I +(p , 〈1+p 〉−1). We exhibit the

following strengthening of Theorem 1.1.1 on Eisenstein components (i.e., for the localization

H̃ (θ )
m

of H̃ (θ ) at the maximal ideal mH(θ ) of H(θ )).

Theorem 1.1.2. For θ 6=ω2, the Oθ -modules H̃ (θ )
m

and C̃ (θ )
m

are equal.

Theorems 1.1.1 and 1.1.2 are derived in Section 3.1 from the results of Section 2. We

actually derive these results as simple corollaries of variants of arithmetic interest for the

Zp -submodule H of H̃ generated by those Manin symbols [u : v ]with u , v 6= 0. This H is the

relative homology group H1(X1(N ), C 0
1 (N ),Zp ), where C 0

1 (N ) denotes those cusps of X1(N )
that do not lie above the zero cusp of X0(N ).

Remark 1.1.3. If we let C denote the Zp -span of all (c , d )-symbols c ,d [u : v ] for nonzero u

and v , then both of the above results hold with H̃ replaced by H and C̃ replaced by C , the

second theorem even for θ =ω2.

In Section 3.1, we explain how these results can be used to prove that compatible se-

quences of (c , d )-symbols generate the ordinary and Eisenstein parts of homology up the

tower X1(M p r ) of modular curves.

1.2 Application to Iwasawa theory

Let S denote the space of Λ-adic cusp forms of level M p∞, where Λ ∼= Zp¹1+ pZpº is the

usual Iwasawa algebra. The group elements inΛ act as inverses of diamond operators onS .

Let I denote the Eisenstein ideal in the Hecke algebra acting on EndZp
(S ), defined as above.

Let X denote the unramified Iwasawa module over the cyclotomicZp -extension K ofQ(µN )
for N =M p , i.e., the Galois group of the maximal unramified abelian pro-p extension of K .

It has the structure of a Zp¹Gal(K /Q)º ∼= Λ[(Z/NZ)×]-module under conjugation by lifts of

group elements.
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Suppose now that θω−1 has conductor N or that θω−1|(Z/MZ)×(p ) 6= 1, and also that θ 6=
1,ω2. Set

P =S (θ )/IS (θ ) and Y = X (1)(θ )

As defined in [Sh1, FK], there are canonical Λ-module homomorphisms

$: P → Y and Υ : Y → P,

the first being explicitly defined to take a sequence of Manin symbols to a certain sequence

of cup products of cyclotomic N -units (see also [Bu] at level p ), and the second being defined

via the action of Galois on étale cohomology groups of modular curves (and constructed out

of maps occurring in Hida-theoretic proofs of the main conjecture [Wi, Oh2]). In [Sh1], it was

conjectured that these maps are inverse to each other, up to a unit suspected to be 1. This

was shown to be true in [FK] upon tensoring withQp , after multiplication by a power series

ξ′ interpolating the derivative of the p -adic L-function ofω2θ −1. That is, it was shown that

ξ′Υ ◦$= ξ′ : P ⊗Zp
Qp → P ⊗Zp

Qp .

Our generation result allows us to remove the tensor product withQp , which is to say to not

have to work modulo torsion in P .

Theorem 1.2.1. One has ξ′Υ ◦$= ξ′ as endomorphisms of P .

The key point is that there is an intermediate map z ], used in defining $, and through

which both sides of the above identity factor, sending compatible sequences of Manin sym-

bols up the modular tower X1(M p r ) to compatible sequences of zeta elements. As con-

structed in [FK, Section 3.3], the map z ] is only defined rationally, which is to say that it

takes values in H 1(Z[ 1
N ],T (1))⊗ΛQ (Λ), where T is an inverse limit of ordinary parts of étale

cohomology groups of the modular curves X1(M p r ), and Q (Λ) is the quotient field of Λ.

In Theorem 3.2.11, we show that z ] can be defined to take values in H 1(Z[ 1
N ],T (1)) on the

eigenspaces relevant for our application. (Here, there is a restriction on the character that

can be removed if one takes Eisenstein parts.) For this purpose, we need that H 1(Z[ 1
N ],T (1))

injects into its tensor product with Q (Λ), so we show along the way that this cohomology

group is Λ-torsion free.

In the construction of z ], the zeta elements arise from norm compatible sequences of

Beilinson elments in H 2(Y1(M p r )/Z[ 1
N ]

,Zp (2)), which is to say cup products of Siegel units gu

on Y1(M p r )/Z[ 1
N ]

. In essence, the map takes a compatible sequence of Manin symbols [u : v ]
to a sequence of cup products gu ∪ gv . That this map is well-defined is seen via a regulator
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computation. One might hope for a direct construction of such a map, as Weierstrass units

provide solutions to the unit equation that can be used to produce relations on Beilinson ele-

ments (see for instance [Br]). One difficulty with doing this, which is also what leads to z ] not

being defined integrally, is that the Siegel units only become true units after being raised to

a power, or modified using an auxiliary integer c as above. This appears to necessitate work-

ing rationally, or at least restricting to a map which takes sequences of symbols c ,d [u : v ] to

sequences of Beilinson elements c gu ∪ d gv . This causes further problems with performing a

direct construction, as it is less clear what relations the latter Beilinson elements should sat-

isfy. On the other hand, the fact that (c , d )-symbols generate homology can be used to show

that the map z ] is indeed defined integrally on homology itself, the regulator computation

being immune to such issues.

The derivation of Theorem 1.2.1 from the integrality of z ] will be explained in the paper

[Sh2], which attempts to refine of the method of [FK]. The survey paper [FKS] also contains

an exposition of the conjecture of [Sh1] and the method of [FK].

Acknowledgments. The work of the first two authors was supported in part by the National

Science Foundation under Grant No. 1001729. The work of the third author was supported

in part by the National Science Foundation under Grant Nos. 1401122 and 1360583, and by

a grant from the Simons Foundation (304824, R.S.). He thanks Glenn Stevens, to whom this

article is dedicated, for an inspiring discussion on the topic of the integrality of the elements

of Kato and Beilinson.

2 Generation by symbols

We provide abstract definitions of spaces of modular symbols in Definitions 2.1.1 and 2.1.2.

These are meant to model relative homology groups of modular curves, along with their quo-

tients. That is, the relative homology groups have well-known presentations as modules over

an algebra of diamond operators, with Manin symbols providing the generators. We define

a space of modular symbols to be a module generated by symbols with the same indexing

set as the Manin symbols and satisfying at least the same relations. We then formally define

(c , d )-symbols in Definition 2.1.3 using our Manin-type generators. We consider the ques-

tion of generation by (c , d )-symbols on individual primitive eigenspaces for action of the

diamond-type operators. Our main result, Theorem 2.1.6, describes exactly how close the

(c , d )-symbols come to generating these eigenspaces.

To prove the theorem, we define eigensymbols as sums of the Manin-type symbols. Their

properties are studied in Section 2.2. One advantage of working with eigenspaces is that the
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(c , d )-versions of these eigensymbols are multiples of the corresponding unmodified eigen-

symbols, most of these multiples being by units, reducing the problem to a check that a rel-

ative few symbols are contained in the span of the (c , d )-symbols. The proof of the result is

contained in Section 2.3.

For our applications in Section 3, we are particularly interested in the generation by (c , d )-
symbols of quotients of relative homology groups on which elements of Eisenstein ideals act

trivially. For this purpose, we artificially define Hecke-type operators in Section 2.4 that op-

erate on the Manin-type symbols in the same manner that (adjoint) Hecke operators act on

Manin symbols. We restrict our definitions to what we actually require, which is to say that

we only consider operators U` and T2, as they suffice to obtain generation in the remaining

primitive eigenspaces in Theorem 2.4.5 and Proposition 2.4.7.

2.1 The result

Let p be an odd prime and M a positive integer with p - Mϕ(M ). Set N = M or M p (and

suppose N > 1). Let∆ = (Z/NZ)×/〈−1〉. For a ∈ (Z/NZ)×, let 〈a 〉 denote the group element

in Zp [∆] corresponding to a .

Definition 2.1.1. A space of level N modular symbols is aZp [∆]-module H̃ spanned by sym-

bols [u : v ] for pairs of u , v ∈Z/NZwith (u , v ) = (1) that satisfy relations

[u : v ] = [−u :−v ] =−[−v : u ], (2.1)

as well as

[u : v ] = [u : u + v ] + [u + v : v ], (2.2)

and, for every a ∈ (Z/NZ)×,

〈a 〉[u : v ] = [a u : a v ]. (2.3)

Definition 2.1.2. A space of level N cuspidal-at-zero modular symbols is a Zp [∆]-module H

spanned by symbols [u : v ] for pairs of nonzero u , v ∈ Z/NZ with (u , v ) = (1) that satisfy

relations (2.1), (2.2) for u 6=−v , and (2.3).

Every space of level N modular symbols has a subspace of a cuspidal-at-zero symbols.

Moreover, every space of level N cuspidal-at-zero symbols is also, rather artificially, a space

of level N modular symbols in which [u : 0] = 0 for every nonzero u ∈ (Z/NZ)×, as the reader

can easily check. Let us fix a space H of level N modular symbols (which may or may not be

cuspidal at zero in the sense just described).
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Definition 2.1.3. For integers c and d greater than 1 and prime to 6N , the (c , d )-symbol for

the pair (u , v ) is defined as

c ,d [u : v ] = c 2d 2[u : v ]− c 2[u : d v ]−d 2[c u : v ] + [c u : d v ].

Let C denote the Zp -span of all (c , d )-symbols as we vary c and d , which is a Zp [∆]-
submodule of H . Our goal is to compare C with H on primitive parts for the action of

(Z/MZ)×. To make this comparison, we work with individual∆-eigenspaces for p -adic char-

acters.

So, fix a p -adic character θ :∆→C×p . As before, let Oθ denote the ring generated over Zp

by the values ofθ , and now letO =Zp [µϕ(N )], which containsOθ . Set XN =Hom((Z/NZ)×,O ×).
Given an element of XN denoted by χ , we will consistently useψ to denote θχ−1.

We have the following two types of eigenspaces. First, for a Zp [∆]-module D , let

D (θ ) =D ⊗Zp [∆] Oθ ,

where Zp [∆]→Oθ is induced by θ . Second, let eθ denote the idempotent

eθ =
1

ϕ(N )

∑

a∈(Z/NZ)×
θ −1(a )〈a 〉 ∈ Oθ [(Z/NZ)×].

We then set

D θ = eθ (D ⊗Zp
O ).

Note that D θ ∼=D (θ )⊗Oθ O . The advantage of working with eigenspaces D θ is in the following

definition of eigensymbols, the properties of which will be studied in the next subsection.

Definition 2.1.4. For relatively prime divisors g and h of N and χ ∈ XN , the eigensymbol

α
g ,h
χ ,ψ ∈H θ is defined as

α
g ,h
χ ,ψ =

1

ϕ(N )2

∑

a ,b∈(Z/NZ)×
χ−1(a )ψ−1(b )[g a : h b ].

The (c , d )-eigensymbol c ,dα
g ,h
χ ,ψ is defined by the same formula after replacing [g a : h b ] by

c ,d [g a : h b ]. We set αχ ,ψ =α
1,1
χ ,ψ and c ,dαχ ,ψ = c ,dα

1,1
χ ,ψ.

Remark 2.1.5. By convention, if H is cuspidal at zero, then the symbols αN ,1
χ ,ψ with χ ∈ XN are

all zero.

Let ω: (Z/M pZ)× → Z×p denote the Teichmüller character (factoring through (Z/pZ)×).

The following is the main result of this section.
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Theorem 2.1.6.

a. If p ≥ 5 and θω−2 has conductor N , then H θ =C θ .

b. If N =M p with p ≥ 5, and θω−2 has conductor M > 1, then H θ =C θ +Oα1,p
ω2,θω−2 .

c. If N =M p with p = 3, and θ has conductor N , then H θ =C θ +Oα1,θ +OαN ,1
1,θ .

2.2 Eigensymbols

In this subsection, we study the eigensymbols αg ,h
χ ,ψ, starting with the following remarks.

Remark 2.2.1. We have αg ,h
χ ,ψ =−χ(−1)αh ,g

ψ,χ .

Remark 2.2.2. We have

α
g ,h
χ ,ψ = eθ ·

1

ϕ(N )

∑

a∈(Z/NZ)×
χ−1(a )[g a : h ].

For χ ∈ XN , we let fχ denote its conductor. We will also view such a χ as a primitive

Dirichlet character of modulus fχ . Note that if 2 divides fχ , then so does 4. For a divisor D

of N , set QD =
N
D .

Lemma 2.2.3. The element αg ,h
χ ,ψ is zero unless fχ divides Qg and fψ divides Qh .

Proof. For u , v ∈ (Z/NZ)×, we have

1

ϕ(N )2

∑

a ,b∈(Z/NZ)×
χ−1(a )ψ−1(b )[g a u : h b v ] =χ(u )ψ(v )αg ,h

χ ,ψ.

The right-hand side depends exactly (i.e., modulo no smaller integers) on the image of u in

(Z/ fχZ)× and the image of v in (Z/ fψZ)×. Since the left-hand side depends only on u modulo

Qg and v modulo Qh , the eigensymbol αg ,h
χ ,ψ can only be nonzero if fχ |Qg and fψ |Qh .

Lemma 2.2.4. If u , v ∈ (Z/NZ)× and g and h are relatively prime divisors of N , then we have

eθ [g u : h v ] =
∑

χ∈XN

χ(u )ψ(v )αg ,h
χ ,ψ.
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Proof. We have the following equalities:

∑

χ∈XN

χ(u )ψ(v )αg ,h
χ ,ψ =

1

ϕ(N )
eθ

∑

χ∈XN

χ(u v −1)θ (v )
∑

c∈(Z/NZ)×
χ(c −1)[c g : h ]

=
1

ϕ(N )
eθ

∑

χ∈XN

∑

c∈(Z/NZ)×
θ (v )χ(c −1)[c g u v −1 : h ]

=
1

ϕ(N )
eθθ (v )〈v 〉−1

∑

c∈(Z/NZ)×

∑

χ∈XN

χ(c −1)[c g u : h v ]

=
1

ϕ(N )
eθϕ(N )[g u : h v ] = eθ [g u : h v ],

where in the second to last step we have used that eθ 〈v 〉 = θ (v ) and that
∑

χ∈XN
χ(c −1) = 0

unless c = 1.

Corollary 2.2.5. The elements αg ,h
χ ,ψ for χ ∈ XN and relatively prime divisors g and h of N

generate H θ as an O -module.

Similarly, C θ is spanned by the c ,dα
g ,h
χ ,ψ as c , d , χ , g , and h vary over the relevant sets.

Moreover, note that

c ,dα
g ,h
χ ,ψ = (c

2−χ(c ))(d 2−ψ(d ))αg ,h
χ ,ψ. (2.4)

Remark 2.2.6. For χ ∈ XN with χ 6= ω2 and ψ 6= ω2, we can choose c , d prime to 6N such

that χ(c ) 6≡ c 2 mod p andψ(d ) 6≡ d 2 mod p . By (2.4), it follows that αg ,h
χ ,ψ is a unit multiple of

the resulting c ,dα
g ,h
χ ,ψ.

2.3 Proof of generation

In this subsection, we prove Theorem 2.1.6. Let us outline our strategy. First, placing our-

selves in the setting of the theorem for an odd prime p , we suppose in this subsection that

f = fθω−2 is divisible by M (so is M or M p ), which forces M to be odd or divisible by 4. More-

over, if p = 3, we suppose that f =M p . Either 2 - f or 4 | f , and in that θ is even, f 6= 3, 4. For

brevity, for relatively prime divisors g and h of N , let us set

βg ,h =α
g ,h
ω2,θω−2

and β =β1,1 =αω2,θω−2 .

By Remark 2.2.6, we have that αg ,h
χ ,ψ ∈ C θ if χ ∈ XN − {ω2,θω−2}. Let us use A ⊆ C θ to

denote the O -span of all symbols αg ,h
χ ,ψ with χ /∈ {ω2,θω−2} and g and h relatively prime

divisors of N . By Corollary 2.2.5, in order to prove Theorem 2.1.6, we need only see that each
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α
g ,h
χ ,ψ with χ ∈ {ω2,θω−2} lies in A in case (i), in A +Oβ1,p in case (ii), and in A +Oβ +OβN ,1

in case (iii).

If N = M and p ≥ 5, we have χ /∈ {ω2,θω−2} automatically since ω2 /∈ XN , so there is

nothing more to show. (It is not much harder to show that, for p ≥ 5, Theorem 2.1.6a holds

for N = M without the assumption p - ϕ(M ) and without restriction on the conductor of

θ .) So, suppose from now on that N =M p . The proof of Theorem 2.1.6 is contained in the

lemmas that follow.

Lemma 2.3.1. Let g and h be relatively prime divisors of N . If p - g , then we have βg ,h = 0

unless h = 1, or f =M and h = p . If p ≥ 5 and p | g , then βg ,h = 0.

Proof. This is a a direct corollary of Lemma 2.2.3. For the second statement, we note for

p ≥ 5 that fω2 = p does not divide Qg .

We deal below with the remaining terms.

Lemma 2.3.2. Suppose that g and h are relatively prime divisors of N . Let δ = 1 if N is odd

or g h is even and δ= 2 otherwise.

a. There exist a , b ∈ (Z/NZ)× such that a g + b h =δ in Z/NZ.

b. Let ρ ∈ XN be nontrivial. If g 6=N and h = δ = 1, then the numbers a and b of the first

part can be chosen so that ρ(b ) 6= 1 unless fρ = 6 gcd( fρ, g ) and 3 - g .

Proof. Part a is a simple application of the Chinese remainder theorem. We focus on part b.

For its purposes, we can replace N by fρ and assume that ρ is primitive of conductor N .

Let ` be a prime dividing Qg . Let ε = 0 if ` is odd and ε = 1 if ` = 2, let r ≥ 1 be such that

`r exactly divides N , and let s ≥ 0 be such that `s+ε exactly divides g (noting for ` = 2 that

g is even as δ = h = 1). Since ` divides Qg , we have r > s + ε. It suffices to see that either

ρ` = ρ|(Z/`rZ)× takes on at least two different values on allowed values of b modulo `r , or at

least one nontrivial value in the case that Qg is a prime power.

If s ≥ 1, then primitivity of ρ implies that ρ`(b ) can be any one of `r−s−ε−1(`−1) different

primitive `r−s−εth roots of unity (noting that b − 1 is exactly divisible by `s+ε). This yields

at least two values so long as ` is odd or r > s + 2. If s = 0, then b can be taken to be any

prime-to-` value modulo `r with b 6≡ 1 mod `1+ε. Again by primitivity,ρ` will take on at least

two values on such b if ` ≥ 5, ` = 3 and r ≥ 2, or ` = 2 and r ≥ 3. If ` = 3 and r = 1, then

b ≡ 2 mod 3 andρ3(b ) =−1. For any s ≥ 0, if `= 2 and r = s+2, we have b ≡ 1+2s+1 mod 2s+2

and ρ2(b ) = −1. This covers all cases but the excluded case Qg = 6 and 3 - g (for which

ρ(b ) =ρ2(b )ρ3(b ) = 1).
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Given relatively prime divisors g and h of N , we may choose a , b ∈ (Z/NZ)× with a g +
b h =δ by first part of Lemma 2.3.2. By applying Lemma 2.2.4, the formula

[g a : h b ] = [g a :δ] + [δ : h b ]

provides the identity
∑

χ∈XN

χ(a )ψ(b )αg ,h
χ ,ψ =

∑

χ∈XN

χ(a )αg ,δ
χ ,ψ+

∑

χ∈XN

ψ(b )αδ,h
χ ,ψ. (2.5)

There are at most six terms in (2.5) not in A, two from each sum. Using the antisymmetry of

the eigensymbols for even characters, equation (2.5) yields

ω2(a )θω−2(b )βg ,h −ω2(b )θω−2(a )βh ,g

≡ω2(a )βg ,δ−θω−2(a )βδ,g +θω
−2(b )βδ,h −ω2(b )βh ,δ mod A. (2.6)

Lemma 2.3.3. Suppose that p ≥ 5. For every proper divisor g of N , we have βg ,1 ∈ A+Oβ .

Proof. Set B = A+Oβ . We may assume that g > 1, and by Lemma 2.3.1, that p - g .

Suppose first that N is odd or g is even, in which case we may choose a , b ∈ (Z/NZ)×

such that a g +b = 1 by Lemma 2.3.2a. By Lemma 2.3.1, we have β1,g = 0. The last two terms

of (2.6) are in B by definition. So, dividing out byω2(a ), equation (2.6) reduces to

(θω−2(b )−1)βg ,1 ∈ B .

If either f 6= 6 gcd( f , g ) or 3 | g , we may apply Lemma 2.3.2b to choose a such that b = 1−a g

satisfies θω−2(b ) 6= 1 to conclude that βg ,1 ∈ B . In particular, we are done if N is odd.

Suppose, on the other hand, that g is even, f = 6 gcd( f , g ), and 3 - g . We again apply

Lemma 2.3.2a to choose a , b ∈ (Z/NZ)× such that a g + 3b = 1. Again by Lemma 2.3.1, we

have βg ,3 = β1,3 = 0, as the facts that 3 | f and M | f imply that f - N3 . We also have β3,g =
β1,g = 0. From (2.6) with h = 3, we therefore obtain

ω2(a )βg ,1−ω2(b )β3,1 ∈ A.

It thus suffices to show that β3,1 ∈ B in this case, so to prove the result for g = 3 and N even.

We are reduced to the case that N is even and g is odd. Choose a , b ∈ (Z/NZ)× such that

a g +b = 2, and consider (2.6) withδ= 2. Lemma 2.2.3 tells us thatβ1,2 =βg ,2 =β1,g =β2,g = 0,

so this yields

ω2(a )βg ,1−β2,1 ∈ A.

Since p ≥ 5, we have thatω2 takes on at least two values on a 6≡ 2g −1 mod p , so both βg ,1 and

β2,1 are in A.
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Lemma 2.3.4.

a. Suppose that p ≥ 5 and f = M . For every divisor g of M , we have βg ,p −ω2(g )β1,p ∈
A+Oβ .

b. Suppose that p = 3 and f =N . For every proper divisor g of N , we have βg ,1−β ∈ A.

Proof. Let h = p in part a and h = 1 in part b. We may clearly suppose that g > 1. Choose

a , b ∈ (Z/NZ)× with a g +b h =δ, with δ as in Lemma 2.3.2a. In part a, we have βδ,g =βp ,g =
βp ,δ = 0 by Lemma 2.3.1, so (2.6) yields

ω2(a )θω−2(b )βg ,p ≡ω2(a )βg ,δ+θω
−2(b )βδ,p mod A.

If δ= 2 (i.e., g is odd and N is even), we have βg ,δ = 0 and a ≡ 2g −1 mod p , so this reduces to

ω2(2)βg ,p −ω2(g )β2,p ∈ A,

which puts us back in the setting that δ = 1. If δ = 1, then a ≡ g −1 mod p , and since βg ,1 ∈
A+Oβ by Lemma 2.3.3, we obtain that βg ,p −ω2(g )β1,p ∈ A+Oβ .

For part b, we have p = 3 and ω2 = 1. The module H is trivial if M = 1, so we may take

M ≥ 4. By (2.6), we have

θ (b )(βg ,1−βδ,1)≡ θ (a )(β1,g −βδ,g ) + (βg ,δ−β1,δ)mod A.

If δ = 2 (so g is odd and N is even), then the last two terms are zero. Since g > 1 and f =N

by assumption, the other two terms on the right are also zero, and we obtain βg ,1−β2,1 ∈ A.

If δ = 1 (so g is even or N is odd), we obtain (θ (b )− 1)(βg ,1 −β ) ∈ A. We may choose b to

be any unit which is 1 modulo g , and in particular so that θ (b ) 6= 1 since g properly divides

f =N .

Since we assumed that f =N =M p if p = 3, we are done in that case, and for p ≥ 5, we

are reduced to showing that β ∈ A if θ 6=ω2. We consider M > 1 and M = 1 separately.

Lemma 2.3.5. If p ≥ 5 and M > 1, then β ∈ A.

Proof. Set ε= 1 if N is odd and ε= 2 if N is even. Using Lemma 2.3.2a with g = εp and h = 1,

choose a , b ∈ (Z/NZ)× with εp a + b = 1. As p ≥ 5, we have βεp ,1 = 0 by Lemma 2.3.1, and

(2.6) yields

θω−2(a )(ω2(b )−1)β1,εp ≡ (ω2(b )−θω−2(b ))β mod A,

but note that b ≡ 1 mod p , so this simplifies to (1− θ (b ))β ∈ A. By Lemma 2.3.2b, we may

choose b with θ (b ) 6= 1 so long as M 6= 12.
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If M = 12, instead choose a , b ∈ (Z/NZ)× with 2a + b = 1. We then have b ≡ −1 mod 12,

and 12 | f forces θ |(Z/12Z)×(−1) = 1. Let k be the positive even integer with k ≤ p −1 such that

θ |(Z/pZ)× =ωk . Equation (2.6) with g = 2 yields

ω2(a )(ωk−2(b )−1)β2,1 ≡ (ωk−2(b )−ω2(b ))β mod A.

We then have β ∈ A if there does not exist w ∈F×p such that

G (a ) = a 2((1−2a )k−2−1)−w ((1−2a )k−2− (1−2a )2)

vanishes on all a ∈Fp −{0, 1
2}. As G has degree k ≤ p −1, we see that G cannot vanish on the

the latter set unless k = p −1. For k = p −1, note that

G (a ) = (1−2a )−2(a 2(1− (1−2a )2)−w (1− (1−2a )4))

on Fp −{0, 1
2}. No polynomial of degree 4 in a can vanish on this set for p > 5. For p = 5 and

k = 4, note that G is independent of w and G (−1) = 3 6= 0.

Lemma 2.3.6. Suppose that M = 1 and θ 6=ω2. The element β is contained in the O -span of

the symbols αχ ,ψ with χ ∈ XN −{ω2,θω−2}. In particular, β ∈ A.

Proof. Suppose that a , b , and a + b are all in (Z/pZ)×. From (2.5) with g = h = 1, we have

∑

χ∈XN

(χ(a )ψ(b )−χ(a )ψ(a + b )−χ(a + b )ψ(b ))αχ ,ψ = 0. (2.7)

If χ 6=ψ, the difference of the coefficients of αχ ,ψ and αψ,χ on the left of (2.7) is

(χ(a )−χ(a + b ))(ψ(b )−ψ(a + b ))− (χ(b )−χ(a + b ))(ψ(a )−ψ(a + b )).

It suffices to show that this is nonzero in the caseχ =ω2 (asω2 is even, noting thatαω2,ω2 = 0)

for some choice of a and b , as we can then write β as a sum of the αχ ,ψ with χ /∈ {ω2,θω−2}.
It is sufficient to consider the case b = 1, as is seen by dividing (2.7) by χ(b )ψ(b ), so we

suppose this from now on.

Now write θ = ωk for an even 4 ≤ k ≤ p − 1, noting that k 6= 2 by assumption. Our

difference is then

F (a ) = (a 2− (a +1)2)(1− (a +1)k−2)− (1− (a +1)2)(a k−2− (a +1)k−2)

modulo p . The polynomial F (a ) has degree at most k and is nonzero as k 6= 2 (e.g., note that

F ′(0) = k ), so it cannot vanish identically on Fp −{0,−1} unless k = p −1. If k = p −1, we can
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reduce our polynomial on Fp −{0,−1} to

(a 2− (a +1)2)(1− (a +1)p−3)− (1− (a +1)2)(a p−3− (a +1)p−3)

= a−2(a +1)−2(a 2(a 2− (a +1)2)((a +1)2−1)− (1− (a +1)2)((a +1)2−a 2))

=−a−1(a +1)−1(a +2)(2a +1)(a −1)

which is nonzero at a = 2 for p ≥ 7. Moreover, if p = 5, then β =αω2,ω2 = 0.

2.4 Hecke-type operators

In this subsection, we take a minimalistic approach to “Hecke operators” on H , introduc-

ing them only as needed to prove generation, with a view towards ordinary and Eisenstein

components of homology, on which our so-called Hecke operators will be actual Hecke op-

erators. For the purpose of our application, it is necessary to distinguish spaces that are

cuspidal at zero, so we let H either be a space of level N modular symbols or a space of

cuspidal-at-zero modular symbols. We suppose (without loss of generality) in this subsec-

tion that N =M p .

The relationship between the following definition, and that of a T2-operator below, and

actual Hecke operators will be explained by the proof of Theorem 1.1.2.

Definition 2.4.1. For a prime ` dividing N , a U`-operator on H is a Zp [∆]-linear endomor-

phism U` : H →H satisfying

U`[`u : v ] =
`−1
∑

k=0

[u +k N
` : v ]. (2.8)

for all u , v ∈Z/NZwith (`u , v ) = (1), and `u 6= 0 if H is cuspidal at zero. We say that H has a

U`-operator if there exists a U`-operator on H .

Let `denote a prime dividing N , and let s ≥ 1 denote the `-adic valuation of N . As before,

g and h denote relatively prime divisors of N .

Proposition 2.4.2. Suppose that H has a U`-operator and that g and h are not divisible by `.

Let t ≤ s be a positive integer such that fχ divides N
`t . If t < s , then

U`α
`t g ,h
χ ,ψ = `α

`t−1g ,h
χ ,ψ ,

and if t = s (and `s g 6=N if H is cuspidal at zero), then

(U`−χ−1(`))α`
s g ,h
χ ,ψ = (`−1)α`

s−1g ,h
χ ,ψ .
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Proof. By Lemma 2.2.3, we may suppose that fχ divides Q`t g =
N
`t g . We have

U`α
`t g ,h
χ ,ψ =

`−1
∑

k=0

eθ ·
1

ϕ(N )

∑

a∈(Z/NZ)×
χ−1(a )[`t−1g a +k N

` : h ]. (2.9)

Note that

`t−1g a +k
N

`
= `t−1g

�

a +k
N

`t g

�

,

and a + kQ`t g is prime to Qg except in the case t = s for the unique value of k such that `

divides a+kQ`s g . If t < s , we see that the a+kQ`t g for a fixed k run over all units inZ/Q`t−1gZ
with multiplicity `t−1g each. As fχ |Q`t g , we therefore have

∑

a∈(Z/NZ)×
χ−1(a )[`t−1g a +k N

` : h ] =
∑

a∈(Z/NZ)×
χ−1(a )[`t−1g a : h ],

proving the first statement.

For t = s , the a +kQ`s g for all k and a such that ` - (a +kQ`s g ) run over (Z/Q`s−1gZ)× with

multiplicity (`− 1)`s−1g , similarly providing the (`− 1)α`
s−1g ,h
χ ,ψ in the second statement. On

the other hand, the `−1(a +kQ`t g ) for pairs (k , a )with ` | (a +kQ`s t ) run over (Z/Q`s gZ)× with

constant multiplicity `s g . If a ′ ∈ (Z/NZ)× is such that a ′ ≡ a+kQ`s g

` mod Q`s g , then χ(`a ′) =
χ(a ), so the sum of the corresponding terms is the desired value χ(`)−1α

`s g ,h
χ ,ψ .

In the following nearly immediate corollaries, if H is cuspidal at zero, we implicitly ex-

clude those elements αg ,h
χ ,ψ that occur with either g or h equal to N .

Corollary 2.4.3. Suppose that H has a U`-operator that acts on H θ as multiplication by an

element of O ×. Then H θ is the O -span of the elements of the form α
g ,h
χ ,ψ and α`

s g ,h
χ ,ψ with ` - g h.

Noting that `−1 ∈Z×p , and that if χ(`) 6= 1, then 1−χ−1(`) is a unit, we have the following.

Corollary 2.4.4. Suppose that H has a trivial U`-operator (i.e., U`−1 acts as zero on H ). Then

H θ is the O -span of the elements of the form α
g ,h
χ ,ψ with ` - g h and α`

s g ,h
χ ,ψ with ` - g h and

χ(`) = 1. Moreover, if ` - fχg h and χ(`) = 1, then αg ,h
χ ,ψ = 0 (so long as `s g 6=N if H is cuspidal

at zero).

We may now prove the main theorem of this section.

Theorem 2.4.5. Suppose that f = fθω−2 is divisible by M . If any of the following conditions

hold, then H θ =C θ :

i. p ≥ 5 and f =N ,
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ii. p ≥ 5, f =M , θ |(Z/MZ)×(p ) 6= 1, and there is a trivial Up -operator on H ,

iii. for some prime ` dividing M , there is a trivial U`-operator on H (and f = N and H is

cuspidal at zero if p = 3).

Proof. By Theorem 2.1.6, in the case p ≥ 5 (resp., p = 3), we need only show that β1,p ∈ A if

f =M (resp., β ∈ A). In particular, we already have (i). If θ |(Z/MZ)×(p ) 6= 1 and Up acts trivially,

we have β1,p ∈ A+Oβ by Proposition 2.4.2 for Up . Since β ∈ A by Lemmas 2.3.5 and 2.3.6, we

have (ii).

If p ≥ 5 and f =M (resp., p = 3 and f = N ), then for h = p (resp., h = 1), Lemma 2.3.4

tells us that

ω(`)−2β`,h −β1,h ∈ A

for any prime ` dividing M . If `2 divides M (resp., ` exactly divides M and ` 6≡ −1 mod p ) and

U` acts trivially, then Proposition 2.4.2 yields that wβ1,h ∈ A, where w ≡ 1−`
` mod p (resp.,

w ≡ −`
`+1 mod p ). Finally, if ` ≡ −1 mod p exactly divides M , then sinceω2(`) = 1 and U` acts

trivially, Corollary 2.4.4 tells us that β1,h = 0.

We can treat cuspidal-at-zero symbols in the case M = 1 and θ = ω2 by using a T2-

operator.

Definition 2.4.6. Suppose that N is odd. A T2-operator on H is a Zp [∆]-linear endomor-

phism of H such that

〈2〉T2[u : v ] = [2u : v ] + [2u : u + v ] + [u + v : 2v ] + [u : 2v ] (2.10)

for all u , v ∈Z/NZwith (u , v ) = (1) (and u , v , and u + v nonzero if H is cuspidal at zero).

Proposition 2.4.7. Suppose that M = 1, that θ =ω2, and that H is cuspidal at zero. If T2 acts

as 1+2ω−2(2) on H ω2
, then H ω2 =C ω2

.

Proof. Since H is cuspidal at zero, it clearly suffices show that β ∈ A. Let a , b ∈ (Z/NZ)× be

such that a + b = 1. Note that eω2(〈2〉T2[a : b ]−2[a : b ]− [2a : 2b ]) = 0 by our assumption on

T2. Applying Lemma 2.2.4 to (2.10) with u = a and v = b , we therefore have that
∑

χ∈XN

(2χ(a )ψ(b ) +χ(2a )ψ(2b )−χ(2a )ψ(b )−χ(2a )−ψ(2b )−χ(a )ψ(2b ))αχ ,ψ = 0,

where as beforeψ is taken to be θχ−1. Since θ =ω2, we need only see that the difference

(ω2(a )−ω2(2a )−1)− (ω2(b )−ω2(2b )−1)≡ 3((1−a )2−a 2)mod p

of the coefficients of αω2,1 = β and α1,ω2 = −β can be nonzero modulo p . For p ≥ 5, this

occurs for a =−1, and for p = 3, the group H is trivial.
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Remark 2.4.8. The equality in Proposition 2.4.7 does not always hold without the cuspidal-

at-zero condition, even on “Eisenstein quotients” involving conditions for all Hecke opera-

tors, rather than just T2.

3 Application to modular curves

In Section 3.1, we first apply the abstract study of Section 2 to prove Theorems 1.1.1 and 1.1.2

on the generation of relative homology groups of modular curves and their Eisenstein parts

by the modifications of Manin symbols that we have termed (c , d )-symbols. An application

of Nakayama’s lemma provides analogous results, Propositions 3.1.5 and 3.1.6, for inverse

limits of the ordinary parts and Eisenstein components of these relative homology groups

up a tower of modular curves of increasing p -power dividing the level.

As outlined in the introduction, we apply these generation results in Section 3.2 to prove

the integrality of two types of maps taking compatible systems of Manin symbols to compat-

ible systems of zeta elements: see Theorems 3.2.9 and 3.2.11. These maps, first defined in

[FK], a priori only take values in a tensor product of a cohomology group with the quotient

field of an Iwasawa algebra. However, their values on compatible systems of (c , d )-symbols

lie in the (integral) image of the actual cohomology group in the (rational) tensor product.

By the generation results of Section 2, the theorems are then reduced to the torsion-freeness

of the Iwasawa modules that are the cohomology groups in question, and this is the content

of Lemmas 3.2.8 and 3.2.10.

3.1 Homology of modular curves

We explain how the results of Section 2 apply to the homology groups of modular curves.

For this, fix an odd prime p , an integer M with p -Mϕ(M ), and r ≥ 1. Set Nr =M p r , and

suppose additionally that Nr ≥ 4. We set N =N1. Let Gr = (Z/NrZ)×/〈−1〉, let∆=G1, and let

Γr = ker(Gr →∆). Set O =Zp [µϕ(M )].
Let C1(Nr ) = Γ1(N p r )\P1(Q) denote the set of cusps in X1(Nr ). The relative homology

group

H̃r =H1(X1(Nr ), C1(Nr ),Z)

is generated by the classes {x → y }r of images of geodesics in the extended upper half-plane

from a cusp x ∈P1(Q) to a cusp y ∈P1(Q).

Definition 3.1.1. For u , v ∈ Z/NrZ with (u , v ) = (1), choose
�

a b
c d

�

∈ SL2(Z) with (u , v ) =
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(c , d )mod NrZ2. The Manin symbol of level Nr attached to the pair (u , v ) is

[u : v ]r =
§ −d

b Nr
→
−c

a Nr

ª

r

.

Remark 3.1.2. Our “Manin symbols” are actually Manin’s after application of the Atkin-Lehner

involution of level Nr . As a result, we have

〈a 〉−1
r [u : v ]r = [a u : a v ]r

for a ∈Gr , where 〈a 〉r denotes the diamond operator acting on H̃r .

It is well-known that H̃r is a space of modular symbols of level Nr in the sense previously

defined. In fact, we have the following, which follows easily from [Ma, Theorem 1.9].

Theorem 3.1.3 (Manin). The space H̃r has a presentation as a Zp [Gr ]-module on the gener-

ators [u : v ]r with relations as in (2.1), (2.2), and (2.3), where 〈a 〉 in (2.3) for a ∈ (Z/NrZ)× is

taken to be the inverse diamond operator 〈a 〉−1
r acting on H̃r .

Let

Hr =H1(X1(Nr ), C 0
1 (Nr ),Zp ),

where C 0
1 (Nr ) ⊂ C1(Nr ) is the subset of cusps not lying over the zero cusp of the modular

curve X0(Nr ). This is the space of cuspidal-at-zero symbols in H̃r . Let C̃r and Cr denote the

Zp -submodules of H̃r and Hr , respectively, generated by (c , d )-symbols c ,d [u : v ]r as we vary

c and d (with u , v 6= 0 for Hr ).

Fix a p -adic character θ of ∆ as before. Theorem 2.1.6 applies directly to H1 and H̃1 for

the symbols [u : v ]1, yielding Theorem 1.1.1 and its analogue for H1. The proof of Theorem

1.1.2 is only slightly more involved.

Proof of Theorem 1.1.2 and Remark 1.1.3. The Hecke operators U` for ` | N (resp., T2 for N

odd) on H̃1 satisfy equation (2.8) (resp., (2.10)) by [Sh1, p. 264] (resp., [Me, Prop. 20], after

taking into account the modification to said formula incurred by Remark 3.1.2). Let I1 be the

Eisenstein ideal of the introduction, generated by by U`−1 for ` |N and T`−1−`〈`〉 for ` -N .

To prove Theorem 1.1.2, we may take H̃1/I1H̃1 as H in Theorem 2.4.5. For Remark 1.1.3, we

may take H1/I1H1 as H in Theorem 2.4.5 and in Proposition 2.4.7 if θ = ω2. Consequently,

H (θ ) is generated by the images of the c ,d [u : v ]1. Applying Nakayama’s lemma, we obtain

Theorem 1.1.2 for H̃1, and its analogue for H1.

Let G = lim←−r
Gr and Γ = lim←−r

Γr , and set Λ̃ = Zp¹G º and Λ = Zp¹Γ º. Let us use ord to

denote the ordinary part of a Hecke algebra or module, the maximal direct summand on
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which (a compatible system of Hecke operators) Up acts invertibly. We will identify elements

with their projections to ordinary parts (via Hida’s ordinary idempotent). We then have Λ-

modulesH = lim←−r
H ord

r , H̃ = lim←−r
H̃ ord

r , C = lim←−r
C ord

r , and C̃ = lim←−r
C̃ ord

r , with a ∈ Γ acting

as the inverse diamond operator 〈a 〉−1. As in [Sh1, Lemma 3.2], we have the compatibility of

Manin symbols in the following definition.

Definition 3.1.4. For integers u and v with p - v and (u , v, M ) = 1, let

(u : v ) = ([p r−1u : v ]r )r ∈ H̃ ,

and given integers c , d > 1 prime to 6N , set

c ,d (u : v ) = c 2d 2(u : v )−d 2(c u : v )− c 2(u : d v ) + (c u : d v ) ∈ H̃ .

As a Λ̃-module, H̃ is generated by the elements (u : v ) for u , v ∈Z as above [FK, Lemma

3.2.5]. The proof is simple: the image of (u : v ) in H̃ ord
1 is the ordinary projection of [u :

v ]1. Since H̃ ord
1 is isomorphic by Hida theory to the group of Γ -coinvariants of H̃ (see [Oh2,

Theorem 1.4.3]), we may apply Nakayama’s lemma.

The Λ̃-submoduleH of H̃ is generated by those elements (u : v ) with N - u . We let C̃
denote the Λ̃-submodule of H̃ generated by all (c , d )-symbols c ,d (u : v ), and we letC be the

Λ̃-submodule generated by those with N - u .

We let Λθ = Λ̃(θ ) ∼= Oθ ¹Γ º. We again set f = fθω−2 . We take p ≥ 5 in the following two

results for simplicity of presentation. They are immediate consequences of Theorems 1.1.1

and 1.1.2 (and their cuspidal-at-zero analogues) upon application of Nakayama’s lemma.

Proposition 3.1.5. If M | f and θ 6=ω2, then

H (θ ) =C (θ )+Λθ eθ (p : 1) and H̃ (θ ) = C̃ (θ )+Λθ eθ (p : 1).

Moreover, if f =N , thenH (θ ) =C (θ ) and H̃ (θ ) = C̃ (θ ).

LetHdenote Hida’s ordinary Hecke algebra acting as Λ̃-linear endomorphisms of H̃ , and

lethdenote the cuspidal Hecke algebra acting onH . Note thatH(θ ) is a freeΛθ -module, again

by Hida theory. Let I denote the Eisenstein ideal of H (and its image in h) that is generated

by T`−1−`〈`〉 for primes ` -N and U`−1 for primes ` |N . Let m denote the unique maximal

ideal of H(θ ) containing IH(θ ). We write the localization of H(θ ) at m more briefly as Hm, and

similarly for H-modules.

Proposition 3.1.6. If M | f , thenHm is equal toCm. If θ 6=ω2 as well, then H̃m is equal to C̃m.
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3.2 Zeta elements

In this subsection, we consider the integrality of maps that take Manin symbols to zeta ele-

ments. These maps were defined rationally in [FK, Section 3]. We suppose that p ≥ 5.

For s ≥ 0, letZs denote the ring of integers ofQs , the maximal p -extension ofQ inQ(µp s ),
and let Z∞ denote the ring of integers of the cyclotomic Zp -extensionQ∞ ofQ. Set

Tr =H 1(X1(Nr )/Q,Zp (1))
ord and T̃r =H 1(Y1(Nr )/Q,Zp (1))

ord,

and let T and T̃ denote the corresponding inverse limits under trace maps. We let Hida’s

Hecke algebras h and H act on T and T̃ , respectively, via the adjoint actions of Hecke oper-

ators (and here, ordinary parts have been taken with respect to the adjoint action of Up ). For

any compact Zp¹GQº-moduleA that is unramified outside of N , set

H 1
Iw(Z∞[

1
N ],A ) = lim←−

s

H 1(Zs [
1
N ],A ).

Definition 3.2.1. For r, s ≥ 0 and u , v ∈ Z/NrZ with (u , v ) = (1) (and u , v 6= 0 if s = 0) and

c , d > 1 and prime to 6N , we define c ,d zr,s (u : v ) to be the image under the norm and

Hochschild-Serre maps

H 2(Y (p s , Nr+s )/Z[ 1
N ]

,Zp (2))→H 2(Y1(Nr )/Zs [
1
N ]

,Zp (2))
HS−→H 1(Zs [

1
N ], H 1(Y1(Nr )/Q,Zp (2)))

of the cup product c g w
p s , y

Nr+s
∪d g x

p s , z
Nr+s

of Siegel units on Y (p s , Nr+s )/Z[ 1
N ]

, where
�

w x
y z

�

∈ SL2(Z)
with u = y mod Nr and v = z mod Nr .

Remark 3.2.2. In defining c ,d zr,s (u : v ), we have taken corestriction from Z[µp s ] to Zs as part

of the first map. The latter discards information but is sufficient for the purposes of studying

the conjecture of [Sh1].

Remark 3.2.3. For α,β ∈ Q not both zero and with denominators dividing L > 1, there is a

rationally-defined Siegel unit gα,β ∈ O (Y (L )/Z[ 1
L ]
)× ⊗Z Q which satisfies c gα,β = g c 2

α,βg −1
cα,cβ ∈

O (Y (L )/Z[ 1
L ]
)× for c > 1 prime to 6L . Taking a cup product followed by a norm of two Siegel

units attached to a pair (u , v ) as in Definition 3.2.1, we obtain an element

zr,s (u : v ) ∈H 1(Zs [
1
N ], H 1(Y1(Nr )/Q,Qp (2))).

For s = 0, the relationship between this zeta element and the (c , d )-version is given in the

latter cohomology group by

c ,d zr,0(u : v ) = c 2d 2zr,0(u : v )−d 2zr,0(c u : v )− c 2zr,0(u : d v ) + zr,0(c u : d v ),

mirroring our definition of (c , d )-symbols in Definition 2.1.3. For s > 0, the relationship be-

tween the zeta elements zr,s (u : v ) and c ,d zr,s (u : v ) is likewise analogous to the relationship

between the symbols (u : v ) and the symbols c ,d (u : v ] defined below in (3.1).
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Remark 3.2.4. We have the following norm compatibilities among zeta elements.

i. For a fixed s ≥ 0, the elements c ,d zr,s (p r−1u : v ) with r ≥ 1 are compatible with the

norm maps induced by quotients of modular curves. (This is seen through the observation

that c ,d zr+1,s (p r u : v ) arises from a norm of a cup product of two Siegel units, the first of

which is already a unit on Y (p s , Nr+s )/Z[ 1
N ]

.)

ii. For a fixed r ≥ 1, the elements c ,d zr,s (u : v ) are compatible for s ≥ 1 under corestriction

maps for the ring extensions, while the corestriction fromZs [
1
N ] toZ[ 1

N ] takes c ,d zr,s (u : v ) to

(1−Up )c ,d zr,0(u : v ) (see [FK, Prop. 2.4.4]).

Let us use c ,d zr,s (u : v )θ to denote the projection of c ,d zr,s (u : v ) to H 1(Zs [
1
N ], T̃ (θ )r (1)). We

will use the same notation to denote its image in the Eisenstein component H 1(Zs [
1
N ], (T̃r )m(1)).

Definition 3.2.5. For c , d > 1 with (c , d , 6N ) = 1 and u , v ∈Zwith (u , v, M ) = 1 and p - v , we

set

c ,d z (u : v )θ = (c ,d zr,s (p
r−1u : v )θ )r,s≥1 ∈H 1

Iw(Z∞[
1
N ], T̃

(θ )(1)).

If u 6≡ 0 mod N , we also set

c ,d z ](u : v )θ = (c ,d zr,0(p
r−1u : v )θ )r≥1 ∈H 1(Z[ 1

N ], T̃
(θ )(1)).

Remark 3.2.6. The corestriction of c ,d z (u : v )θ to H 1(Z[ 1
N ], T̃ (θ )(1)) is (1−Up )z ](u : v )θ for

u 6≡ 0 mod N .

In what follows, Λ should typically be thought of as an Iwasawa algebra of elements of

Gal(Q∞/Q), while Λθ should be considered as an algebra of inverses of diamond operators.

Let Q (O ) denote the quotient field of an integral domain O .

Remark 3.2.7. In [FK, Prop. 3.1.3], theΛ-module H 1
Iw(Z[µp∞ , 1

N ], H 1(X1(Nr )/Q,Zp )(2)) is shown

to be torsion-free. The proof of the following lemma yields the analogue on ordinary parts

in the inverse limit over r , which is to say that H 1
Iw(Z[µp∞ , 1

N ],T (θ )(1)) isΛ ⊗̂Zp
Λθ -torsion free,

without assumption on θ . However, we work with the cohomology of Z∞[ 1
N ], as opposed to

Z[µp∞ , 1
N ], in order to obtain torsion-freeness with coefficients in the larger module T̃ (θ )(1).

In the proofs of the results that follow, though not the statements, we will omit super-

scripts “(θ )” denoting eigenspaces and subscripts “m” denoting Eisenstein parts to lessen no-

tation.

Lemma 3.2.8. The Λ ⊗̂Zp
Λθ -module H 1

Iw(Z∞[
1
N ], T̃ (θ )(1)) is torsion-free.

Proof. Note first that H 1
Iw(Z∞[

1
N ],T (1)) has no nonzero Λθ -torsion as zeroth Iwasawa coho-

mology groups are trivial. We modify the argument of [FK, Prop. 3.1.3(1)] in order to see that
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H 1
Iw(Z∞[

1
N ],T (1)) has no Λ ⊗̂Zp

Λθ -torsion. Let Λι denote Λ with the inverse action of ele-

ments of the absolute Galois group GQ, and set U =Λι ⊗̂Zp
T (1). Take a nonzero ν ∈Λ ⊗̂Zp

Λθ .

Any ν-torsion in the Λθ -torsion free

H 1
Iw(Z∞[

1
N ],T (1))∼=H 1(Z[ 1

N ],U )

lies in H 0(Z[ 1
N ],U /νU )⊗ΛθQ (Λθ ). We setQ =Λι(1) ⊗̂Zp

Q (Λθ ) for brevity, and we let V ∗ denote

the Q (Λθ )-dual of a Q (Λθ )¹GQº-module V . We then have

H 0(Z[ 1
N ],U /νU )⊗Λθ Q (Λθ )∼=HomQ (Λθ )¹GQº(Q (Λθ ),U /νU ⊗Λθ Q (Λθ ))

∼=HomQ (Λθ )¹GQº(Q (Λθ ),T ⊗Λθ Q/νQ)
∼=HomQ (Λθ )¹GQº((T ⊗Λθ Q (Λθ ))

∗,Q/νQ),

noting thatT ⊗Λθ Q (Λθ ) is a finite-dimensional Q (Λθ )-vector space in the final step. It follows

from the work of Hida [Hi] that the rank two h ⊗Λθ Q (Λθ )-module T ⊗Λθ Q (Λθ ) is a direct

sum of irreducible two-dimensional representations over finite extensions of Q (Λθ ) that are

attached to ordinary Λθ -adic eigenforms for the Hecke operators T` with ` -N and Up . Since

GQ acts onQ/νQ through its maximal abelian quotient, any Q (Λθ )¹GQº-homomorphism

(T ⊗Λθ Q (Λθ ))
∗→Q/νQ

is trivial. Thus, the Λ ⊗̂Zp
Λθ -module H 1

Iw(Z∞[
1
N ],T (1)) has no torsion.

It remains only to show that the rightmost group in the exact sequence

0→H 1
Iw(Z∞[

1
N ],T (1))→H 1

Iw(Z∞[
1
N ], T̃ (1))→H 1

Iw(Z∞[
1
N ], (T̃ /T )(1)).

has no Λ ⊗̂Zp
Λθ -torsion. Taking Ū = Λι ⊗̂Zp

(T̃ /T )(1), this reduces to showing that the GQ-

invariant group (Ū /νŪ )GQ is trivial for ν as before. But, GQ(µM ) acts trivially on T̃ /T by [FK,

Prop. 3.2.4], so (Ū /νŪ )GQ(µM ) is killed byω(a )− 1 for all a ∈ (Z/pZ)×, which of course means

it is trivial.

We next prove our first result on the integrality of the zeta maps of the first two authors.

We consider the following symbols in the completed tensor product Λ ⊗̂Zp
H̃ :

c ,d (u : v ] = c 2d 2⊗ (u : v )−d 2κ(c )⊗ (c u : v )− c 2κ(d )⊗ (u : d v ) +κ(c d )⊗ (c u : d v ), (3.1)

where κ: Z×p → Λ sends a unit to the group element of its projection to 1 + pZp (see [FK,

2.4.6]).
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Theorem 3.2.9. If f = N (resp., M | f and f > 1), then there exists a unique Λ ⊗̂Zp
H-linear

map

z : Λ ⊗̂Zp
H̃ →H 1

Iw(Z∞[
1
N ], T̃

(θ )(1)) (resp., z : Λ ⊗̂Zp
H̃ →H 1

Iw(Z∞[
1
N ], T̃m(1)))

such that z (c ,d (u : v ]) = c ,d z (u , v )θ for all c , d , u, and v .

Proof. We let Ω=Λ ⊗̂Zp
Λθ . In [FK, Theorem 3.2.3], it is shown (via a regulator computation)

that there exists a well-defined map

z : Λ ⊗̂Zp
H̃ →H 1

Iw(Z∞[
1
N ], T̃ (1))⊗ΩQ (Ω)

with the stated property. Each c ,d z (u : v )θ lies in H 1
Iw(Z∞[

1
N ], T̃ (1)), andΛ ⊗̂Zp

H̃ is generated

by the c ,d (u : v ] as an Ω-module by Propositions 3.1.5 and 3.1.6 and Nakayama’s lemma.

Therefore, the image of z is contained in the image of the map

H 1
Iw(Z∞[

1
N ], T̃ (1))→H 1

Iw(Z∞[
1
N ], T̃ (1))⊗ΩQ (Ω)

Lemma 3.2.8 tells us that the latter map is injective, hence the result.

Lemma 3.2.10. If p | f , then the Λθ -module H 1(Z[ 1
N ], T̃ (θ )(1)) is torsion-free. If M | f and

f > 1, then H 1(Z[ 1
N ], T̃m(1)) is Λθ -torsion free.

Proof. The first statement is [FK, Prop. 3.3.6(2)], which implies the second statement for f =
N . The second statement is proven (in particular) in the case f =M > 1 in [Sh2].

Let Cor: H 1
Iw(Z∞[

1
N ], T̃ (θ )(1))→ H 1(Z[ 1

N ], T̃ (θ )(1)) denote corestriction. Then Cor◦z fac-

tors through the quotient H̃ of Λ ⊗̂Zp
H̃ .

Theorem 3.2.11. If f =N (resp., M | f and f > 1), then there exists a unique H-linear map

z ] :H →H 1(Z[ 1
N ], T̃

(θ )(1)) (resp., z ] :H →H 1(Z[ 1
N ], T̃m(1)))

such that (1−Up )z ] =Cor◦z onH and

z ](c ,d (u : v )) = c ,d z ](u : v )θ

for all c , d , u, and v .

Proof. In [FK, Theorem 3.3.9], it was shown that there exists a map

z ] :H →H 1(Z[ 1
N ], T̃ (1))⊗Λθ Q (Λθ )
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with the stated properties, equalities taking place in this group. Moreover, the elements

c ,d z ](u : v )θ are all in H 1(Z[ 1
N ], T̃ (1)) itself, andH is generated by the c ,d (u : v ) (with N - u)

as a Λθ -module by Propositions 3.1.5 and 3.1.6. Therefore, the image of z ] is contained in

the image of the map

H 1(Z[ 1
N ], T̃ (1))→H 1(Z[ 1

N ], T̃ (1))⊗Λθ Q (Λθ ),

which is injective by Lemma 3.2.10. The equalities then also take place in H 1(Z[ 1
N ], T̃ (1)).

Remark 3.2.12. Let X 0
1 (Nr )/Z[ 1

N ]
denote the scheme-theoretic complement in X1(Nr )/Z[ 1

N ]
of

the closed Z[ 1
N ]-subscheme of zero cusps, and set

T 0 = lim←−
r

H 1(X 0
1 (Nr )/Q,Zp (1))

ord.

It follows from [FK, Prop. 3.2.4] that the map H 1(Z[ 1
N ],T 0(1))→ H 1(Z[ 1

N ], T̃ (1)) is injective.

By [FK, Theorem 3.3.9(iii)], the map z ] then actually takes values in (the θ -eigenspace, or

Eisenstein part, of) H 1(Z[ 1
N ],T 0(1)) inside H 1(Z[ 1

N ], T̃ (1)).
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